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Scalability

Scientists often have to deal
with differences in scale, from
the microscopically small to the
astronomically large.

Computer scientists must also
deal with scale, but they deal
with it primarily in terms of data
volume rather than physical
object size.

Scalability refers to the ability
of a system to gracefully A\
accommodate growing sizes of <3 TN

Microscope: U.S. government image, from the N.LLH. Medical Instrument
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Algorithms and Data Structures

N

a An algorithm is a step-by-step procedure for
performing some task in a finite amount of
time.

= Typically, an algorithm takes input data and
produces an output based upon it.

2 ~~ <9‘3“ !

Iput Algdrithm Output

a A data structure is a systematic way of
organizing and accessing data.
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Running Times

a Most algorithms transform O best case
input objects into output S oerage o
. worst case
objects. 120-
a The running time of an .y

algorithm typically grows
with the input size.

a Average case time is often
difficult to determine.

a We focus primarily on the
worst case running time.
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= Theoretical analysis Input Size

= Might not capture real-world
performance
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Experimental Studies

N

o Write a program

implementing the
algorithm

a Run the program with

inputs of varying size
and composition,
noting the time
needed:

a Plot the results
a Try to match a curve

to the times
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Seven Important Functions

N

‘o Seven functions that

often appear in algorithm 1E+30 |
analysis: 1E+28 771 — Cubic 7
ysls. 1E+26 _
s Constant~ 1 1E+24 — Quadratic
Logarithmic = log n 1E+22 — 1
“ f)ga thmic ~ log 1E+90 Linear /
= Linear ~ n 1E+18
= N-Log-N ~ nlog n ‘C 1E+16 =7
i~ ~ N2 — 1E+14
o Qua'dratlc n TEris
s Cubic ~ n8 1E+10 —
= Exponential ~ 2" 1E+8
1E+6
a In alog-log chart, the 1., | ~
g-iog ’ 1E+2
slope of the line 1E+0 -
corresponds to the 1E+0  1E+2  1E+4 1E+6  1E+8  1E+10
exponent in the growth n

rate
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g(n) = n?
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Why Growth Rate Matters

N

f “ijsntlme timeforn+1 | timefor2n| timefor4n
clgn clg(n+1) c(lgn+1) c(lgn+2)
cn c(n+1) 2cn 4cn
~cnlgn 2cnlgn+ | 4cnlign+ runtime
cnign uadruples
+ cn 2cn 4cn q P
PE— when
C N2 ~cn¢+2cn 4¢ n? 16¢ n? problem
size doubles
c n3 ~cn3+3cn? 8c n3 64c n3
c 2" c2n+ c22n c24

Algorithm Analysis




Constant Factors

p
4
1E+26 —
o The growth rate is ~ 1E+24 |-~ Quadrati
e 1E+22 -+ — Quadratic
m|n|ma”y aﬂ:eCted by 1E+20 -+ - - -Linear ‘
= constant factors or  1E+18 4 —Linear I
| _order t 1E+16 ‘
a Examples — 1E+12
_ : 1E+10
s 10°n+10%isalinear  1g:g
function IR e ——
= 105n2+108nis a E:g
quadratic function 1E+0
1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
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B|g -Oh Notation

a Given functions f(n) and

g(n), we say that f(n) is oo

O(g(n)) if there are
positive constants
¢ and n, such that

f(n) < cg(n) forn>n,

10
o Example: 2n + 10 is O(n)

m 2n+10<cn
= (C—2)n=>10
= Nn>10/(c-2)
= Pick c=3and n,=10

10,000

---3n

—2n+10

100
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Big-Oh Example

1,000,000
. —nN2
o Example: the function 100,000 L -+-100r
n2is not O(n) ’ . -.10n
m N2<cn 10,000 4 —N
m N<C
= The above inequality 1000
cannot be satisfied
since ¢ must be a 100
constant
10
1
1 10 100
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Big-Oh Rules

N

a If is f(n) a polynomial of degree d, then f(n) is
O(nY), i.e.,
1. Drop lower-order terms
2. Drop constant factors

a Use the smallest possible class of functions
= Say “2nis O(n)” instead of “2n is O(n?)”

a Use the simplest expression of the class
= Say “3n+5is O(n)” instead of “3n+5is O(3n)”
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Relatives of Big-Oh

N

L

big-Omega
s f(n) is Q(g(n)) if there is a constant c > 0
and an integer constant ny > 1 such that

f(n) > cg(n) for n > n,

big-Theta

= f(n) is ®(g(n)) if there are constants ¢’ > 0 and
c” > 0 and an integer constant ny > 1 such that

c'g(n) <f(n) <c”g(n) forn > n,
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Intuition for Asymptotic
Notation

N

big-Oh

= f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)

big-Omega

= f(n) is Q(g(n)) if f(n) is asymptotically
greater than or equal to g(n)

big-Theta

a f(n) is ®(g(n)) if f(n) is asymptotically
equal to g(n)
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