
AlgorithmInput Output

Algorithm Analysis

Scalability
❑ Scientists often have to deal

with differences in scale, from
the microscopically small to the
astronomically large.

❑ Computer scientists must also
deal with scale, but they deal
with it primarily in terms of data
volume rather than physical
object size.

❑ Scalability refers to the ability
of a system to gracefully
accommodate growing sizes of
inputs or amounts of workload.

Algorithm Analysis 2

Algorithms and Data Structures

❑ An algorithm is a step-by-step procedure for

performing some task in a finite amount of

time.

◼ Typically, an algorithm takes input data and
produces an output based upon it.

❑ A data structure is a systematic way of

organizing and accessing data.
Algorithm Analysis 3

AlgorithmInput Output

Algorithm Analysis 4

Running Times

❑ Most algorithms transform
input objects into output
objects.

❑ The running time of an
algorithm typically grows
with the input size.

❑ Average case time is often
difficult to determine.

❑ We focus primarily on the
worst case running time.
◼ Theoretical analysis

◼ Might not capture real-world
performance

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e
1000 2000 3000 4000

Input Size

best case

average case

worst case

Algorithm Analysis 5

Experimental Studies

❑ Write a program
implementing the
algorithm

❑ Run the program with
inputs of varying size
and composition,
noting the time
needed:

❑ Plot the results

❑ Try to match a curve
to the times

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
 (

m
s
)

Algorithm Analysis 6

Seven Important Functions
❑ Seven functions that

often appear in algorithm
analysis:
◼ Constant 1

◼ Logarithmic log n

◼ Linear n

◼ N-Log-N n log n

◼ Quadratic n2

◼ Cubic n3

◼ Exponential 2n

❑ In a log-log chart, the
slope of the line
corresponds to the
exponent in the growth
rate

1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+28

1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

n

T
(n

)

Cubic

Quadratic

Linear

Functions Graphed
Using “Normal” Scale

7Algorithm Analysis

g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann
included with permission.

Why Growth Rate Matters

8Algorithm Analysis

Slide by Matt Stallmann
included with permission.

if runtime

is...
time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
~ c n lg n

 + c n

2c n lg n +

2cn

4c n lg n +

4cn

c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2 n+1 c 2 2n c 2 4n

runtime
quadruples
when
problem
size doubles

Algorithm Analysis 9

Constant Factors

❑ The growth rate is
minimally affected by

◼ constant factors or

◼ lower-order terms

❑ Examples

◼ 102n + 105 is a linear

function

◼ 105n2 + 108n is a

quadratic function 1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

n

T
(n

)

Quadratic

Quadratic

Linear

Linear

Algorithm Analysis 10

Big-Oh Notation
❑ Given functions f(n) and

g(n), we say that f(n) is

O(g(n)) if there are

positive constants
c and n0 such that

 f(n) cg(n) for n n0

❑ Example: 2n + 10 is O(n)

◼ 2n + 10 cn

◼ (c − 2) n 10

◼ n 10(c − 2)

◼ Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000

n

3n

2n+10

n

Algorithm Analysis 11

Big-Oh Example

❑ Example: the function
n2 is not O(n)

◼ n2 cn

◼ n c

◼ The above inequality
cannot be satisfied
since c must be a

constant

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n

Algorithm Analysis 12

Big-Oh Rules

❑ If is f(n) a polynomial of degree d, then f(n) is

O(nd), i.e.,

1. Drop lower-order terms

2. Drop constant factors

❑ Use the smallest possible class of functions

◼ Say “2n is O(n)” instead of “2n is O(n2)”

❑ Use the simplest expression of the class

◼ Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

Algorithm Analysis 13

Relatives of Big-Oh

big-Omega

◼ f(n) is (g(n)) if there is a constant c > 0

and an integer constant n0 1 such that

 f(n) c g(n) for n n0

big-Theta

◼ f(n) is (g(n)) if there are constants c’ > 0 and

c’’ > 0 and an integer constant n0 1 such that

c’g(n) f(n) c’’g(n) for n n0

Algorithm Analysis 14

Intuition for Asymptotic
Notation

big-Oh

◼ f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)

 big-Omega

◼ f(n) is (g(n)) if f(n) is asymptotically
greater than or equal to g(n)

 big-Theta

◼ f(n) is (g(n)) if f(n) is asymptotically
equal to g(n)

	Slide 1
	Slide 2: Scalability
	Slide 3: Algorithms and Data Structures
	Slide 4: Running Times
	Slide 5: Experimental Studies
	Slide 6: Seven Important Functions
	Slide 7: Functions Graphed Using “Normal” Scale
	Slide 8: Why Growth Rate Matters
	Slide 9: Constant Factors
	Slide 10: Big-Oh Notation
	Slide 11: Big-Oh Example
	Slide 12: Big-Oh Rules
	Slide 13
	Slide 14: Intuition for Asymptotic Notation

