Chan’s Convex Hull Algorithm

Michael T. Goodrich

UNIVERSITY of CALIFORNIA { ) IRVINE




Convex Hull Binary Search

* There Is a binary search method for finding
the common upper tangent for two convex
hulls separated by a line in O(log n) time.

* This same method also works to find the
upper tangent between a point and a convex
polygon in O(log n) time. P —




Review

The upper-hull plane-sweep algorithm runs in
O(n log n) time.

— This algorithm is sometimes called “Graham Scan”
The Gift Wrapping algorithm runs in O(nh) time,
where h Is the size of the hull.

— This algorithm is sometimes called “Jarvis March”

Which of these Is best depends on h

It would be nice to have one optimal algorithm
for all values of h...



Discrete Comput Geom 16:361-368 (1996) Discrete & Computational

eometry

© 1996 Springer-Verlag New York Inc.

Optimal Output-Sensitive Convex Hull Algorithms
in Two and Three Dimensions*

T. M. Chan

Department of Computer Science, University of British Columbia,
Vancouver, British Columbia, Canada V6T 174

Abstract. We present simple output-sensitive algorithms that construct the convex hull
of a set of n points in two or three dimensions in worst-case optimal Q(n log k) time and
O (n) space, where h denotes the number of vertices of the convex hull.



Main ldea

Assume, for now, we have an estimate, m,
that is O(h).

Divide our set into n/m groups of size
O(m) each

Find the convex hull of each group in O(m
log m) time using Graham scan

Next, do a Jarvis march around all these
“mini hulls.”



Jarvis March Steps

Start with a point, p,, on the convex hull
Find the tangent for every mini hull with p,
Takes O((n/m)log m) time
Pick the furthest one
Repeat




Analysis

Doing all the Graham scans to build the mini hulls
takes O((n/m)m log m) = O(n log m) time.

Doing each Jarvis march step takes O((n/m) log m)
time. There are h <= m such steps to find the
convex hull. So all these steps take O(n log m)
time.

If m is O(h), the running time is O(n log h).

But we don’t know h...



Pseudo Code

Algorithm Hull2D(P, m, H), where P C E*, 3<m <mn,and H > 1

1
2.

11.

partition P into subsets P,..., P/, each of size at most m
fori=1,...,[n/m] do
compute conv(F;) by Graham’s scan and store its vertices in an array
in ccw order
po + (0, —o0)
p1 ¢ the rightmost point of P
ot k= 1; s ve.H dO
fori=1,...,[n/m] do
compute the point ¢; € P, that maximizes Zpr_1prq; (¢; # pi)
by performing a binary search on the vertices of conv(F;)
pr4+1 < the point ¢ from {q,..., ’I[n/m]} that maximizes Zpp_1prq
if pr+1 = p1 then return the list (py, ..., pr)
return incomplete



Guessing an estimate for h

Start with m = 4.

Run Chan’s algorithm. If it doesn’t return
iIncomplete, we're done.

Otherwise, try again with m = m2.

Keep repeating this until we get a
complete hull.



The Complete Running Time

* The complete running time (adding up the
terms In reverse order):

O(n
= O(n
= O(n

09
Og
09

N+ nlog ht?+nloght+ ..))
n+ (1/2)nlogh + (1/4)nlogh + ...)

N).



	Slide 1: Chan’s Convex Hull Algorithm
	Slide 2: Convex Hull Binary Search
	Slide 3: Review
	Slide 4
	Slide 5: Main Idea
	Slide 6: Jarvis March Steps
	Slide 7: Analysis
	Slide 8: Pseudo Code
	Slide 9: Guessing an estimate for h
	Slide 10: The Complete Running Time

