\/

Algorithm Analysis

Input

N

N

a

Scalability

Scientists often have to deal
with differences in scale, from
the microscopically small to the
astronomically large.

Computer scientists must also
deal with scale, but they deal
with it primarily in terms of data
volume rather than physical
object size.

Scalability refers to the ability
of a system to gracefully A\
accommodate growing sizes of <3 TN

Microscope: U.S. government image, from the N.LLH. Medical Instrument

1 G . DeWitt S I, M f Medi R .H S Tele-
inputs or amounts of workload. e

Algorithm Analysis 2

Algorithms and Data Structures

N

a An algorithm is a step-by-step procedure for
performing some task in a finite amount of
time.

= Typically, an algorithm takes input data and
produces an output based upon it.

2 ~~ <9‘3“ !

Iput Algdrithm Output

a A data structure is a systematic way of
organizing and accessing data.

Algorithm Analysis 3

N

Running Times

a Most algorithms transform O best case
input objects into output S oerage o
. worst case
objects. 120-
a The running time of an .y

algorithm typically grows
with the input size.

a Average case time is often
difficult to determine.

a We focus primarily on the
worst case running time.

o
o

Running Time
o (<))
.° o

N
o
Ay

o

. . 1000 2000 3000 4000
= Theoretical analysis Input Size

= Might not capture real-world
performance

Algorithm Analysis 4

Experimental Studies

N

o Write a program

implementing the
algorithm

a Run the program with

inputs of varying size
and composition,
noting the time
needed:

a Plot the results
a Try to match a curve

to the times

9000

8000 -

7000 -
~ 6000 -
5000 -
4000 -
3000 -
2000 -
1000 -

e (ms

-

L)
EAN
.

K
3

3
-

BN

0
.
T

.
Ty
.
N

0
0

Algorithm Analysis

50

Input Size

100

Seven Important Functions

N

‘o Seven functions that

often appear in algorithm 1E+30 |
analysis: 1E+28 771 — Cubic 7
ysls. 1E+26 _
s Constant~ 1 1E+24 — Quadratic
Logarithmic = log n 1E+22 — 1
“ f)ga thmic ~ log 1E+90 Linear /
= Linear ~ n 1E+18
= N-Log-N ~ nlog n ‘C 1E+16 =7
i~ ~ N2 — 1E+14
o Qua'dratlc n TEris
s Cubic ~ n8 1E+10 —
= Exponential ~ 2" 1E+8
1E+6
a In alog-log chart, the 1., | ~
g-iog ’ 1E+2
slope of the line 1E+0 -
corresponds to the 1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
exponent in the growth n

rate
Algorithm Analysis 6

Slide by Matt Stallmann

FU nCtionS Gl‘a phed irnclruded with permissrionr.
Using “Normal™ Scale

(N

26419
186119
LEEND
—
- - — 148429
128119
— . 16419
—
8118 — n
t —
ﬁﬁﬁﬁﬁ
44444
11111
10 20 30 a0 0 0 70 4
0
' L i i . 0 10 0 0 40 50 &0

g(n) = n?

Algorithm Analysis 7

Slide by Matt Stallmann
included with permission.

Why Growth Rate Matters

N

f “ijsntlme timeforn+1 | timefor2n| timefor4n
clgn clg(n+1) c(lgn+1) c(lgn+2)
cn c(n+1) 2cn 4cn
~cnlgn 2cnlgn+ | 4cnlign+ runtime
cnign uadruples
+ cn 2cn 4cn q P
PE— when
C N2 ~cn¢+2cn 4¢ n? 16¢ n? problem
size doubles
c n3 ~cn3+3cn? 8c n3 64c n3
c 2" c2n+ c22n c24

Algorithm Analysis

Constant Factors

p
4
1E+26 —
o The growth rate is ~ 1E+24 |-~ Quadrati
e 1E+22 -+ — Quadratic
m|n|ma”y aﬂ:eCted by 1E+20 -+ - - -Linear ‘
= constant factors or 1E+18 4 —Linear I
| _order t 1E+16 ‘
a Examples — 1E+12
_ : 1E+10
s 10°n+10%isalinear 1g:g
function IR e ——
= 105n2+108nis a E:g
quadratic function 1E+0
1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
Algorithm Analysis 9

/\

B|g -Oh Notation

a Given functions f(n) and

g(n), we say that f(n) is oo

O(g(n)) if there are
positive constants
¢ and n, such that

f(n) < cg(n) forn>n,

10
o Example: 2n + 10 is O(n)

m 2n+10<cn
= (C—2)n=>10
= Nn>10/(c-2)
= Pick c=3and n,=10

10,000

---3n

—2n+10

100

Algorithm Analysis

10

100

1,000

10

N

Big-Oh Example

1,000,000
. —nN2
o Example: the function 100,000 L -+-100r
n2is not O(n) ’ . -.10n
m N2<cn 10,000 4 —N
m N<C
= The above inequality 1000
cannot be satisfied
since ¢ must be a 100
constant
10
1
1 10 100

Algorithm Analysis

1,000

11

Big-Oh Rules

N

a If is f(n) a polynomial of degree d, then f(n) is
O(nY), i.e.,
1. Drop lower-order terms
2. Drop constant factors

a Use the smallest possible class of functions
= Say “2nis O(n)” instead of “2n is O(n?)”

a Use the simplest expression of the class
= Say “3n+5is O(n)” instead of “3n+5is O(3n)”

Algorithm Analysis 12

Relatives of Big-Oh

N

L

big-Omega
s f(n) is Q(g(n)) if there is a constant c > 0
and an integer constant ny > 1 such that

f(n) > cg(n) for n > n,

big-Theta

= f(n) is ®(g(n)) if there are constants ¢’ > 0 and
c” > 0 and an integer constant ny > 1 such that

c'g(n) <f(n) <c”g(n) forn > n,

Algorithm Analysis

13

Intuition for Asymptotic
Notation

N

big-Oh

= f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)

big-Omega

= f(n) is Q(g(n)) if f(n) is asymptotically
greater than or equal to g(n)

big-Theta

a f(n) is ®(g(n)) if f(n) is asymptotically
equal to g(n)

Algorithm Analysis 14

	Slide 1
	Slide 2: Scalability
	Slide 3: Algorithms and Data Structures
	Slide 4: Running Times
	Slide 5: Experimental Studies
	Slide 6: Seven Important Functions
	Slide 7: Functions Graphed Using “Normal” Scale
	Slide 8: Why Growth Rate Matters
	Slide 9: Constant Factors
	Slide 10: Big-Oh Notation
	Slide 11: Big-Oh Example
	Slide 12: Big-Oh Rules
	Slide 13
	Slide 14: Intuition for Asymptotic Notation

