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Review: Strings
 A string is a sequence of 

characters (indexed from 0)*

 Examples of strings:

 Python program

 HTML document

 DNA sequence

 Digitized image

 An alphabet  is the set of 
possible characters for a 
family of strings

 Example of alphabets:

 ASCII or Unicode

 {0, 1}

 {A, C, G, T}

 Let P be a string of size m 

 A substring P[i : j] of P is the 
subsequence of P consisting of 
the characters with ranks 
between i and j

 A prefix of P is a substring of 
the type P[0 : i]

 A suffix of P is a substring of 
the type P[i : m − 1] 

 Given strings T (text) and P 
(pattern), the pattern matching 
problem consists of finding a 
substring of T equal to P

 Applications:

 Text editors

 Search engines

 Biological research
*Some people index starting from 1.



Application: fgrep

 Recall that fgrep looks for an exact match of a 
text string in a file.

 So we are interested in fast algorithms for the 
exact match problem:

 Given a text string, T, of length n, and a pattern string, 
P, of length m, over an alphabet of size k, find the first 
(or all) places where a substring of T matches P.

Image from https://www.hackerearth.com/practice/notes/exact-string-matching-algorithms/



Alfred Aho

 1975: Invented fgrep

 …*

 2020: received the Turing Award 

* Also invented text processing techniques used 
in every modern source-code compiler and co-
authored two influential textbooks.

Images from https://awards.acm.org/about/2020-turing



Brute-force Pattern Matching

 The Brute-force (Naïve) pattern 
matching algorithm compares the 
pattern P with the text T for each 
possible shift of P relative to T, 
until either

 a match is found, or

 all placements of the pattern have 
been tried

 Brute-force pattern matching runs 
in time O(nm) 

 Example of worst case:

 T = aaa … ah

 P = aaah

 may occur in images and DNA 
sequences

Algorithm BruteForceMatch(T, P)

 Input text T of size n and pattern 
  P of size m

 Output starting index of a 
  substring of T equal to P or −1 
  if no such substring exists 

for i  0 to n − m

 { test shift i of the pattern }

 j  0

 while j  m  T[i + j] = P[j]

  j  j + 1

 if  j = m

  return  i {match at i}

 else

  break while loop {mismatch}

return  -1 {no match anywhere}



Brute-Force Matching Example

 Trying every possible position for a match:



Expected-case Analysis for Brute-force

 The worst-case running time for Brute-force algorithm O(mn), 
but it runs in expected linear time for random strings.

 Suppose P and T are strings of m and n characters 
respectively chosen uniformly and independently at random 
from an alphabet of size k.

 Let Xi,j be a random variable that is 1 if and only if P[i] is 
compared to T[j], and note that probability X i,j is 1 is 1/ki 

because this occurs when we have i character matches.

 By the linearity of expectation, the expected number of 
comparisons for any T[j] is therefore

 1/k + 1/k2 + 1/k3 + … + 1/km,

     which is at most 2.

 Thus, the expected number of comparisons is at most 2n.



Donald Knuth

 1973: Discovered the KMP algorithm (which was 
also published in a technical report by Morris and 
Pratt in 1970—all three published a joint paper 
describing the algorithm in 1977).

 1974: Received the Turing Award.

 He is also known for his book series, “The Art of 
Computer Programming,” which formalized and 
popularized algorithm analysis (e.g., the “big O”).

Image from https://en.wikipedia.org/wiki/Donald_Knuth



The KMP Algorithm

 Consider the comparison of a 
pattern with a text as in the 
brute-force algorithm. 

 When a mismatch occurs, what 
is the most we can shift the 
pattern so as to avoid 
redundant comparisons?

 Answer: the largest prefix of 
P[0..j] that is a suffix of P[1..j]

 This approach is similar to the 
NFA-to-DFA approach, but is 
implemented more efficiently.

x

j

. . a b a a b . . . . .

a b a a b a

a b a a b a

No need to
repeat these

comparisons

Resume
comparing

here



The KMP Failure Function

 Knuth-Morris-Pratt’s algorithm 
preprocesses the pattern to 
find matches of prefixes of 
the pattern with the pattern 
itself

 The failure function F(j) is 
defined as the length of the 
longest prefix of P[0..j] that is 
also a suffix of P[1..j]

 Knuth-Morris-Pratt’s algorithm 
modifies the brute-force 
algorithm so that if a 
mismatch occurs at P[j]  T[i] 
and j > 0, we set  j  F(j − 1)

j 0 1 2 3 4 

P[j] a b a a b a

F(j) 0 0 1 1 2 

x

j

. . a b a a b . . . . .

a b a a b a

F(j − 1)

a b a a b a



The KMP Algorithm

 The failure function can be 
represented by an array and 
can be computed in O(m) time

 At each iteration of the while-
loop, either

 i increases by one, or

 the shift amount i − j 
increases by at least one 
(observe that F(j − 1) < j)

 Hence, there are no more 
than 2n iterations of the while-
loop

 Thus, KMP’s algorithm runs in 
optimal time O(m + n)

Algorithm KMPMatch(T, P)

 F  failureFunction(P)
 i  0
 j  0
 while i  n

 if T[i] = P[j]
  if  j = m − 1
   return  i − j { match }
  else
   i  i + 1
   j  j + 1
 else
  if  j  0
   j  F[j − 1]
  else
   i  i + 1
return  −1 { no match }



Computing the Failure Function

 The failure function can be 
represented by an array and 
can be computed in O(m) time

 The construction is similar to 
the KMP algorithm itself

 At each iteration of the while-
loop, either

 i increases by one, or

 the shift amount i − j 
increases by at least one 
(observe that F(j − 1) < j)

 Hence, there are no more 
than 2m iterations of the 
while-loop

Algorithm failureFunction(P)

 F[0]  0
 i  1
 j  0
 while i  m

 if P[i] = P[j]
  {we have matched j + 1 chars}
  F[i]   j + 1
  i  i + 1
  j  j + 1
 else if  j  0 then
  {use failure function to shift P}
  j  F[j − 1]
 else
  F[i]  0 { no match }
  i  i + 1



Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

j 0 1 2 3 4 

P[j] a b a c a b

F(j) 0 0 1 0 1 



The Boyer-Moore-Horspool Algorithm
 The Boyer-Moore-Horspool algorithm for pattern matching a pattern 

P of length m in a text of length n is based on the following two 
simple heuristics:

 Reverse-match heuristic: Compare P with a subsequence of T 
moving backwards

 Bad-character heuristic: When a mismatch occurs at T[i] = c 

 If P contains c, shift P to align the last occurrence of c in P with T[i] 

 Else, shift P to align P[0] with T[i + 1]

 Example: 

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011



Last-Occurrence Function

 The Boyer-Moore-Horspool algorithm preprocesses the pattern P 
and the alphabet  to build the last-occurrence function L 
mapping  to integers, where L(c) is defined as

 the largest index i such that P[i] = c or

 −1 if no such index exists 

 Example:

  = {a, b, c, d}

 P = abacab

 The last-occurrence function can be represented by an array 
indexed by the numeric codes of the characters

 The last-occurrence function can be computed in time O(m + k), 
where m is the size of P and k is the size of  How?

c a b c d

L(c) 4 5 3 −1



m − (1 + l)

i

jl

. . . . . . a . . . . . .

. a . . b .

. a . . b .

1 + l

Case 2: 1 + l  j

m − j

i

j l

. . . . . . a . . . . . .

. . . . b a

. . . . b a

j

Case 1: j  1 + l

The Boyer-Moore-Horspool Algorithm
Algorithm BoyerMooreHorspool(T, P, )

 L  lastOccurenceFunction(P,  )
 i  m − 1
 j  m − 1
 repeat 

 if T[i] = P[j]
  if  j = 0
   return  i  { match at i }
  else
   i  i − 1
   j  j − 1
 else
  { bad-character-jump }
  l  L[T[i]] 
  i  i + m – min(j, 1 + l)
  j  m − 1
until  i  n − 1
return  −1 { no match }



Example

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

1113



Analysis

 The Boyer-Moore-Horspool 
algorithm runs in O(nm + k) 
time in the worst case

 Example of worst case:

 T = aaa … a

 P = baaa

 The worst case may occur in 
images and DNA sequences 
but is unlikely in English text

 The Boyer-Moore-Horspool 
algorithm can skip over some 
comparisons

 It runs in O(n/m + m) time 
in the best case.

11

1

a a a a a a a a a

23456

b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891012

131415161718

192021222324



 The original Boyer-Moore has another heuristic, 
the good suffix rule:

 When a mismatch occurs, we take the biggest 
shift possible using the bad character and good 
suffix rules

The Boyer-Moore Algorithm

Image from https://eecs.wsu.edu/~cook/aa/lectures/l24/node16.html



Case 1 for the good suffix rule

 Suppose we have already matched a suffix, u, of 
P, and u appears in P. Then we want a shift that 
is guaranteed to match u and requires the 
mismatching character to be different: 

Image from https://doi.org/10.1016/S1570-8667(03)00005-4

T:

P:

P:



Case 2 for the good suffix rule

 Suppose we have already matched a suffix, u, of 
P, and u does not appear in P. Then we want a 
shift such that a prefix v is a suffix of u: 

Image from https://doi.org/10.1016/S1570-8667(03)00005-4

T:

P:

P:



Good Suffix Rule
⚫ Definition: Suppose for a given alignment of 𝑃 and 𝑇, a 

substring 𝑡 of 𝑇 matches a suffix of 𝑃, but a mismatch occurs 
to the next character to the left. Then find, if exists, the 
rightmost copy 𝑡′ of 𝑡 in 𝑃, such as 𝑡′ is not a suffix of 𝑃 and 
the character to the left of t' in P differs from the character to 
the left of t in P. Shift 𝑃 to the right, so that substring 𝑡′ in 𝑃 is 
below substring 𝑡 in 𝑇.

Image from https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string-search_algorithm



Good suffix rule (cont'd)

⚫ If 𝑡′ does not exist, then shift the left end of 𝑃 past the left end 
of 𝑡 in 𝑇 by the least amount, so that a prefix of 𝑃 matches a 
suffix of t in 𝑇. If no such shift is possible then shift 𝑃 by m 

places to the right. 



The good suffix shift table

 Define a shift table, MATCH(i), that encodes the 
good suffix shifts for a pattern, x, of length m.

 MATCH(i) = min. s such that Cs(i,s) and Cos(i,s) hold:

Images from https://doi.org/10.1016/S1570-8667(03)00005-4



The bad character shift table

 Let x be a pattern of length m.

 Define a bad-character shift table, occ[a], for each 
character, a, in the alphabet for x:

 This is just the last occurrence function, L, indexed 
slightly differently.

 It can be computed in the same way as L. 

Image from https://doi.org/10.1016/S1570-8667(03)00005-4



The Boyer-Moore Algorithm

 Let x be a pattern of length m and y a text of 
length n.

 j is the location of a possible match.

Algorithm description from https://doi.org/10.1016/S1570-8667(03)00005-4

)     

) , 



Computing the Suffix table
 Compute a table, suf, such that suf[i] is the length 

of the longest suffix of x ending at position i in x.

 We can compute the suf table like the KMP Failure 
function, but in reverse (j = g+m-1-f):

Algorithm description from https://doi.org/10.1016/S1570-8667(03)00005-4



Computing the MATCH table

 Given the suffix table, suf, we compute MATCH 
to be sMatch in the following algorithm:

Algorithm description from https://doi.org/10.1016/S1570-8667(03)00005-4



Summary for the Boyer-Moore Algorithm

 The Boyer-Moore algorithm runs in O(n + m) time 
in the worst case.

 It runs in O(n/m + m) time in the best case.

 It can be further optimized to find all occurrences 
of a pattern in a text using at most 1.5n character 
comparisons.



Experimental Analysis

 Since completely random strings are not useful for 
analyzing exact string-matching algorithms, we 
need alternatives:

 Seeded random strings: Create a random text 
string, T, of length n (e.g., n=1,000,000), and a 
random pattern, P, of length m (e.g., m=5, 10, 20, …). 
Then insert P into T at 1 to100 random locations.

 English text: Use a corpus of large English text (e.g., 
emails) and search for patterns of various lengths 
(e.g., email addresses, English words, English 
phrases).



Varying the Pattern Length

 One type of experiment: Keep the text size fixed 
at a reasonably large amount and vary the 
pattern size.

Images from https://dearxxj.github.io/post/4/, http://orion.lcg.ufrj.br/Dr.Dobbs/books/book5/chap10.htm



Varying the Text Length

 Another type of experiment: Vary the text length, n, 
with certain pattern lengths (e.g., m=10, 20, 100) 
or as a function of n (e.g., m=n1/2 or m=n/8).

Image from https://www.researchgate.net/figure/A-comparison-of-the-convolution-KMP-and-Boyer-Moore-algorithms-for-the-exact-matching_fig2_220444712



Data Type Duality

 Rather than rely only on comparing characters, 
numerical matching algorithms take advantage of 
the fact that characters in a string can also be 
viewed as (binary) numbers.

 This concept is referred to as data type duality. 

Image from https://www.javatpoint.com/java-char-to-int



The Rabin-Karp Algorithm

 The Rabin-Karp string searching algorithm calculates a hash 
value for the pattern, and for each M-character substring of 
text to be compared.

 If the hash values are unequal, the algorithm will calculate 
the hash value for next M-character sequence.

 If the hash values are equal, the algorithm will do a Brute 
Force comparison between the pattern and the M-character 
sequence at this location (in case of a hash value collision 
causing a false match).

 In this way, there is only one comparison per text 
subsequence, and Brute Force is only needed when hash 
values match.

 (Recall that we highlighted Michael Rabin in a previous 
lecture.)



Michael Rabin

 1959: Invented nondeterministic finite automata 
and introduced polynomial time as a notion of 
algorithm efficiency

 1976: Received the Turing Award.

 1987: Developed the Rabin-Karp string 
searching algorithm with Richard Karp.

Image from https://www.heidelberg-laureate-forum.org/laureate/michael-o-rabin/



Richard Karp

 1985: Received the Turing Award.

 1987: Developed the Rabin-Karp string 
searching algorithm with Michael Rabin.

 He is also known for publishing a landmark paper 
proving 21 problems to be NP-complete.

 The PhD advisor of UCI Professor Sandy Irani.
Image from https://en.wikipedia.org/wiki/Richard_M._Karp



Rabin-Karp Example

 Text T = cbabacabb

 Pattern P = abaca



Rabin-Karp Algorithm (High Level)

text is n characters long, pattern is m characters long 

hash_p=hash value of pattern

hash_t=hash value of first m letters in text

repeat

 if (hash_p == hash_t) 

  do brute force comparison of pattern and selected section of text

 hash_t = hash value of next section of text, one character over

until (end of text or brute force comparison == true)

 Running time is O(nm) if we recompute hash_t for each 
substring of m characters in the text, which is no better than 
brute-force matching!



Rabin-Karp Rolling Hash Function

 We can do better by using a rolling hash function, which allows 
us to compute each hash value from the previous hash value. 

 Consider an m-character sequence as an m-digit number in 
base b, where b is the number of letters in the alphabet.  The 
text subsequence t[i : i+m-1] is mapped to the number

Given x(i) we can compute x(i+1) for the next substring  t[i+1 : i+M] in constant time:



Polynomial Rolling Hash Function

 The original Rabin-Karp algorithm used the a 
standard polynomial hash function:

 This requires 2 multiplications and an addition and 
subtraction to compute each new hash value.

 Multiplications are generally slower than 
comparing characters, and these multiplications 
are in the “inner loop” of the algorithm.

 So it may be helpful to have a different hash 
function.



Bitwise Operators 

 Typical built-in bitwise (bit-parallel) operators, 
which are faster  than multiplication:

Image from https://realpython.com/python-bitwise-operators/



Examples

 Bitwise operations:

Cyclic shift by 1 bit:

Note the following:

• X AND X =X

• X OR X = X

• X XOR X = 0

Note that bit vectors are indexed

from right to left.



Typical Syntax for Cyclic Shift

 To do a cyclic shift by k bits in C (assumes k < Integer.SIZE):

 return (bits << k & MASK) | (bits >> (Integer.SIZE - k))

Cyclic shift by 1 bit:

MASK:  1  1 1  1  1  1  1  0



Cyclic Polynomial Hash Function
 Let the function s be a cyclic binary rotation (or 

circular shift): it rotates the bits by 1 to the left, 
pushing the leftmost bit around to the first position. 

 E.g., s(101)=011, s(101)=011. 

 Define the hash H as follows, where ⊕ is XOR and 
h is a random hash function (or lookup table):

 The new hash value (2 shifts and 2 XORs):



The Rabin-Karp Algorithm
 Assumes a shiftHash(f, T, i) function for computing a shifted rolling 

hash value for position i in T given the hash value, f, for position i-1 in T.

Let H be the hash of the pattern, i.e., H = h(P)

for i ← 0 to n − m do

 if i = 0 then           // initial hash

  f ← h(T[0 : m − 1])

            else

  f ← shiftHash(f, T, i)

  if f == H then 

   // check P against T[i : i + m − 1]

   j ← 0

   while j < m and T[i + j] = Pk[j] do

    j ← j + 1

    if j = m then

     return j as a match location



Analysis of the Rabin-Karp Algorithm

 We are given a test of length n and a pattern of 
length m.

 Use a hash function that is random enough so 
the probability of a false match is at most 1/m.

 Then the expected running time to find a first 
match for the pattern (if it exists) is O(n+m).
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