
Some slides from CS 15-853:Algorithms in the Real World,

Carnegie Mellon University

Generating Random and

Pseudorandom Numbers

Michael Goodrich

CS 165

Random Numbers in the Real World

Page 2https://xkcd.com/221/

https://fitforrandomness.files.wordpress.com/2010/11/dilbert-does-randomness.jpg

https://xkcd.com/221/
https://fitforrandomness.files.wordpress.com/2010/11/dilbert-does-randomness.jpg

Random number sequence definitions

Randomness of a sequence is the

Kolmogorov complexity of the

sequence (size of smallest Turing

machine that generates the sequence)

– infinite sequence should require

infinite size Turing machine.

This definition is useful for proving

computational complexity results, but it

is not as useful for algorithm

experiments.

Page 3

Andrey Kolmogorov

Random number sequence definitions

Each element is chosen independently

from a probability distribution [Donald

Knuth].

This definition is more usable for

algorithm experiments.

A typical distribution is the uniform

distribution, where every number in a

range of numbers is equally likely.

Page 4

Donald Knuth

Environmental Sources of Randomness

Radioactive decay http://www.fourmilab.ch/hotbits/

Radio frequency noise http://www.random.org

Noise generated by a resistor or diode.

Inter-keyboard timings from a human user (watch out for buffering)

Not a good source: Asking a human for a random number between 0 and 100:

Page 5

http://www.fourmilab.ch/hotbits/
http://www.random.org/

Combining Sources of Randomness

Suppose r1, r2, …, rk are random numbers from different

sources. E.g.,

r1 = from JPEG file

r2 = sample of hip-hop music on radio

r3 = clock on computer

r4 = lower order bits in time it takes a human to click

b = r1 r2 … rk

If any one of r1, r2, …, rk is truly random, then so is b.

Page 6

Skew Correction

Von Neumann’s algorithm – converts biased random

bits to unbiased random bits:

Collect two random bits.

Discard if they are identical.

Otherwise, use first bit.

Efficiency?

Page7

John von Neumann

Uniform Random Numbers

• The skew correction method gives us uniformly

random bits from possibly biased random bits.

• We can concatenate i random bits as b1b2…bi

• This gives us a number, k, uniformly distributed in the

range from 0 to 2i - 1.

• How can we get a number uniformly distributed from

0 to n - 1 when n is not a power of 2?

• Generate k = b1b2…bi from uniform random bits

• Two choices:

• Compute r = k mod n

• Repeatedly generate k until k < n

• Which is best?
8

Pseudorandom Number Generators

• A pseudorandom number generator (PRNG) is an

algorithm for generating a sequence of numbers

whose properties approximate the properties of

sequences of random numbers.

• The PRNG-generated sequence is not truly random,

because it is completely determined by an initial

value, called the PRNG's seed (which may include

truly random values).

• Although sequences that are closer to truly random

can be generated using hardware random number

generators, pseudorandom number generators are

important in practice for their speed and

reproducibility.
Page9

Pseudorandom Number Generators

• PRNGs are central in applications such as

simulations (e.g. for the Monte Carlo method),

electronic games (e.g. for procedural generation),

and cryptography.

• Cryptographic applications require the output not to

be predictable from earlier outputs.

Page10

“Anyone who considers arithmetical
methods of producing random digits
is, of course, in a state of sin.”

 - John Von Neumann, 1951

Linear Congruential Generator (LCG)

x0 = given, x n+1 = P1 xn + P2 (mod N) n = 0,1,2,... (*)

x 0 =79, N = 100, P 1 = 263, and P 2 = 71

x1 = 79*263 + 71 (mod 100) = 20848 (mod 100) = 48,

x2 = 48*263 + 71 (mod 100) = 12695 (mod 100) = 95,
x3 = 95*263 + 71 (mod 100) = 25056 (mod 100) = 56,

x4 = 56*263 + 71 (mod 100) = 14799 (mod 100) = 99,

Sequence: 79, 48, 95, 56, 99, 8, 75, 96, 68, 36, 39, 28, 35, 76, 59, 88, 15,
16, 79, 48, 95

Park and Miller:

 P1 = 16807, P2 = 0, N= 231-1 = 2147483647, x0 = 1.

ANSI C rand():

P1 = 1103515245, P2 = 12345, N = 231, x0 = 12345

Page11

Matsumoto’s Marsenne Twister

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Considered one of the best linear
congruential generators.

Page12

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Cryptographically Strong Pseudorandom

Number Generator

Next-bit test: Given a sequence of bits x1, x2, …, xk,

there is no polynomial time algorithm to generate

xk+1.

Yao [1982]: A sequence that passes the next-bit test

passes all other polynomial-time statistical tests for

randomness.

Page13

Hash/Encryption Chains

Hash or Encryption Functionkey

xi

xi+1

Last bit
of xi+1

(need a random seed x0 or key value)

Page14

Some Cryptographic Hash Functions

• SHA-1 Hash function https://en.wikipedia.org/wiki/SHA-1

• MD5 Hash function https://en.wikipedia.org/wiki/MD5

• These functions are good pseudo-random number

generators and when seeded with a random number

generator, they provide good sequences for use in

algorithm experiments.

Page15

https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/MD5

Random Numbers in Python

https://docs.python.org/3/library/random.html

[Review this website]

16

https://docs.python.org/3/library/random.html

Sampling from a Discrete Distribution

17

Discrete Inverse Transformation Method

• The cumulative distribution function (CDF) gives

the probability that the random variable X is less

than or equal to x and is usually denoted F(x). The

cumulative distribution function of a random variable

X is the function given by

• Compute the CDF F(x) for x = 0,1, 2,…, n ,and

store in an array.

• Generate a U(0,1) variate u and search the array

to find x so that F(x) < u < F(x + 1).

• return x.

18

Continuous Inverse Transformation Method

• Suppose we have a closed form for the inverse, F-1(u),

of a CDF, F(x), for a given distribution.

• Then we can approximately sample as follows:

• Generate a random real number, u, uniformly

between 0 and 1.

• Return F-1(u).

19

Example: Exponential distribution

• Generation: Generate a U(0,1) random number u and

return - ln(u) as Exp(a). 20

	Slide 1: Some slides from CS 15-853:Algorithms in the Real World, Carnegie Mellon University
	Slide 2: Random Numbers in the Real World
	Slide 3: Random number sequence definitions
	Slide 4: Random number sequence definitions
	Slide 5: Environmental Sources of Randomness
	Slide 6: Combining Sources of Randomness
	Slide 7: Skew Correction
	Slide 8: Uniform Random Numbers
	Slide 9: Pseudorandom Number Generators
	Slide 10: Pseudorandom Number Generators
	Slide 11: Linear Congruential Generator (LCG)
	Slide 12: Matsumoto’s Marsenne Twister
	Slide 13: Cryptographically Strong Pseudorandom Number Generator
	Slide 14: Hash/Encryption Chains
	Slide 15: Some Cryptographic Hash Functions
	Slide 16: Random Numbers in Python
	Slide 17: Sampling from a Discrete Distribution
	Slide 18: Discrete Inverse Transformation Method
	Slide 19: Continuous Inverse Transformation Method
	Slide 20: Example: Exponential distribution

