UNIVERSITY o
UCIrvine | & omn Z2#2)
Al ;

Exact Matching Algorithms

Michael T. Goodrich
University of California, Irvine

1 UNIVERSITY 5 TN
UCII’VIDG OF CALIFORNIA F 7!

BA

Review:

o A string is a sequence of
characters (indexed from 0)*

o Examples of strings:
o Python program
o HTML document
o DNA sequence
o Digitized image
o An alphabet 2'is the set of
possible characters for a
family of strings
o Example of alphabets:
o ASCII or Unicode
o {0, 1}
o {AC G, T}

*Some people index starting from 1.

Strings

o Let P be a string of size m

o A substring PJi : j] of P is the
subsequence of P consisting of
the characters with ranks
between i and j

o A prefix of P is a substring of
the type P[0 : i]

o A suffix of P is a substring of
the type P[i : m — 1]

o Given strings T (text) and P
(pattern), the pattern matching
problem consists of finding a
substring of T equal to P

o Applications:

o Text editors

o Search engines

o Biological research

s UNIVERSITY
UCIr VIine OF CALIFORNIA

Application: fgrep

o Recall that fgrep looks for an exact match of a
text string in a file.

O So we are interested In fast algorithms for the
exact match problem:

o Given a text string, T, of length n, and a pattern string,
P, of length m, over an alphabet of size k, find the first
(or all) places where a substring of T matches P.

01234567890123456789012345678
= HACKHACKHACKHACKITHACKEREARTH
= HACKHACKIT
= HACKHACKIT... [match!]
= HACKHACKIT

g g A

. UNIVERSITY
UCII‘ VlIle OF CALIFORNIA

A

Alfred Aho

o 1975: Invented fgrep

*

Q...
o 2020: received the Turing Award

* Also invented text processing techniques used
In every modern source-code compiler and co-

authored two influential textbooks.

UCIrvine | o Catromm g

Brute-force Pattern Matching

o The Brute-force (Naive) pattern

Q

Q

matching algorithm compares the
pattern P with the text T for each
possible shift of P relative to T,
until either

o a match is found, or

o all placements of the pattern have

been tried

Brute-force pattern matching runs
in time O(nm)
Example of worst case:

O T=aaa...ah

o P=aaah

O may occur in images and DNA
sequences

Algorithm BruteForceMatch(T, P)

Input text T of size n and pattern
P of sizem

Output starting index of a
substring of T equal to P or -1
If no such substring exists

for i< 0ton—-m
{ test shift i of the pattern }
j<0
while j<m A T[i +] = P[J]
jJ<«—j+1
If j=m
return 1 {match at i}
else
break while loop {mismatch}
return -1 {no match anywhere}

. UNIVERSITY o
UCII‘ VINE | or CaLirornia

LX)

Brute-Force Matching Example

o Trying every possible position for a match:

alc|lalalblalc|c|lalb|la|lc|a|b|lala|b]|Db

o]
£ | =l | o8 o
o]
(o]
S

O

10

11 comparisons

=
o
T |
3]
L
[
O |w
)
2 |
(o)
T |

s UNIVERSITY .
UCIr VIine OF CALIFORNIA ,;;/‘4

) N

Expected-case Analysis for Brute-force

o The worst-case running time for Brute-force algorithm O(mn),
but it runs in expected linear time for random strings.

o Suppose P and T are strings of m and n characters
respectively chosen uniformly and independently at random
from an alphabet of size k.

o Let X;;be a random variable that is 1 if and only if P[i] is
compared to T[j], and note that probability X;;is 1 is 1/K
because this occurs when we have | character matches.

o By the linearity of expectation, the expected number of
comparisons for any T[j] is therefore

1/k + 1/k? + 1/k3 + ... + 1/k™,
which is at most 2.
o Thus, the expected number of comparisons is at most 2n.

g UNIVERSITY
UCII‘ Vine OF CALIFORNIA

4§ — The Art of Computer Programming] T
Sorting and Searching o -

B = The Art of Computer Programming B 15
Seminumerical Algorithms e

The Art of Computer Programming ESERY . 35
Fundamental Algorithms * -

o 1973: Discovered the KMP algorithm (which was
also published in a technical report by Morris and
Pratt in 1970—all three published a joint paper
describing the algorithm in 1977).

0 1974: Received the Turing Award.

o He is also known for his book series, “The Art of
Computer Programming,” which formalized and
popularized algorithm analysis (e.g., the “big O”).

. UNIVERSITY
UCII’ VINE | 6k CaLirornia

PAY

The KMP Algorithm

Consider the comparison of a
pattern with a text as in the
brute-force algorithm.

When a mismatch occurs, what
is the most we can shift the
pattern so as to avoid
redundant comparisons?

Answer: the largest prefix of
P[0..j] that is a suffix of P[1..j]

This approach is similar to the
NFA-to-DFA approach, but is
implemented more efficiently.

al al bl a

~!

No need to ’
repeat these
comparisons

\Resu me

comparing

here

. UNIVERSITY
UCII‘ VIIEC | oF CaLirornia

The KMP Failure Function

o Knuth-Morris-Pratt’s algorithm j 0] 1]2]3[4]S5
preprocesses the pattern to plitlal bl alalbla
find matches of prefixes of []_]
the pattern with the pattern FG)|ojO|1]1]2]3
itself

o The failure function F(j)is |- |-|a|b|a|a|[b|X
defined as the length of the

longest prefix of P[0..j] that is I
also a suffix of P[1..j]

o Knuth-Morris-Pratt’s algorithm

modifies the brute-force]
algorithm so that if a

mismatch occurs at P[j] = T[i]

andj>0,weset j« F(-1) < bla ajbla

UCIrvine| o Canorma 22

The KMP Algorithm

The failure function can be
represented by an array and
can be computed in O(m) time

At each iteration of the while-
loop, either

o | increases by one, or

o the shift amount i —j
increases by at least one
(observe that F(j — 1) <))

Hence, there are no more
than 2n iterations of the while-
loop

Thus, KMP’s algorithm runs in
optimal time O(m + n)

Algorithm KMPMatch(T, P)

F « failureFunction(P)
1< 0
j<0
while i <n
if T[i] = P[j]
if j=m-1
return i—j{ match }
else
< 1+1
J<—j+1
else
if j>0
J<Fj-1]
else
< i+1
return —1 { no match }

: UNIVERSITY
UCIr VIIEC | ok CaLirornia

Computing the Failure Function

The failure function can be
represented by an array and
can be computed in O(m) time

The construction is similar to
the KMP algorithm itself

At each iteration of the while-
loop, either

O i increases by one, or

o the shift amount i —j
increases by at least one
(observe that F(j — 1) <))

Hence, there are no more
than 2m iterations of the
while-loop

Algorithm failureFunction(P)
F[0] <O
<1
j<0
while i <m
if P[i] = PJj]
{we have matched j + 1 chars}
Fli]«< j+1
l<—1+1
j<—j+1
else if j >0 then
{use failure function to shift P}
J«<Fi-1]
else
F[i] <« 0 { no match }
< 1+1

z UNIVERSITY
UCIr vVIine OF CALIFORNIA ;

A

alblalc|alalblalc]|c|alb|la|c|a|lbla|la|b]|b
2 < 6
alblalclal|b
/
alblalclal|b
8 9 1011 12
alblalclal|b
13
alblalclal|b

: 14 15 16 17 18 19
Pp] alblal|lc|]alb 2Tblalclalb
FOlO|O |1 |0 1]2

: UNIVERSITY N
UCIerne OF CALIFORNIA _ K \2);

B

The Boyer-Moore-Horspool Algorithm

o The Boyer-Moore-Horspool algorithm for pattern matching a pattern

P of length m in a text of length n is based on the following two
simple heuristics:

Reverse-match heuristic: Compare P with a subsequence of T
moving backwards

Bad-character heuristic: When a mismatch occurs at T[i] =c
o If P contains c, shift P to align the last occurrence of c in P with TJi]
o Else, shift P to align P[0] with T[i + 1]

o Example:
a plajt|{tje|r|n mial|t|{c|h|i|n]|g alljglo|r|if[t{h{m
1 3 5 1110 9 8 7
riir|tih|m riir|tl{h|m riir|tih|m r{i|tl{h|m
N, X R 4 h e M
r{ir|t|h|m r{i|t{h|m rii|t{h|m

: UNIVERSITY
UCIr VIIEC | ok CaLirornia

BA

Last-Occurrence Function

o The Boyer-Moore-Horspool algorithm preprocesses the pattern P
and the alphabet X to build the last-occurrence function L
mapping X to integers, where L(c) is defined as

o the largest index i such that P[i] =c or
o -1 if no such index exists

o X={ab,c,d} L(c) 4 5 3 -1
o P =abacab

o The last-occurrence function can be represented by an array
indexed by the numeric codes of the characters

o The last-occurrence function can be computed in time O(m + k),
where m is the size of P and k is the size of X. How?

: UNIVERSITY
UCII‘ VINE | or CaLirornia

The Boyer-Moore-Horspool Algorithm

Algorithm BoyerMooreHorspool(T, P, 3) Case 1! j<1+]
L < lastOccurenceFunction(P, 2') a
< m-1 | | |
j «~m-1 ... [b]a |
repeat A
If T[i] = P[j] Im—jl
return i { match ati} (_)
else j |
l<—1-1 _
je<ij-1 Case 2: 1+1<]j
else A I I R N R - 1
{ bad-cha}racter—jump } : | |
! < L[T[Il] (i Slal. . |b]. |
<~ 1+m-—min(, 1+1) | a |
Jem-1 Im—(L+1)]
until i>n-1
return -1 { no match } Tal T 1ol

: UNIVERSITY
UCII’ vine OF CALIFORNIA

A

QD
(@n
QD
O
QD
QD
(@
QD
o
O
QD
@y
QD
o
QD
(@n
QD
QD
@y
(@x

H\N
Q (W O |—=
No
—t
w
—
N
=
—
—t
o

#
o (N QD O
4

UCIrvine| o Canorma 22

Analysis

o The Boyer-Moore-Horspool

algorithm runs in O(nm + k) alalal|alalalala|a
time in the worst case
6 5 4 3 2 1
o Example of worst case:
bjalala|a]|a
O T=aaa...a
5 P=baaa Q12 11 10 9 8 7
o The worst case may occur in blalalala]a
images and DNA sequences Q
but is unlikely in English text 18 17 10 1> 14 13
alalala]la
o The Boyer-Moore-Horspool
algorithm can skip over some A4 23 22 21 20 19
comparisons b IEREEEE

o Itrunsin O(n/m + m) time
in the best case.

s UNIVERSITY
UCIr VIine OF CALIFORNIA

A

The Boyer-Moore Algorithm

o The original Boyer-Moore has another heuristic,

the good suffix rule:
T

Yjyjojo1¥jy¥jo¥j|o

P

Yjojy)o

‘ Look for good suffix to left in P

Shift it over underneath

2

= h 0 b 0

o When a mismatch occurs, we take the biggest
shift possible using the bad character and good
suffix rules

. UNIVERSITY ;
UCII’ ViNe ‘ OF CALIFORNIA 78~ A \2);

Case 1 for the good suffix rule

O Suppose we have already matched a suffix, u, of
P, and u appears in P. Then we want a shift that

IS guaranteed to match u and requires the
mismatching character to be different:

shift

T
ol e N = B N

. UNIVERSITY 2)
UCII’ ViNe ‘ OF CALIFORNIA 78~ A \2);
w W ___:.‘/\ :-'

Case 2 for the good suffix rule

O Suppose we have already matched a suffix, u, of
P, and u does not appear in P. Then we want a
shift such that a prefix v is a suffix of u:

T b U
7 shift
= a u

: UNIVERSITY
UCIr VIIEC | ok CaLirornia

BA

Good Suffix Rule

. Definition: Suppose for a given alignment of P and T, a
substring t of T matches a suffix of P, but a mismatch occurs
to the next character to the left. Then find, if exists, the
rightmost copy t’ of t in P, such as t’ is not a suffix of P and
the character to the left of t' in P differs from the character to
the left of t in P. Shift P to the right, so that substring t' in P is

below substring t in T.

Demonstration of good suffix rule with pattern ANAMPNAM.

. UNIVERSITY
UCII’VIHG OF CALIFORNIA)

A

Good suffix rule (cont'd)

« If t' does not exist, then shift the left end of P past the left end
of t In T by the least amount, so that a prefix of P matches a
suffix of tin T. If no such shift is possible then shift P by m

places to the right.

T dclalelalt|alT|alT

P shift:

P2: |clalalAal|T

P2 shift: CIAA|A|T

. UNIVERSITY
UCII‘ VINE | o: CALIFORNIA /¢

The good suffix shift table

o Define a shift table, MATCH(i), that encodes the
good suffix shifts for a pattern, x, of length m.

o MATCHY(1) = min. s such that Cs(i,s) and Cos(i,s) hold:

0<s<iandz[t —s+1..m—s— 1]isasuffix of x
Cs(z,s) = < or
{sf>iand;r[0..msl} is a suffix of »
0<s<iandz[i— s| # x[i
Cos(t,s) = {or
5> 1

UCIrvine | orCanrora g2

The bad character shift table

o Let x be a pattern of length m.

o Define a bad-character shift table, occ[a], for each
character, a, in the alphabet for x:

occla) = min{: | 1 <¢<m—1landz[m —1—1] =a} ifa appearsin z,
e otherwise.

o This Is just the last occurrence function, L, indexed
slightly differently.

o It can be computed in the same way as L.

: UNIVERSITY .
UCII‘ VIiNne ‘ OF CALIFORNIA /%

The Boyer-Moore Algorithm

o Let x be a pattern of length m and y a text of
length n.

0] Is the location of a possible match.

BOYER-MOORE(z, m, y, n)

1 70

2 whilej <n—m

3 do: ¢ m—1

4 while : > (0 and =[] = y[i + j]

5 doz <11

6 if: <0

7 then REPORT(j)

8 j ¢ 7+ MATCH(0)

9 else j < j+ max(MATCH(:), occly[t + j]] —m+ i+ 1)

: UNIVERSITY
UCII‘ VI1INE | o Cavirornia

Computing the Suffix table

o Compute a table, suf, such that sufi] is the length
of the longest suffix of x ending at position 1 in X.

o We can compute the suf table like the KMP Failure
function, but in reverse (] = g+m-1-f):
SUFFIXES(z, m)
1 suff[m— 1]+ m
2 g&m=1
3 for: < m— 2 downto 0

4 doifi>gandsuffi+ m—1—f]<i—yg
5 then suf[i] « suf[i + m— 1 — f]
6 else g « min{g,i}
7 fe1
8 whileg > 0 and z[g] = z[g + m — 1 — f]
9 dog g —1
10 sufft] < f —g
11 return suf
0 g 7 f J m—1

x b v a v

UCIrvine| & Ciromm 2

Computing the MATCH table

o Given the suffix table, suf, we compute MATCH
to be sMatch in the following algorithm:

STRONG-MATCHING(z, m)

1 70

2 for: < m — 1 downto —1

3 doifi = —1lorsuffi] =i+ 1
4 then while) < m —1 —1
5 do sMatch[j] « m — 1 —1
6 J+—7+1

7 for: < 0Otom — 2

8 do sMatch[m — 1 — suf[i]] « m — 1 —
9 return sMatch

: UNIVERSITY - *\%
UCII‘ VIiNne ‘ OF CALIFORNIA _Z¢Z A \C);
o = =5 A ,':

Summary for the Boyer-Moore Algorithm

o The Boyer-Moore algorithm runs in O(n + m) time
In the worst case.

o It runs in O(n/m + m) time In the best case.

o It can be further optimized to find all occurrences
of a pattern in a text using at most 1.5n character
comparisons.

. UNIVERSITY
UCII‘ VINE | 6k CaLirornia

Experimental Analysis

o Since completely random strings are not useful for
analyzing exact string-matching algorithms, we
need alternatives:

o Seeded random strings: Create a random text
string, T, of length n (e.g., n=1,000,000), and a
random pattern, P, of length m (e.g., m=5, 10, 20, ...).
Then insert P into T at 1 to100 random locations.

o English text: Use a corpus of large English text (e.g.,
emails) and search for patterns of various lengths
(e.g., email addresses, English words, English
phrases).

: UNIVERSITY
UCII‘ VINE | or CaLirornia

Varying the Pattern Length

o One type of experiment: Keep the text size fixed
at a reasonably large amount and vary the
pattern size.

Method 75 9
800 4 — BoyerMoore 70 1

KMP Z_based 65 1
—— KMP vanilla

time
55 1
{sec)

Knuth-Morris-Pratt

......
R SRR TE LTI Ny S L

‘.. "’__—'ﬁh—_————

o, shift-Or
is4 N T -... Simplified-Boyer-Mcore
200 1

Boyer-Moore

T T T T . . . Boyer-Moore-Horspool
25 50 75 10.0 125 150 175 151
Waord Length 10

2 3 4 5 6 7 8 91011121314 1516 17 18 19 20
Length of the Pattern {m}

Figure 10.12: Simulation results for all the algorithms in English text

: UNIVERSITY .
UCII‘ VIiNne ‘ OF CALIFORNIA /%

Varying the Text Length

o Another type of experiment: Vary the text length, n,
with certain pattern lengths (e.g., m=10, 20, 100)
or as a function of n (e.g., m=n'2 or m=n/8).

time (sec) —= EM-convolution —#—EM-KMP —o—EM-BM

i

2
1.8 1
1.6 1
1.4 ‘
127
1 -
0.8 -
06
0.4 A
0.2 A
0 = .

input size (bits)

£ UNIVERSITY
UCII‘ Vlne OF CALIFORNIA

A

Data Type Duality

o Rather than rely only on comparing characters,
numerical matching algorithms take advantage of
the fact that characters in a string can also be
viewed as (binary) numbers.

o This concept is referred to as data type duality.

char to int

Conversion

UCIrvine| & Ciitoraa

H
> H

o7 4 2
DAYS f '."

The Rabin-Karp Algorithm

The Rabin-Karp string searching algorithm calculates a hash
value for the pattern, and for each M-character substring of
text to be compared.

If the hash values are unequal, the algorithm will calculate
the hash value for next M-character sequence.

If the hash values are equal, the algorithm will do a Brute
Force comparison between the pattern and the M-character
sequence at this location (in case of a hash value collision
causing a false match).

In this way, there is only one comparison per text
subsequence, and Brute Force is only needed when hash
values match.

(Recall that we highlighted Michael Rabin in a previous
lecture.)

UClIrvine

O 1959:

UNIVERSITY
OF CALIFORNIA

Michael Rabin

Invented nondeterministic finite automata

and introduced polynomial time as a notion of

algorit
o 1976:
o 1987:

nm efficiency
Recelved the Turing Award.

Developed the Rabin-Karp string

searching algorithm with Richard Karp.

. UNIVERSITY
UCII’VIHG ‘ OF CALIFORNIA /¢)

o 1985: Recelved the Turing Award.

o 1987: Developed the Rabin-Karp string
searching algorithm with Michael Rabin.

o He is also known for publishing a landmark paper
proving 21 problems to be NP-complete.

o The PhD advisor of UCI Professor Sandy Irani.

. UNIVERSITY 7
UCII’ Viine ‘ OF CALIFORNIA /%

Rabin-Karp Example

o Text T = chabacabb
o Pattern P = abaca

tetT: | c|bla|blalc]a]b]b

UFJ
:
1780 h
(no match)
3709

(true match) 9446
(no match)

pattern P- albla]c]a
1

: UNIVERSITY
UCIr VIIEC | ok CaLirornia

Rabin-Karp Algorithm (High Level)

text is n characters long, pattern is m characters long

hash_p=hash value of pattern
hash_t=hash value of first m letters in text
repeat
If (hash_p == hash_t)
do brute force comparison of pattern and selected section of text
hash_t = hash value of next section of text, one character over
until (end of text or brute force comparison == true)

o Running time is O(nm) if we recompute hash_t for each
substring of m characters in the text, which is no better than
brute-force matching!

UCIrvine | o Catromm g

Rabin-Karp Rolling Hash Function

o We can do better by using a rolling hash function, which allows
us to compute each hash value from the previous hash value.

o Consider an m-character sequence as an m-digit number in
base b, where b is the number of letters in the alphabet. The
text subsequence t[i : I+m-1] iIs mapped to the number

. . _ . D .
x(i) = (i)™ + fir116M7 4+ i+ M-1]
Given x(i) we can compute x(i+1) for the next substring t[i+1 : i+M] in constant time:

x(ir1) = f[i+11-bM ! + fi+2]1-bM2 1.+ dirM]
x(1+1) = x(1)-b Shift left one digit
_fi]-p M Subtract leftmost digit

+ #1+M] Add new rightmost digit

UCTrvine| S8,

Polynomial Rolling Hash Function

o The original Rabin-Karp algorithm used the a
standard polynomial hash function:

H = clak_l + Czﬂk_z + 03ak_3+. .. +cka0,

where a is a constant, and ¢, , . . . , ¢ are the input characters

o This requires 2 multiplications and an addition and
subtraction to compute each new hash value.

o Multiplications are generally slower than
comparing characters, and these multiplications
are in the “inner loop” of the algorithm.

o So it may be helpful to have a different hash
function.

. UNIVERSITY
UCII‘ VIIEC | oF CaLirornia

ALY

Bitwise Operators

o Typical built-in bitwise (bit-parallel) operators,
which are faster than multiplication:

Operator Example Meaning

& a&b Bitwise AND

| al|b Bitwise OR

~ a”™b Bitwise XOR (exclusive OR)
~ ~a Bitwise NOT

<< a << n Bitwise left shift

>> a >>n Bitwise right shift

: UNIVERSITY .
UCII‘ VIiNne ‘ OF CALIFORNIA /%

Examples

O Bitwise operations:
Cyclic shift by 1 bit:

Number1l | 1 0 1 0 1

Number2 | 1 1 1 0 0

o| N MSB

6 5 4 3 2 1
0O[0(1|0]|1]|1
[[/ [[[[

a0
wn
-
0
1
/
vor [0 Z] 001 L AAAA A AN

_ olo|1|0|1]|1]|1
Note the following:
« XAND X =X

¢« XORX=X
¢« XXOR X =0

0

Note that bit vectors are indexed
from right to left.

: UNIVERSITY
UCII‘ VINE | or CaLirornia

Typical Syntax for Cyclic Shift

o To do a cyclic shift by k bits in C (assumes k < Integer.SIZE):
o return (bits << k & MASK) | (bits >> (Integer.SIZE - k))

Cyclic shift by 1 bit:

o | N MSB

6 5 4 3 2 1
001|011
e
OfOf1]|0]1]|1(1

MASK: 1 11 1 1 1 10

<« | © LSB

o

- UNIVERSITY
UCIr Vine ‘ OF CALIFORNIA 282 A \2)}
N = = N7/

Cyclic Polynomial Hash Function

o Let the function s be a cyclic binary rotation (or
circular shift): it rotates the bits by 1 to the left,
pushing the leftmost bit around to the first position.

o E.g., s(101)=011, s(101)=011.
o Define the hash H as follows, where @ is XOR and
h is a random hash function (or lookup table):

H=5s5"Yh(c1)) ®s" 2(h(c2))®...® s(h(cp_1)) ® h(cy)

o The new hash value (2 shifts and 2 XORSs):
H <+ s(H)® Sk(h(tﬁ)) ® h(ck+1),

where ¢ 1 IS the new character.

UCII’ Vln€ ‘ (L)Jlls\] gfﬁ?CT)IZNIA i

’
D
o
D
D

The Rabin-Karp Algorithm

o Assumes a shiftHash(f, T, i) function for computing a shifted rolling
hash value for position i in T given the hash value, f, for position i-1 in T.

Let H be the hash of the pattern, i.e., H = h(P)
forr<—0ton—-mdo

If i =0then // initial hash
f—h(T[O:m-1])
else
f « shiftHash(f, T, i)
If f==H then
I/l check P against T[i : 1+ m — 1]
j<0
while j<m and T[i + j] = PK[j] do
Je—j+1
If] = mthen

return j as a match location

: UNIVERSITY
UCIr vine ‘ OF CALIFORNIA 78~

WA == A

Analysis of the Rabin-Karp Algorithm

o We are given a test of length n and a pattern of
length m.

o Use a hash function that is random enough so
the probability of a false match is at most 1/m.

o Then the expected running time to find a first
match for the pattern (if it exists) is O(n+m).

	Slide 1: Exact Matching Algorithms
	Slide 2: Review: Strings
	Slide 3: Application: fgrep
	Slide 4: Alfred Aho
	Slide 5: Brute-force Pattern Matching
	Slide 6: Brute-Force Matching Example
	Slide 7: Expected-case Analysis for Brute-force
	Slide 8: Donald Knuth
	Slide 9: The KMP Algorithm
	Slide 10: The KMP Failure Function
	Slide 11: The KMP Algorithm
	Slide 12: Computing the Failure Function
	Slide 13: Example
	Slide 14: The Boyer-Moore-Horspool Algorithm
	Slide 15: Last-Occurrence Function
	Slide 16: The Boyer-Moore-Horspool Algorithm
	Slide 17: Example
	Slide 18: Analysis
	Slide 19: The Boyer-Moore Algorithm
	Slide 20: Case 1 for the good suffix rule
	Slide 21: Case 2 for the good suffix rule
	Slide 22: Good Suffix Rule
	Slide 23: Good suffix rule (cont'd)
	Slide 24: The good suffix shift table
	Slide 25: The bad character shift table
	Slide 26: The Boyer-Moore Algorithm
	Slide 27: Computing the Suffix table
	Slide 28: Computing the MATCH table
	Slide 29: Summary for the Boyer-Moore Algorithm
	Slide 30: Experimental Analysis
	Slide 31: Varying the Pattern Length
	Slide 32: Varying the Text Length
	Slide 33: Data Type Duality
	Slide 34: The Rabin-Karp Algorithm
	Slide 35: Michael Rabin
	Slide 36: Richard Karp
	Slide 37: Rabin-Karp Example
	Slide 38: Rabin-Karp Algorithm (High Level)
	Slide 39: Rabin-Karp Rolling Hash Function
	Slide 40: Polynomial Rolling Hash Function
	Slide 41: Bitwise Operators
	Slide 42: Examples
	Slide 43: Typical Syntax for Cyclic Shift
	Slide 44: Cyclic Polynomial Hash Function
	Slide 45: The Rabin-Karp Algorithm
	Slide 46: Analysis of the Rabin-Karp Algorithm

