
Exact Matching Algorithms

Michael T. Goodrich

University of California, Irvine

Some slides adapted from https://www.cs.bgu.ac.il/~dinitz/Course/SS-12/Boyer-Moore-algorithm-Vladimir.pptx

Review: Strings
 A string is a sequence of

characters (indexed from 0)*

 Examples of strings:

 Python program

 HTML document

 DNA sequence

 Digitized image

 An alphabet  is the set of
possible characters for a
family of strings

 Example of alphabets:

 ASCII or Unicode

 {0, 1}

 {A, C, G, T}

 Let P be a string of size m

 A substring P[i : j] of P is the
subsequence of P consisting of
the characters with ranks
between i and j

 A prefix of P is a substring of
the type P[0 : i]

 A suffix of P is a substring of
the type P[i : m − 1]

 Given strings T (text) and P
(pattern), the pattern matching
problem consists of finding a
substring of T equal to P

 Applications:

 Text editors

 Search engines

 Biological research
*Some people index starting from 1.

Application: fgrep

 Recall that fgrep looks for an exact match of a
text string in a file.

 So we are interested in fast algorithms for the
exact match problem:

 Given a text string, T, of length n, and a pattern string,
P, of length m, over an alphabet of size k, find the first
(or all) places where a substring of T matches P.

Image from https://www.hackerearth.com/practice/notes/exact-string-matching-algorithms/

Alfred Aho

 1975: Invented fgrep

 …*

 2020: received the Turing Award

* Also invented text processing techniques used
in every modern source-code compiler and co-
authored two influential textbooks.

Images from https://awards.acm.org/about/2020-turing

Brute-force Pattern Matching

 The Brute-force (Naïve) pattern
matching algorithm compares the
pattern P with the text T for each
possible shift of P relative to T,
until either

 a match is found, or

 all placements of the pattern have
been tried

 Brute-force pattern matching runs
in time O(nm)

 Example of worst case:

 T = aaa … ah

 P = aaah

 may occur in images and DNA
sequences

Algorithm BruteForceMatch(T, P)

 Input text T of size n and pattern
 P of size m

 Output starting index of a
 substring of T equal to P or −1
 if no such substring exists

for i  0 to n − m

 { test shift i of the pattern }

 j  0

 while j  m  T[i + j] = P[j]

 j  j + 1

 if j = m

 return i {match at i}

 else

 break while loop {mismatch}

return -1 {no match anywhere}

Brute-Force Matching Example

 Trying every possible position for a match:

Expected-case Analysis for Brute-force

 The worst-case running time for Brute-force algorithm O(mn),
but it runs in expected linear time for random strings.

 Suppose P and T are strings of m and n characters
respectively chosen uniformly and independently at random
from an alphabet of size k.

 Let Xi,j be a random variable that is 1 if and only if P[i] is
compared to T[j], and note that probability X i,j is 1 is 1/ki

because this occurs when we have i character matches.

 By the linearity of expectation, the expected number of
comparisons for any T[j] is therefore

 1/k + 1/k2 + 1/k3 + … + 1/km,

 which is at most 2.

 Thus, the expected number of comparisons is at most 2n.

Donald Knuth

 1973: Discovered the KMP algorithm (which was
also published in a technical report by Morris and
Pratt in 1970—all three published a joint paper
describing the algorithm in 1977).

 1974: Received the Turing Award.

 He is also known for his book series, “The Art of
Computer Programming,” which formalized and
popularized algorithm analysis (e.g., the “big O”).

Image from https://en.wikipedia.org/wiki/Donald_Knuth

The KMP Algorithm

 Consider the comparison of a
pattern with a text as in the
brute-force algorithm.

 When a mismatch occurs, what
is the most we can shift the
pattern so as to avoid
redundant comparisons?

 Answer: the largest prefix of
P[0..j] that is a suffix of P[1..j]

 This approach is similar to the
NFA-to-DFA approach, but is
implemented more efficiently.

x

j

. . a b a a b

a b a a b a

a b a a b a

No need to
repeat these

comparisons

Resume
comparing

here

The KMP Failure Function

 Knuth-Morris-Pratt’s algorithm
preprocesses the pattern to
find matches of prefixes of
the pattern with the pattern
itself

 The failure function F(j) is
defined as the length of the
longest prefix of P[0..j] that is
also a suffix of P[1..j]

 Knuth-Morris-Pratt’s algorithm
modifies the brute-force
algorithm so that if a
mismatch occurs at P[j]  T[i]
and j > 0, we set j  F(j − 1)

j 0 1 2 3 4 

P[j] a b a a b a

F(j) 0 0 1 1 2 

x

j

. . a b a a b

a b a a b a

F(j − 1)

a b a a b a

The KMP Algorithm

 The failure function can be
represented by an array and
can be computed in O(m) time

 At each iteration of the while-
loop, either

 i increases by one, or

 the shift amount i − j
increases by at least one
(observe that F(j − 1) < j)

 Hence, there are no more
than 2n iterations of the while-
loop

 Thus, KMP’s algorithm runs in
optimal time O(m + n)

Algorithm KMPMatch(T, P)

 F  failureFunction(P)
 i  0
 j  0
 while i  n

 if T[i] = P[j]
 if j = m − 1
 return i − j { match }
 else
 i  i + 1
 j  j + 1
 else
 if j  0
 j  F[j − 1]
 else
 i  i + 1
return −1 { no match }

Computing the Failure Function

 The failure function can be
represented by an array and
can be computed in O(m) time

 The construction is similar to
the KMP algorithm itself

 At each iteration of the while-
loop, either

 i increases by one, or

 the shift amount i − j
increases by at least one
(observe that F(j − 1) < j)

 Hence, there are no more
than 2m iterations of the
while-loop

Algorithm failureFunction(P)

 F[0]  0
 i  1
 j  0
 while i  m

 if P[i] = P[j]
 {we have matched j + 1 chars}
 F[i]  j + 1
 i  i + 1
 j  j + 1
 else if j  0 then
 {use failure function to shift P}
 j  F[j − 1]
 else
 F[i]  0 { no match }
 i  i + 1

Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

j 0 1 2 3 4 

P[j] a b a c a b

F(j) 0 0 1 0 1 

The Boyer-Moore-Horspool Algorithm
 The Boyer-Moore-Horspool algorithm for pattern matching a pattern

P of length m in a text of length n is based on the following two
simple heuristics:

 Reverse-match heuristic: Compare P with a subsequence of T
moving backwards

 Bad-character heuristic: When a mismatch occurs at T[i] = c

 If P contains c, shift P to align the last occurrence of c in P with T[i]

 Else, shift P to align P[0] with T[i + 1]

 Example:

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011

Last-Occurrence Function

 The Boyer-Moore-Horspool algorithm preprocesses the pattern P
and the alphabet  to build the last-occurrence function L
mapping  to integers, where L(c) is defined as

 the largest index i such that P[i] = c or

 −1 if no such index exists

 Example:

  = {a, b, c, d}

 P = abacab

 The last-occurrence function can be represented by an array
indexed by the numeric codes of the characters

 The last-occurrence function can be computed in time O(m + k),
where m is the size of P and k is the size of  How?

c a b c d

L(c) 4 5 3 −1

m − (1 + l)

i

jl

. a

. a . . b .

. a . . b .

1 + l

Case 2: 1 + l  j

m − j

i

j l

. a

. . . . b a

. . . . b a

j

Case 1: j  1 + l

The Boyer-Moore-Horspool Algorithm
Algorithm BoyerMooreHorspool(T, P, )

 L  lastOccurenceFunction(P, )
 i  m − 1
 j  m − 1
 repeat

 if T[i] = P[j]
 if j = 0
 return i { match at i }
 else
 i  i − 1
 j  j − 1
 else
 { bad-character-jump }
 l  L[T[i]]
 i  i + m – min(j, 1 + l)
 j  m − 1
until i  n − 1
return −1 { no match }

Example

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

1113

Analysis

 The Boyer-Moore-Horspool
algorithm runs in O(nm + k)
time in the worst case

 Example of worst case:

 T = aaa … a

 P = baaa

 The worst case may occur in
images and DNA sequences
but is unlikely in English text

 The Boyer-Moore-Horspool
algorithm can skip over some
comparisons

 It runs in O(n/m + m) time
in the best case.

11

1

a a a a a a a a a

23456

b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891012

131415161718

192021222324

 The original Boyer-Moore has another heuristic,
the good suffix rule:

 When a mismatch occurs, we take the biggest
shift possible using the bad character and good
suffix rules

The Boyer-Moore Algorithm

Image from https://eecs.wsu.edu/~cook/aa/lectures/l24/node16.html

Case 1 for the good suffix rule

 Suppose we have already matched a suffix, u, of
P, and u appears in P. Then we want a shift that
is guaranteed to match u and requires the
mismatching character to be different:

Image from https://doi.org/10.1016/S1570-8667(03)00005-4

T:

P:

P:

Case 2 for the good suffix rule

 Suppose we have already matched a suffix, u, of
P, and u does not appear in P. Then we want a
shift such that a prefix v is a suffix of u:

Image from https://doi.org/10.1016/S1570-8667(03)00005-4

T:

P:

P:

Good Suffix Rule
⚫ Definition: Suppose for a given alignment of 𝑃 and 𝑇, a

substring 𝑡 of 𝑇 matches a suffix of 𝑃, but a mismatch occurs
to the next character to the left. Then find, if exists, the
rightmost copy 𝑡′ of 𝑡 in 𝑃, such as 𝑡′ is not a suffix of 𝑃 and
the character to the left of t' in P differs from the character to
the left of t in P. Shift 𝑃 to the right, so that substring 𝑡′ in 𝑃 is
below substring 𝑡 in 𝑇.

Image from https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string-search_algorithm

Good suffix rule (cont'd)

⚫ If 𝑡′ does not exist, then shift the left end of 𝑃 past the left end
of 𝑡 in 𝑇 by the least amount, so that a prefix of 𝑃 matches a
suffix of t in 𝑇. If no such shift is possible then shift 𝑃 by m

places to the right.

The good suffix shift table

 Define a shift table, MATCH(i), that encodes the
good suffix shifts for a pattern, x, of length m.

 MATCH(i) = min. s such that Cs(i,s) and Cos(i,s) hold:

Images from https://doi.org/10.1016/S1570-8667(03)00005-4

The bad character shift table

 Let x be a pattern of length m.

 Define a bad-character shift table, occ[a], for each
character, a, in the alphabet for x:

 This is just the last occurrence function, L, indexed
slightly differently.

 It can be computed in the same way as L.

Image from https://doi.org/10.1016/S1570-8667(03)00005-4

The Boyer-Moore Algorithm

 Let x be a pattern of length m and y a text of
length n.

 j is the location of a possible match.

Algorithm description from https://doi.org/10.1016/S1570-8667(03)00005-4

)

) ,

Computing the Suffix table
 Compute a table, suf, such that suf[i] is the length

of the longest suffix of x ending at position i in x.

 We can compute the suf table like the KMP Failure
function, but in reverse (j = g+m-1-f):

Algorithm description from https://doi.org/10.1016/S1570-8667(03)00005-4

Computing the MATCH table

 Given the suffix table, suf, we compute MATCH
to be sMatch in the following algorithm:

Algorithm description from https://doi.org/10.1016/S1570-8667(03)00005-4

Summary for the Boyer-Moore Algorithm

 The Boyer-Moore algorithm runs in O(n + m) time
in the worst case.

 It runs in O(n/m + m) time in the best case.

 It can be further optimized to find all occurrences
of a pattern in a text using at most 1.5n character
comparisons.

Experimental Analysis

 Since completely random strings are not useful for
analyzing exact string-matching algorithms, we
need alternatives:

 Seeded random strings: Create a random text
string, T, of length n (e.g., n=1,000,000), and a
random pattern, P, of length m (e.g., m=5, 10, 20, …).
Then insert P into T at 1 to100 random locations.

 English text: Use a corpus of large English text (e.g.,
emails) and search for patterns of various lengths
(e.g., email addresses, English words, English
phrases).

Varying the Pattern Length

 One type of experiment: Keep the text size fixed
at a reasonably large amount and vary the
pattern size.

Images from https://dearxxj.github.io/post/4/, http://orion.lcg.ufrj.br/Dr.Dobbs/books/book5/chap10.htm

Varying the Text Length

 Another type of experiment: Vary the text length, n,
with certain pattern lengths (e.g., m=10, 20, 100)
or as a function of n (e.g., m=n1/2 or m=n/8).

Image from https://www.researchgate.net/figure/A-comparison-of-the-convolution-KMP-and-Boyer-Moore-algorithms-for-the-exact-matching_fig2_220444712

Data Type Duality

 Rather than rely only on comparing characters,
numerical matching algorithms take advantage of
the fact that characters in a string can also be
viewed as (binary) numbers.

 This concept is referred to as data type duality.

Image from https://www.javatpoint.com/java-char-to-int

The Rabin-Karp Algorithm

 The Rabin-Karp string searching algorithm calculates a hash
value for the pattern, and for each M-character substring of
text to be compared.

 If the hash values are unequal, the algorithm will calculate
the hash value for next M-character sequence.

 If the hash values are equal, the algorithm will do a Brute
Force comparison between the pattern and the M-character
sequence at this location (in case of a hash value collision
causing a false match).

 In this way, there is only one comparison per text
subsequence, and Brute Force is only needed when hash
values match.

 (Recall that we highlighted Michael Rabin in a previous
lecture.)

Michael Rabin

 1959: Invented nondeterministic finite automata
and introduced polynomial time as a notion of
algorithm efficiency

 1976: Received the Turing Award.

 1987: Developed the Rabin-Karp string
searching algorithm with Richard Karp.

Image from https://www.heidelberg-laureate-forum.org/laureate/michael-o-rabin/

Richard Karp

 1985: Received the Turing Award.

 1987: Developed the Rabin-Karp string
searching algorithm with Michael Rabin.

 He is also known for publishing a landmark paper
proving 21 problems to be NP-complete.

 The PhD advisor of UCI Professor Sandy Irani.
Image from https://en.wikipedia.org/wiki/Richard_M._Karp

Rabin-Karp Example

 Text T = cbabacabb

 Pattern P = abaca

Rabin-Karp Algorithm (High Level)

text is n characters long, pattern is m characters long

hash_p=hash value of pattern

hash_t=hash value of first m letters in text

repeat

 if (hash_p == hash_t)

 do brute force comparison of pattern and selected section of text

 hash_t = hash value of next section of text, one character over

until (end of text or brute force comparison == true)

 Running time is O(nm) if we recompute hash_t for each
substring of m characters in the text, which is no better than
brute-force matching!

Rabin-Karp Rolling Hash Function

 We can do better by using a rolling hash function, which allows
us to compute each hash value from the previous hash value.

 Consider an m-character sequence as an m-digit number in
base b, where b is the number of letters in the alphabet. The
text subsequence t[i : i+m-1] is mapped to the number

Given x(i) we can compute x(i+1) for the next substring t[i+1 : i+M] in constant time:

Polynomial Rolling Hash Function

 The original Rabin-Karp algorithm used the a
standard polynomial hash function:

 This requires 2 multiplications and an addition and
subtraction to compute each new hash value.

 Multiplications are generally slower than
comparing characters, and these multiplications
are in the “inner loop” of the algorithm.

 So it may be helpful to have a different hash
function.

Bitwise Operators

 Typical built-in bitwise (bit-parallel) operators,
which are faster than multiplication:

Image from https://realpython.com/python-bitwise-operators/

Examples

 Bitwise operations:

Cyclic shift by 1 bit:

Note the following:

• X AND X =X

• X OR X = X

• X XOR X = 0

Note that bit vectors are indexed

from right to left.

Typical Syntax for Cyclic Shift

 To do a cyclic shift by k bits in C (assumes k < Integer.SIZE):

 return (bits << k & MASK) | (bits >> (Integer.SIZE - k))

Cyclic shift by 1 bit:

MASK: 1 1 1 1 1 1 1 0

Cyclic Polynomial Hash Function
 Let the function s be a cyclic binary rotation (or

circular shift): it rotates the bits by 1 to the left,
pushing the leftmost bit around to the first position.

 E.g., s(101)=011, s(101)=011.

 Define the hash H as follows, where ⊕ is XOR and
h is a random hash function (or lookup table):

 The new hash value (2 shifts and 2 XORs):

The Rabin-Karp Algorithm
 Assumes a shiftHash(f, T, i) function for computing a shifted rolling

hash value for position i in T given the hash value, f, for position i-1 in T.

Let H be the hash of the pattern, i.e., H = h(P)

for i ← 0 to n − m do

 if i = 0 then // initial hash

 f ← h(T[0 : m − 1])

 else

 f ← shiftHash(f, T, i)

 if f == H then

 // check P against T[i : i + m − 1]

 j ← 0

 while j < m and T[i + j] = Pk[j] do

 j ← j + 1

 if j = m then

 return j as a match location

Analysis of the Rabin-Karp Algorithm

 We are given a test of length n and a pattern of
length m.

 Use a hash function that is random enough so
the probability of a false match is at most 1/m.

 Then the expected running time to find a first
match for the pattern (if it exists) is O(n+m).

	Slide 1: Exact Matching Algorithms
	Slide 2: Review: Strings
	Slide 3: Application: fgrep
	Slide 4: Alfred Aho
	Slide 5: Brute-force Pattern Matching
	Slide 6: Brute-Force Matching Example
	Slide 7: Expected-case Analysis for Brute-force
	Slide 8: Donald Knuth
	Slide 9: The KMP Algorithm
	Slide 10: The KMP Failure Function
	Slide 11: The KMP Algorithm
	Slide 12: Computing the Failure Function
	Slide 13: Example
	Slide 14: The Boyer-Moore-Horspool Algorithm
	Slide 15: Last-Occurrence Function
	Slide 16: The Boyer-Moore-Horspool Algorithm
	Slide 17: Example
	Slide 18: Analysis
	Slide 19: The Boyer-Moore Algorithm
	Slide 20: Case 1 for the good suffix rule
	Slide 21: Case 2 for the good suffix rule
	Slide 22: Good Suffix Rule
	Slide 23: Good suffix rule (cont'd)
	Slide 24: The good suffix shift table
	Slide 25: The bad character shift table
	Slide 26: The Boyer-Moore Algorithm
	Slide 27: Computing the Suffix table
	Slide 28: Computing the MATCH table
	Slide 29: Summary for the Boyer-Moore Algorithm
	Slide 30: Experimental Analysis
	Slide 31: Varying the Pattern Length
	Slide 32: Varying the Text Length
	Slide 33: Data Type Duality
	Slide 34: The Rabin-Karp Algorithm
	Slide 35: Michael Rabin
	Slide 36: Richard Karp
	Slide 37: Rabin-Karp Example
	Slide 38: Rabin-Karp Algorithm (High Level)
	Slide 39: Rabin-Karp Rolling Hash Function
	Slide 40: Polynomial Rolling Hash Function
	Slide 41: Bitwise Operators
	Slide 42: Examples
	Slide 43: Typical Syntax for Cyclic Shift
	Slide 44: Cyclic Polynomial Hash Function
	Slide 45: The Rabin-Karp Algorithm
	Slide 46: Analysis of the Rabin-Karp Algorithm

