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Review: Strings
 A string is a sequence of 

characters (indexed from 0)*

 Examples of strings:

 Python program

 HTML document

 DNA sequence

 Digitized image

 An alphabet  is the set of 
possible characters for a 
family of strings

 Example of alphabets:

 ASCII or Unicode

 {0, 1}

 {A, C, G, T}

 Let P be a string of size m 

 A substring P[i : j] of P is the 
subsequence of P consisting of 
the characters with ranks 
between i and j

 A prefix of P is a substring of 
the type P[0 : i]

 A suffix of P is a substring of 
the type P[i : m − 1] 

 Given strings T (text) and P 
(pattern), the pattern matching 
problem consists of finding a 
substring of T equal to P

 Applications:

 Text editors

 Search engines

 Biological research
*Some people index starting from 1.



Application: fgrep

 Recall that fgrep looks for an exact match of a 
text string in a file.

 So we are interested in fast algorithms for the 
exact match problem:

 Given a text string, T, of length n, and a pattern string, 
P, of length m, over an alphabet of size k, find the first 
(or all) places where a substring of T matches P.

Image from https://www.hackerearth.com/practice/notes/exact-string-matching-algorithms/



Alfred Aho

 1975: Invented fgrep

 …*

 2020: received the Turing Award 

* Also invented text processing techniques used 
in every modern source-code compiler and co-
authored two influential textbooks.

Images from https://awards.acm.org/about/2020-turing



Brute-force Pattern Matching

 The Brute-force (Naïve) pattern 
matching algorithm compares the 
pattern P with the text T for each 
possible shift of P relative to T, 
until either

 a match is found, or

 all placements of the pattern have 
been tried

 Brute-force pattern matching runs 
in time O(nm) 

 Example of worst case:

 T = aaa … ah

 P = aaah

 may occur in images and DNA 
sequences

Algorithm BruteForceMatch(T, P)

 Input text T of size n and pattern 
  P of size m

 Output starting index of a 
  substring of T equal to P or −1 
  if no such substring exists 

for i  0 to n − m

 { test shift i of the pattern }

 j  0

 while j  m  T[i + j] = P[j]

  j  j + 1

 if  j = m

  return  i {match at i}

 else

  break while loop {mismatch}

return  -1 {no match anywhere}



Brute-Force Matching Example

 Trying every possible position for a match:



Expected-case Analysis for Brute-force

 The worst-case running time for Brute-force algorithm O(mn), 
but it runs in expected linear time for random strings.

 Suppose P and T are strings of m and n characters 
respectively chosen uniformly and independently at random 
from an alphabet of size k.

 Let Xi,j be a random variable that is 1 if and only if P[i] is 
compared to T[j], and note that probability X i,j is 1 is 1/ki 

because this occurs when we have i character matches.

 By the linearity of expectation, the expected number of 
comparisons for any T[j] is therefore

 1/k + 1/k2 + 1/k3 + … + 1/km,

     which is at most 2.

 Thus, the expected number of comparisons is at most 2n.



Donald Knuth

 1973: Discovered the KMP algorithm (which was 
also published in a technical report by Morris and 
Pratt in 1970—all three published a joint paper 
describing the algorithm in 1977).

 1974: Received the Turing Award.

 He is also known for his book series, “The Art of 
Computer Programming,” which formalized and 
popularized algorithm analysis (e.g., the “big O”).

Image from https://en.wikipedia.org/wiki/Donald_Knuth



The KMP Algorithm

 Consider the comparison of a 
pattern with a text as in the 
brute-force algorithm. 

 When a mismatch occurs, what 
is the most we can shift the 
pattern so as to avoid 
redundant comparisons?

 Answer: the largest prefix of 
P[0..j] that is a suffix of P[1..j]

 This approach is similar to the 
NFA-to-DFA approach, but is 
implemented more efficiently.

x

j

. . a b a a b . . . . .

a b a a b a

a b a a b a

No need to
repeat these

comparisons

Resume
comparing

here



The KMP Failure Function

 Knuth-Morris-Pratt’s algorithm 
preprocesses the pattern to 
find matches of prefixes of 
the pattern with the pattern 
itself

 The failure function F(j) is 
defined as the length of the 
longest prefix of P[0..j] that is 
also a suffix of P[1..j]

 Knuth-Morris-Pratt’s algorithm 
modifies the brute-force 
algorithm so that if a 
mismatch occurs at P[j]  T[i] 
and j > 0, we set  j  F(j − 1)

j 0 1 2 3 4 

P[j] a b a a b a

F(j) 0 0 1 1 2 

x

j

. . a b a a b . . . . .

a b a a b a

F(j − 1)

a b a a b a



The KMP Algorithm

 The failure function can be 
represented by an array and 
can be computed in O(m) time

 At each iteration of the while-
loop, either

 i increases by one, or

 the shift amount i − j 
increases by at least one 
(observe that F(j − 1) < j)

 Hence, there are no more 
than 2n iterations of the while-
loop

 Thus, KMP’s algorithm runs in 
optimal time O(m + n)

Algorithm KMPMatch(T, P)

 F  failureFunction(P)
 i  0
 j  0
 while i  n

 if T[i] = P[j]
  if  j = m − 1
   return  i − j { match }
  else
   i  i + 1
   j  j + 1
 else
  if  j  0
   j  F[j − 1]
  else
   i  i + 1
return  −1 { no match }



Computing the Failure Function

 The failure function can be 
represented by an array and 
can be computed in O(m) time

 The construction is similar to 
the KMP algorithm itself

 At each iteration of the while-
loop, either

 i increases by one, or

 the shift amount i − j 
increases by at least one 
(observe that F(j − 1) < j)

 Hence, there are no more 
than 2m iterations of the 
while-loop

Algorithm failureFunction(P)

 F[0]  0
 i  1
 j  0
 while i  m

 if P[i] = P[j]
  {we have matched j + 1 chars}
  F[i]   j + 1
  i  i + 1
  j  j + 1
 else if  j  0 then
  {use failure function to shift P}
  j  F[j − 1]
 else
  F[i]  0 { no match }
  i  i + 1



Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614
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2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

j 0 1 2 3 4 

P[j] a b a c a b

F(j) 0 0 1 0 1 



The Boyer-Moore-Horspool Algorithm
 The Boyer-Moore-Horspool algorithm for pattern matching a pattern 

P of length m in a text of length n is based on the following two 
simple heuristics:

 Reverse-match heuristic: Compare P with a subsequence of T 
moving backwards

 Bad-character heuristic: When a mismatch occurs at T[i] = c 

 If P contains c, shift P to align the last occurrence of c in P with T[i] 

 Else, shift P to align P[0] with T[i + 1]

 Example: 

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011



Last-Occurrence Function

 The Boyer-Moore-Horspool algorithm preprocesses the pattern P 
and the alphabet  to build the last-occurrence function L 
mapping  to integers, where L(c) is defined as

 the largest index i such that P[i] = c or

 −1 if no such index exists 

 Example:

  = {a, b, c, d}

 P = abacab

 The last-occurrence function can be represented by an array 
indexed by the numeric codes of the characters

 The last-occurrence function can be computed in time O(m + k), 
where m is the size of P and k is the size of  How?

c a b c d

L(c) 4 5 3 −1



m − (1 + l)

i

jl

. . . . . . a . . . . . .

. a . . b .

. a . . b .

1 + l

Case 2: 1 + l  j

m − j

i

j l

. . . . . . a . . . . . .

. . . . b a

. . . . b a

j

Case 1: j  1 + l

The Boyer-Moore-Horspool Algorithm
Algorithm BoyerMooreHorspool(T, P, )

 L  lastOccurenceFunction(P,  )
 i  m − 1
 j  m − 1
 repeat 

 if T[i] = P[j]
  if  j = 0
   return  i  { match at i }
  else
   i  i − 1
   j  j − 1
 else
  { bad-character-jump }
  l  L[T[i]] 
  i  i + m – min(j, 1 + l)
  j  m − 1
until  i  n − 1
return  −1 { no match }



Example

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

1113



Analysis

 The Boyer-Moore-Horspool 
algorithm runs in O(nm + k) 
time in the worst case

 Example of worst case:

 T = aaa … a

 P = baaa

 The worst case may occur in 
images and DNA sequences 
but is unlikely in English text

 The Boyer-Moore-Horspool 
algorithm can skip over some 
comparisons

 It runs in O(n/m + m) time 
in the best case.

11

1

a a a a a a a a a

23456

b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891012

131415161718

192021222324



 The original Boyer-Moore has another heuristic, 
the good suffix rule:

 When a mismatch occurs, we take the biggest 
shift possible using the bad character and good 
suffix rules

The Boyer-Moore Algorithm

Image from https://eecs.wsu.edu/~cook/aa/lectures/l24/node16.html



Case 1 for the good suffix rule

 Suppose we have already matched a suffix, u, of 
P, and u appears in P. Then we want a shift that 
is guaranteed to match u and requires the 
mismatching character to be different: 

Image from https://doi.org/10.1016/S1570-8667(03)00005-4

T:

P:

P:



Case 2 for the good suffix rule

 Suppose we have already matched a suffix, u, of 
P, and u does not appear in P. Then we want a 
shift such that a prefix v is a suffix of u: 

Image from https://doi.org/10.1016/S1570-8667(03)00005-4

T:

P:

P:



Good Suffix Rule
⚫ Definition: Suppose for a given alignment of 𝑃 and 𝑇, a 

substring 𝑡 of 𝑇 matches a suffix of 𝑃, but a mismatch occurs 
to the next character to the left. Then find, if exists, the 
rightmost copy 𝑡′ of 𝑡 in 𝑃, such as 𝑡′ is not a suffix of 𝑃 and 
the character to the left of t' in P differs from the character to 
the left of t in P. Shift 𝑃 to the right, so that substring 𝑡′ in 𝑃 is 
below substring 𝑡 in 𝑇.

Image from https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string-search_algorithm



Good suffix rule (cont'd)

⚫ If 𝑡′ does not exist, then shift the left end of 𝑃 past the left end 
of 𝑡 in 𝑇 by the least amount, so that a prefix of 𝑃 matches a 
suffix of t in 𝑇. If no such shift is possible then shift 𝑃 by m 

places to the right. 



The good suffix shift table

 Define a shift table, MATCH(i), that encodes the 
good suffix shifts for a pattern, x, of length m.

 MATCH(i) = min. s such that Cs(i,s) and Cos(i,s) hold:

Images from https://doi.org/10.1016/S1570-8667(03)00005-4



The bad character shift table

 Let x be a pattern of length m.

 Define a bad-character shift table, occ[a], for each 
character, a, in the alphabet for x:

 This is just the last occurrence function, L, indexed 
slightly differently.

 It can be computed in the same way as L. 

Image from https://doi.org/10.1016/S1570-8667(03)00005-4



The Boyer-Moore Algorithm

 Let x be a pattern of length m and y a text of 
length n.

 j is the location of a possible match.

Algorithm description from https://doi.org/10.1016/S1570-8667(03)00005-4

)     

) , 



Computing the Suffix table
 Compute a table, suf, such that suf[i] is the length 

of the longest suffix of x ending at position i in x.

 We can compute the suf table like the KMP Failure 
function, but in reverse (j = g+m-1-f):

Algorithm description from https://doi.org/10.1016/S1570-8667(03)00005-4



Computing the MATCH table

 Given the suffix table, suf, we compute MATCH 
to be sMatch in the following algorithm:

Algorithm description from https://doi.org/10.1016/S1570-8667(03)00005-4



Summary for the Boyer-Moore Algorithm

 The Boyer-Moore algorithm runs in O(n + m) time 
in the worst case.

 It runs in O(n/m + m) time in the best case.

 It can be further optimized to find all occurrences 
of a pattern in a text using at most 1.5n character 
comparisons.



Experimental Analysis

 Since completely random strings are not useful for 
analyzing exact string-matching algorithms, we 
need alternatives:

 Seeded random strings: Create a random text 
string, T, of length n (e.g., n=1,000,000), and a 
random pattern, P, of length m (e.g., m=5, 10, 20, …). 
Then insert P into T at 1 to100 random locations.

 English text: Use a corpus of large English text (e.g., 
emails) and search for patterns of various lengths 
(e.g., email addresses, English words, English 
phrases).



Varying the Pattern Length

 One type of experiment: Keep the text size fixed 
at a reasonably large amount and vary the 
pattern size.

Images from https://dearxxj.github.io/post/4/, http://orion.lcg.ufrj.br/Dr.Dobbs/books/book5/chap10.htm



Varying the Text Length

 Another type of experiment: Vary the text length, n, 
with certain pattern lengths (e.g., m=10, 20, 100) 
or as a function of n (e.g., m=n1/2 or m=n/8).

Image from https://www.researchgate.net/figure/A-comparison-of-the-convolution-KMP-and-Boyer-Moore-algorithms-for-the-exact-matching_fig2_220444712



Data Type Duality

 Rather than rely only on comparing characters, 
numerical matching algorithms take advantage of 
the fact that characters in a string can also be 
viewed as (binary) numbers.

 This concept is referred to as data type duality. 

Image from https://www.javatpoint.com/java-char-to-int



The Rabin-Karp Algorithm

 The Rabin-Karp string searching algorithm calculates a hash 
value for the pattern, and for each M-character substring of 
text to be compared.

 If the hash values are unequal, the algorithm will calculate 
the hash value for next M-character sequence.

 If the hash values are equal, the algorithm will do a Brute 
Force comparison between the pattern and the M-character 
sequence at this location (in case of a hash value collision 
causing a false match).

 In this way, there is only one comparison per text 
subsequence, and Brute Force is only needed when hash 
values match.

 (Recall that we highlighted Michael Rabin in a previous 
lecture.)



Michael Rabin

 1959: Invented nondeterministic finite automata 
and introduced polynomial time as a notion of 
algorithm efficiency

 1976: Received the Turing Award.

 1987: Developed the Rabin-Karp string 
searching algorithm with Richard Karp.

Image from https://www.heidelberg-laureate-forum.org/laureate/michael-o-rabin/



Richard Karp

 1985: Received the Turing Award.

 1987: Developed the Rabin-Karp string 
searching algorithm with Michael Rabin.

 He is also known for publishing a landmark paper 
proving 21 problems to be NP-complete.

 The PhD advisor of UCI Professor Sandy Irani.
Image from https://en.wikipedia.org/wiki/Richard_M._Karp



Rabin-Karp Example

 Text T = cbabacabb

 Pattern P = abaca



Rabin-Karp Algorithm (High Level)

text is n characters long, pattern is m characters long 

hash_p=hash value of pattern

hash_t=hash value of first m letters in text

repeat

 if (hash_p == hash_t) 

  do brute force comparison of pattern and selected section of text

 hash_t = hash value of next section of text, one character over

until (end of text or brute force comparison == true)

 Running time is O(nm) if we recompute hash_t for each 
substring of m characters in the text, which is no better than 
brute-force matching!



Rabin-Karp Rolling Hash Function

 We can do better by using a rolling hash function, which allows 
us to compute each hash value from the previous hash value. 

 Consider an m-character sequence as an m-digit number in 
base b, where b is the number of letters in the alphabet.  The 
text subsequence t[i : i+m-1] is mapped to the number

Given x(i) we can compute x(i+1) for the next substring  t[i+1 : i+M] in constant time:



Polynomial Rolling Hash Function

 The original Rabin-Karp algorithm used the a 
standard polynomial hash function:

 This requires 2 multiplications and an addition and 
subtraction to compute each new hash value.

 Multiplications are generally slower than 
comparing characters, and these multiplications 
are in the “inner loop” of the algorithm.

 So it may be helpful to have a different hash 
function.



Bitwise Operators 

 Typical built-in bitwise (bit-parallel) operators, 
which are faster  than multiplication:

Image from https://realpython.com/python-bitwise-operators/



Examples

 Bitwise operations:

Cyclic shift by 1 bit:

Note the following:

• X AND X =X

• X OR X = X

• X XOR X = 0

Note that bit vectors are indexed

from right to left.



Typical Syntax for Cyclic Shift

 To do a cyclic shift by k bits in C (assumes k < Integer.SIZE):

 return (bits << k & MASK) | (bits >> (Integer.SIZE - k))

Cyclic shift by 1 bit:

MASK:  1  1 1  1  1  1  1  0



Cyclic Polynomial Hash Function
 Let the function s be a cyclic binary rotation (or 

circular shift): it rotates the bits by 1 to the left, 
pushing the leftmost bit around to the first position. 

 E.g., s(101)=011, s(101)=011. 

 Define the hash H as follows, where ⊕ is XOR and 
h is a random hash function (or lookup table):

 The new hash value (2 shifts and 2 XORs):



The Rabin-Karp Algorithm
 Assumes a shiftHash(f, T, i) function for computing a shifted rolling 

hash value for position i in T given the hash value, f, for position i-1 in T.

Let H be the hash of the pattern, i.e., H = h(P)

for i ← 0 to n − m do

 if i = 0 then           // initial hash

  f ← h(T[0 : m − 1])

            else

  f ← shiftHash(f, T, i)

  if f == H then 

   // check P against T[i : i + m − 1]

   j ← 0

   while j < m and T[i + j] = Pk[j] do

    j ← j + 1

    if j = m then

     return j as a match location



Analysis of the Rabin-Karp Algorithm

 We are given a test of length n and a pattern of 
length m.

 Use a hash function that is random enough so 
the probability of a false match is at most 1/m.

 Then the expected running time to find a first 
match for the pattern (if it exists) is O(n+m).
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