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Random Numbers in the Real World
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Random number sequence definitions

Randomness of a sequence is the 

Kolmogorov complexity of the 

sequence (size of smallest Turing 

machine that generates the sequence) 

– infinite sequence should require 

infinite size Turing machine.

This definition is useful for proving 

computational complexity results, but it 

is not as useful for algorithm 

experiments.
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Random number sequence definitions

Each element is chosen independently 

from a probability distribution [Donald 

Knuth].

This definition is more usable for 

algorithm experiments. 

A typical distribution is the uniform 

distribution, where every number in a 

range of numbers is equally likely. 
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Environmental Sources of Randomness

Radioactive decay http://www.fourmilab.ch/hotbits/

Radio frequency noise http://www.random.org

Noise generated by a resistor or diode.

Inter-keyboard timings from a human user (watch out for buffering)

Not a good source: Asking a human for a random number between 0 and 100:
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Combining Sources of Randomness

Suppose r1, r2, …, rk are random numbers from different 

sources.  E.g.,

r1 = from JPEG file

r2 = sample of hip-hop music on radio

r3 = clock on computer

r4 = lower order bits in time it takes a human to click 

b = r1  r2  …  rk

If any one of r1, r2, …, rk is truly random, then so is b.
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Skew Correction

Von Neumann’s algorithm – converts biased random 

bits to unbiased random bits:

Collect two random bits.

Discard if they are identical.

Otherwise, use first bit.

Efficiency?
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Uniform Random Numbers

• The skew correction method gives us uniformly 

random bits from possibly biased random bits.

• We can concatenate i random bits as b1b2…bi 

• This gives us a number, k, uniformly distributed in the 

range from 0 to 2i - 1.

• How can we get a number uniformly distributed from 

0 to n - 1 when n is not a power of 2?

• Generate k = b1b2…bi from uniform random bits

• Two choices:

• Compute r = k mod n

• Repeatedly generate k until k < n

• Which is best?
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Pseudorandom Number Generators

• A pseudorandom number generator (PRNG) is an 

algorithm for generating a sequence of numbers 

whose properties approximate the properties of 

sequences of random numbers. 

• The PRNG-generated sequence is not truly random, 

because it is completely determined by an initial 

value, called the PRNG's seed (which may include 

truly random values). 

• Although sequences that are closer to truly random 

can be generated using hardware random number 

generators, pseudorandom number generators are 

important in practice for their speed and 

reproducibility.
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Pseudorandom Number Generators

• PRNGs are central in applications such as 

simulations (e.g. for the Monte Carlo method), 

electronic games (e.g. for procedural generation), 

and cryptography. 

• Cryptographic applications require the output not to 

be predictable from earlier outputs.
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Linear Congruential Generator (LCG)

x0 = given,  x n+1 = P1 xn + P2  (mod N)  n = 0,1,2,...  (*) 

x 0 =79, N = 100, P 1 = 263, and P 2 = 71

 

x1 = 79*263 + 71 (mod 100) = 20848 (mod 100) = 48, 

x2 = 48*263 + 71 (mod 100) = 12695 (mod 100) = 95, 
x3 = 95*263 + 71 (mod 100) = 25056 (mod 100) = 56, 

x4 = 56*263 + 71 (mod 100) = 14799 (mod 100) = 99, 

Sequence: 79, 48, 95, 56, 99, 8, 75, 96, 68, 36, 39, 28, 35, 76, 59, 88, 15, 
16, 79, 48, 95

Park and Miller:

 P1 = 16807, P2 = 0, N= 231-1 = 2147483647, x0 = 1.

ANSI C rand():

P1 = 1103515245, P2 = 12345, N = 231, x0 = 12345
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Matsumoto’s Marsenne Twister

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Considered one of the best linear 
congruential generators.
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Cryptographically Strong Pseudorandom 

Number Generator

Next-bit test: Given a sequence of bits x1, x2, …, xk, 

there is no polynomial time algorithm to generate 

xk+1.

Yao [1982]: A sequence that passes the next-bit test 

passes all other polynomial-time statistical tests for 

randomness.

Page13



Hash/Encryption Chains

Hash or Encryption Functionkey

xi

xi+1

Last bit 
of xi+1

(need a random seed x0 or key value)
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Some Cryptographic Hash Functions 

• SHA-1 Hash function https://en.wikipedia.org/wiki/SHA-1

• MD5 Hash function https://en.wikipedia.org/wiki/MD5

• These functions are good pseudo-random number 

generators and when seeded with a random number 

generator, they provide good sequences for use in 

algorithm experiments.
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Random Numbers in Python

https://docs.python.org/3/library/random.html

[Review this website]
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Sampling from a Discrete Distribution
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Discrete Inverse Transformation Method

• The cumulative distribution function (CDF) gives 

the probability that the random variable X  is less 

than or equal to x and is usually denoted F(x). The 

cumulative distribution function of a random variable 

X is the function given by

• Compute the CDF F(x) for x = 0,1, 2,…, n ,and 

store in an array.

• Generate a U(0,1) variate u and search the array 

to find x so that F(x) < u < F(x + 1).

• return x.

18



Continuous Inverse Transformation Method

• Suppose we have a closed form for the inverse, F-1(u), 

of a CDF, F(x), for a given distribution.

• Then we can approximately sample as follows:

• Generate a random real number, u, uniformly 

between 0 and 1.

• Return F-1(u).
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Example: Exponential distribution

• Generation: Generate a U(0,1) random number u and 

return - ln(u) as Exp(a). 20
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