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Scalability
❑ Scientists often have to deal 

with differences in scale, from 
the microscopically small to the 
astronomically large. 

❑ Computer scientists must also 
deal with scale, but they deal 
with it primarily in terms of data 
volume rather than physical 
object size. 

❑ Scalability refers to the ability 
of a system to gracefully 
accommodate growing sizes of 
inputs or amounts of workload.
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Algorithms and Data Structures

❑ An algorithm is a step-by-step procedure for 

performing some task in a finite amount of 

time.

◼ Typically, an algorithm takes input data and 
produces an output based upon it.

❑ A data structure is a systematic way of 

organizing and accessing data.
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Running Times

❑ Most algorithms transform 
input objects into output 
objects.

❑ The running time of an 
algorithm typically grows 
with the input size.

❑ Average case time is often 
difficult to determine.

❑ We focus primarily on the 
worst case running time.
◼ Theoretical analysis

◼ Might not capture real-world 
performance
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Experimental Studies

❑ Write a program 
implementing the 
algorithm

❑ Run the program with 
inputs of varying size 
and composition, 
noting the time 
needed:

❑ Plot the results

❑ Try to match a curve 
to the times
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Seven Important Functions
❑ Seven functions that 

often appear in algorithm 
analysis:
◼ Constant  1

◼ Logarithmic  log n

◼ Linear  n

◼ N-Log-N  n log n

◼ Quadratic  n2

◼ Cubic  n3

◼ Exponential  2n

❑ In a log-log chart, the 
slope of the line 
corresponds to the 
exponent in the growth 
rate
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Functions Graphed 
Using “Normal” Scale
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g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann 
included with permission.



Why Growth Rate Matters
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Slide by Matt Stallmann 
included with permission.

if runtime 

is...
time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
~ c n lg n

 +  c n

2c n lg n + 

2cn

4c n lg n + 

4cn

c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2 n+1 c 2 2n c 2 4n

runtime
quadruples
when 
problem
size doubles
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Constant Factors

❑ The growth rate is 
minimally affected by

◼ constant factors or 

◼ lower-order terms

❑ Examples

◼ 102n + 105 is a linear 

function

◼ 105n2 + 108n is a 

quadratic function 1E+0
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Big-Oh Notation
❑ Given functions f(n) and 

g(n), we say that f(n) is 

O(g(n)) if there are 

positive constants
c and n0 such that

 f(n)  cg(n)  for n  n0

❑ Example: 2n + 10 is O(n)

◼ 2n + 10  cn

◼ (c − 2) n  10

◼ n  10(c − 2)

◼ Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000

n

3n

2n+10

n



Algorithm Analysis 11

Big-Oh Example

❑ Example: the function 
n2 is not O(n)

◼ n2  cn

◼ n  c

◼ The above inequality 
cannot be satisfied 
since c must be a 

constant 
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Big-Oh Rules

❑ If is f(n) a polynomial of degree d, then f(n) is 

O(nd), i.e.,

1. Drop lower-order terms

2. Drop constant factors

❑ Use the smallest possible class of functions

◼ Say “2n is O(n)” instead of “2n is O(n2)”

❑ Use the simplest expression of the class

◼ Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
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Relatives of Big-Oh

big-Omega

◼ f(n) is (g(n)) if there is a constant c > 0 

and an integer constant n0  1 such that 

 f(n)  c g(n) for n  n0

big-Theta

◼ f(n) is (g(n)) if there are constants c’ > 0 and 

c’’ > 0 and an integer constant n0  1 such that

c’g(n)  f(n)  c’’g(n) for n  n0
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Intuition for Asymptotic 
Notation

big-Oh

◼ f(n) is O(g(n)) if f(n) is asymptotically 
less than or equal to g(n)

 big-Omega

◼ f(n) is (g(n)) if f(n) is asymptotically 
greater than or equal to g(n)

 big-Theta

◼ f(n) is (g(n)) if f(n) is asymptotically 
equal to g(n)
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