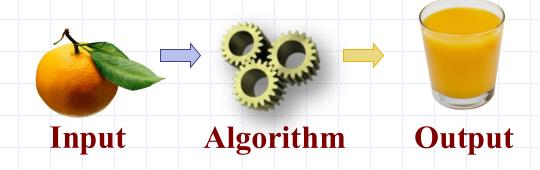
Algorithm Analysis



Scalability

- Scientists often have to deal with differences in scale, from the microscopically small to the astronomically large.
- Computer scientists must also deal with scale, but they deal with it primarily in terms of data volume rather than physical object size.
- Scalability refers to the ability of a system to gracefully accommodate growing sizes of inputs or amounts of workload.

Microscope: U.S. government image, from the N.I.H. Medical Instrument Gallery, DeWitt Stetten, Jr., Museum of Medical Research. Hubble Space Telescope: U.S. government image, from NASA, STS-125 Crew, May 25, 2009.

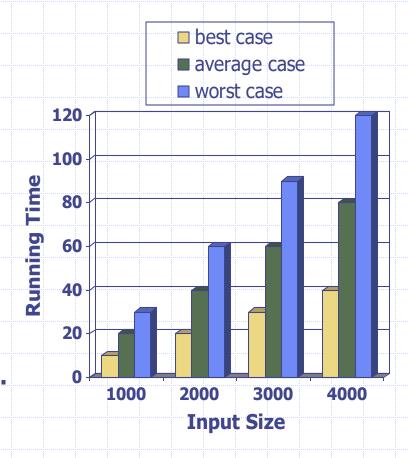
Algorithms and Data Structures

- An algorithm is a step-by-step procedure for performing some task in a finite amount of time.
 - Typically, an algorithm takes input data and produces an output based upon it.

 A data structure is a systematic way of organizing and accessing data.

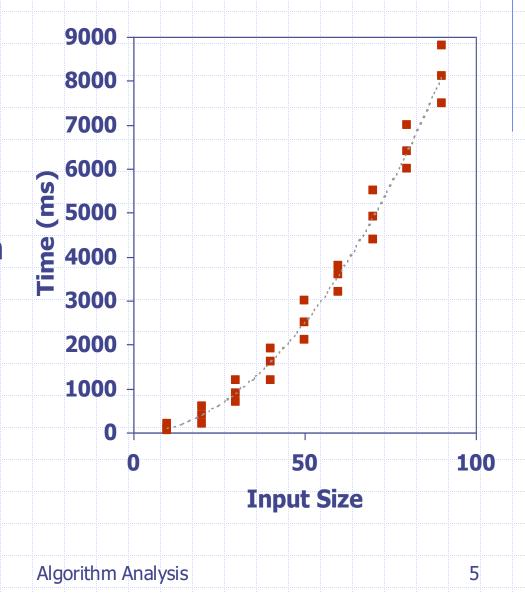
Running Times

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus primarily on the worst case running time.
 - Theoretical analysis
 - Might not capture real-world performance



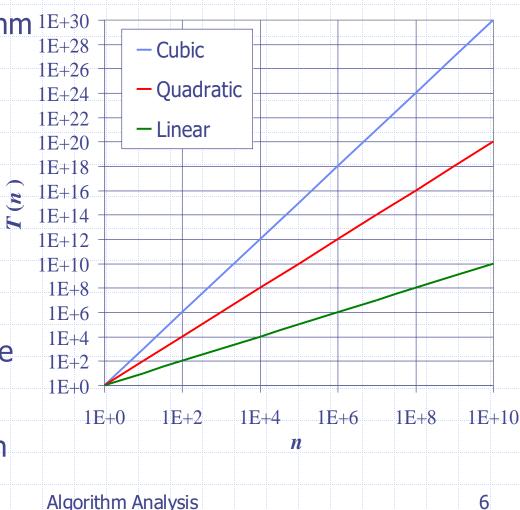
Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition, noting the time needed:
- Plot the results
- Try to match a curve to the times



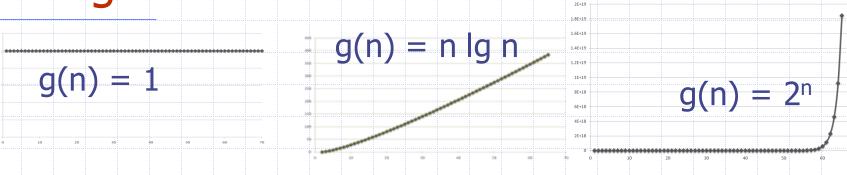
Seven Important Functions

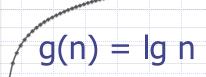
- Seven functions that
 often appear in algorithm 1E+30
 analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the exponent in the growth rate



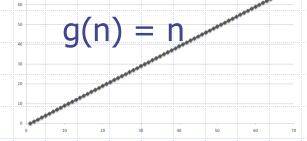
Functions Graphed Using "Normal" Scale

Slide by Matt Stallmann included with permission.





 $g(n) = n^2$



Slide by Matt Stallmann included with permission.

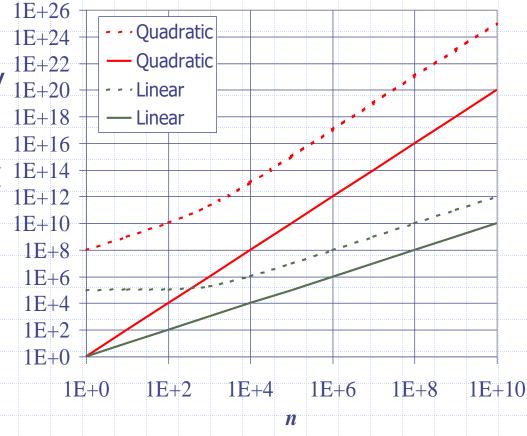
Why Growth Rate Matters

if runtime	time for n + 1	time for 2 n	time for 4 n
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
cn	c (n + 1)	2c n	4c n
cnlgn	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn
c n²	~ c n ² + 2c n	4c n²	16c n ²
c n ³	$\sim c n^3 + 3c n^2$	8c n ³	64c n ³
c 2 ⁿ	c 2 n+1	c 2 ²ⁿ	c 2 ⁴ⁿ

runtime quadruples when problem size doubles

Constant Factors

- The growth rate is minimally affected by
 - constant factors or
 - lower-order terms
- Examples
 - 10^2 **n** + 10^5 is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

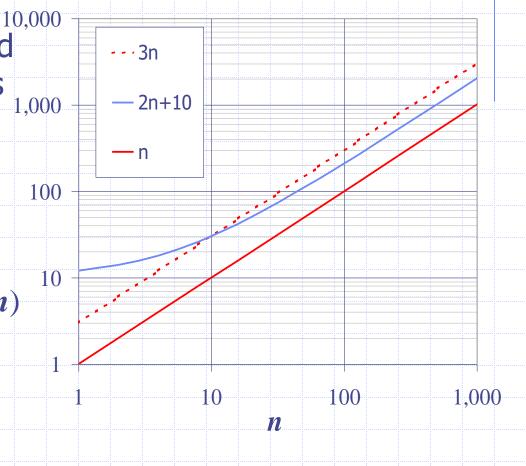


Big-Oh Notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that

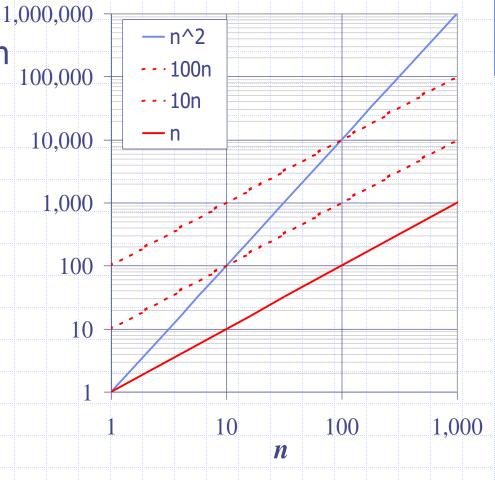
$$f(n) \le cg(n)$$
 for $n \ge n_0$

- □ Example: 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$



Big-Oh Example

- □ Example: the function n^2 is not O(n)
 - $n^2 \le cn$
 - $n \leq c$
 - The above inequality cannot be satisfied since c must be a constant



11

Algorithm Analysis

Big-Oh Rules

- □ If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Relatives of Big-Oh

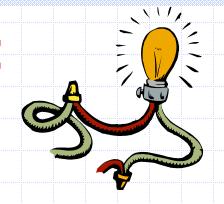
big-Omega

• f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c g(n)$ for $n \ge n_0$

big-Theta

• f(n) is $\Theta(g(n))$ if there are constants c'>0 and c''>0 and an integer constant $n_0\geq 1$ such that $c'g(n)\leq f(n)\leq c''g(n)$ for $n\geq n_0$

Intuition for Asymptotic Notation



big-Oh

f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)

big-Theta

f(n) is ⊕(g(n)) if f(n) is asymptotically equal to g(n)