
Exact Matching Algorithms

Michael T. Goodrich

University of California, Irvine

Some slides adapted from https://www.cs.bgu.ac.il/~dinitz/Course/SS-12/Boyer-Moore-algorithm-Vladimir.pptx

Review: Strings
 A string is a sequence of

characters (indexed from 0)*

 Examples of strings:

 Python program

 HTML document

 DNA sequence

 Digitized image

 An alphabet is the set of
possible characters for a
family of strings

 Example of alphabets:

 ASCII or Unicode

 {0, 1}

 {A, C, G, T}

 Let P be a string of size m

 A substring P[i : j] of P is the
subsequence of P consisting of
the characters with ranks
between i and j

 A prefix of P is a substring of
the type P[0 : i]

 A suffix of P is a substring of
the type P[i : m − 1]

 Given strings T (text) and P
(pattern), the pattern matching
problem consists of finding a
substring of T equal to P

 Applications:

 Text editors

 Search engines

 Biological research
*Some people index starting from 1.

Application: fgrep

 Recall that fgrep looks for an exact match of a
text string in a file.

 So we are interested in fast algorithms for the
exact match problem:

 Given a text string, T, of length n, and a pattern string,
P, of length m, over an alphabet of size k, find the first
(or all) places where a substring of T matches P.

Image from https://www.hackerearth.com/practice/notes/exact-string-matching-algorithms/

Alfred Aho

 1975: Invented fgrep

 …*

 2020: received the Turing Award

* Also invented text processing techniques used
in every modern source-code compiler and co-
authored two influential textbooks.

Images from https://awards.acm.org/about/2020-turing

Brute-force Pattern Matching

 The Brute-force (Naïve) pattern
matching algorithm compares the
pattern P with the text T for each
possible shift of P relative to T,
until either

 a match is found, or

 all placements of the pattern have
been tried

 Brute-force pattern matching runs
in time O(nm)

 Example of worst case:

 T = aaa … ah

 P = aaah

 may occur in images and DNA
sequences

Algorithm BruteForceMatch(T, P)

 Input text T of size n and pattern
 P of size m

 Output starting index of a
 substring of T equal to P or −1
 if no such substring exists

for i 0 to n − m

 { test shift i of the pattern }

 j 0

 while j m T[i + j] = P[j]

 j j + 1

 if j = m

 return i {match at i}

 else

 break while loop {mismatch}

return -1 {no match anywhere}

Brute-Force Matching Example

 Trying every possible position for a match:

Expected-case Analysis for Brute-force

 The worst-case running time for Brute-force algorithm O(mn),
but it runs in expected linear time for random strings.

 Suppose P and T are strings of m and n characters
respectively chosen uniformly and independently at random
from an alphabet of size k.

 Let Xi,j be a random variable that is 1 if and only if P[i] is
compared to T[j], and note that probability X i,j is 1 is 1/ki

because this occurs when we have i character matches.

 By the linearity of expectation, the expected number of
comparisons for any T[j] is therefore

 1/k + 1/k2 + 1/k3 + … + 1/km,

 which is at most 2.

 Thus, the expected number of comparisons is at most 2n.

Donald Knuth

 1973: Discovered the KMP algorithm (which was
also published in a technical report by Morris and
Pratt in 1970—all three published a joint paper
describing the algorithm in 1977).

 1974: Received the Turing Award.

 He is also known for his book series, “The Art of
Computer Programming,” which formalized and
popularized algorithm analysis (e.g., the “big O”).

Image from https://en.wikipedia.org/wiki/Donald_Knuth

The KMP Algorithm

 Consider the comparison of a
pattern with a text as in the
brute-force algorithm.

 When a mismatch occurs, what
is the most we can shift the
pattern so as to avoid
redundant comparisons?

 Answer: the largest prefix of
P[0..j] that is a suffix of P[1..j]

 This approach is similar to the
NFA-to-DFA approach, but is
implemented more efficiently.

x

j

. . a b a a b

a b a a b a

a b a a b a

No need to
repeat these

comparisons

Resume
comparing

here

The KMP Failure Function

 Knuth-Morris-Pratt’s algorithm
preprocesses the pattern to
find matches of prefixes of
the pattern with the pattern
itself

 The failure function F(j) is
defined as the length of the
longest prefix of P[0..j] that is
also a suffix of P[1..j]

 Knuth-Morris-Pratt’s algorithm
modifies the brute-force
algorithm so that if a
mismatch occurs at P[j] T[i]
and j > 0, we set j F(j − 1)

j 0 1 2 3 4

P[j] a b a a b a

F(j) 0 0 1 1 2

x

j

. . a b a a b

a b a a b a

F(j − 1)

a b a a b a

The KMP Algorithm

 The failure function can be
represented by an array and
can be computed in O(m) time

 At each iteration of the while-
loop, either

 i increases by one, or

 the shift amount i − j
increases by at least one
(observe that F(j − 1) < j)

 Hence, there are no more
than 2n iterations of the while-
loop

 Thus, KMP’s algorithm runs in
optimal time O(m + n)

Algorithm KMPMatch(T, P)

 F failureFunction(P)
 i 0
 j 0
 while i n

 if T[i] = P[j]
 if j = m − 1
 return i − j { match }
 else
 i i + 1
 j j + 1
 else
 if j 0
 j F[j − 1]
 else
 i i + 1
return −1 { no match }

Computing the Failure Function

 The failure function can be
represented by an array and
can be computed in O(m) time

 The construction is similar to
the KMP algorithm itself

 At each iteration of the while-
loop, either

 i increases by one, or

 the shift amount i − j
increases by at least one
(observe that F(j − 1) < j)

 Hence, there are no more
than 2m iterations of the
while-loop

Algorithm failureFunction(P)

 F[0] 0
 i 1
 j 0
 while i m

 if P[i] = P[j]
 {we have matched j + 1 chars}
 F[i] j + 1
 i i + 1
 j j + 1
 else if j 0 then
 {use failure function to shift P}
 j F[j − 1]
 else
 F[i] 0 { no match }
 i i + 1

Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

j 0 1 2 3 4

P[j] a b a c a b

F(j) 0 0 1 0 1

The Boyer-Moore-Horspool Algorithm
 The Boyer-Moore-Horspool algorithm for pattern matching a pattern

P of length m in a text of length n is based on the following two
simple heuristics:

 Reverse-match heuristic: Compare P with a subsequence of T
moving backwards

 Bad-character heuristic: When a mismatch occurs at T[i] = c

 If P contains c, shift P to align the last occurrence of c in P with T[i]

 Else, shift P to align P[0] with T[i + 1]

 Example:

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011

Last-Occurrence Function

 The Boyer-Moore-Horspool algorithm preprocesses the pattern P
and the alphabet to build the last-occurrence function L
mapping to integers, where L(c) is defined as

 the largest index i such that P[i] = c or

 −1 if no such index exists

 Example:

 = {a, b, c, d}

 P = abacab

 The last-occurrence function can be represented by an array
indexed by the numeric codes of the characters

 The last-occurrence function can be computed in time O(m + k),
where m is the size of P and k is the size of How?

c a b c d

L(c) 4 5 3 −1

m − (1 + l)

i

jl

. a

. a . . b .

. a . . b .

1 + l

Case 2: 1 + l j

m − j

i

j l

. a

. . . . b a

. . . . b a

j

Case 1: j 1 + l

The Boyer-Moore-Horspool Algorithm
Algorithm BoyerMooreHorspool(T, P,)

 L lastOccurenceFunction(P,)
 i m − 1
 j m − 1
 repeat

 if T[i] = P[j]
 if j = 0
 return i { match at i }
 else
 i i − 1
 j j − 1
 else
 { bad-character-jump }
 l L[T[i]]
 i i + m – min(j, 1 + l)
 j m − 1
until i n − 1
return −1 { no match }

Example

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

1113

Analysis

 The Boyer-Moore-Horspool
algorithm runs in O(nm + k)
time in the worst case

 Example of worst case:

 T = aaa … a

 P = baaa

 The worst case may occur in
images and DNA sequences
but is unlikely in English text

 The Boyer-Moore-Horspool
algorithm can skip over some
comparisons

 It runs in O(n/m + m) time
in the best case.

11

1

a a a a a a a a a

23456

b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891012

131415161718

192021222324

 The original Boyer-Moore has another heuristic,
the good suffix rule:

 When a mismatch occurs, we take the biggest
shift possible using the bad character and good
suffix rules

The Boyer-Moore Algorithm

Image from https://eecs.wsu.edu/~cook/aa/lectures/l24/node16.html

Case 1 for the good suffix rule

 Suppose we have already matched a suffix, u, of
P, and u appears in P. Then we want a shift that
is guaranteed to match u and requires the
mismatching character to be different:

Image from https://doi.org/10.1016/S1570-8667(03)00005-4

T:

P:

P:

Case 2 for the good suffix rule

 Suppose we have already matched a suffix, u, of
P, and u does not appear in P. Then we want a
shift such that a prefix v is a suffix of u:

Image from https://doi.org/10.1016/S1570-8667(03)00005-4

T:

P:

P:

Good Suffix Rule
⚫ Definition: Suppose for a given alignment of 𝑃 and 𝑇, a

substring 𝑡 of 𝑇 matches a suffix of 𝑃, but a mismatch occurs
to the next character to the left. Then find, if exists, the
rightmost copy 𝑡′ of 𝑡 in 𝑃, such as 𝑡′ is not a suffix of 𝑃 and
the character to the left of t' in P differs from the character to
the left of t in P. Shift 𝑃 to the right, so that substring 𝑡′ in 𝑃 is
below substring 𝑡 in 𝑇.

Image from https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string-search_algorithm

Good suffix rule (cont'd)

⚫ If 𝑡′ does not exist, then shift the left end of 𝑃 past the left end
of 𝑡 in 𝑇 by the least amount, so that a prefix of 𝑃 matches a
suffix of t in 𝑇. If no such shift is possible then shift 𝑃 by m

places to the right.

The good suffix shift table

 Define a shift table, MATCH(i), that encodes the
good suffix shifts for a pattern, x, of length m.

 MATCH(i) = min. s such that Cs(i,s) and Cos(i,s) hold:

Images from https://doi.org/10.1016/S1570-8667(03)00005-4

The bad character shift table

 Let x be a pattern of length m.

 Define a bad-character shift table, occ[a], for each
character, a, in the alphabet for x:

 This is just the last occurrence function, L, indexed
slightly differently.

 It can be computed in the same way as L.

Image from https://doi.org/10.1016/S1570-8667(03)00005-4

The Boyer-Moore Algorithm

 Let x be a pattern of length m and y a text of
length n.

 j is the location of a possible match.

Algorithm description from https://doi.org/10.1016/S1570-8667(03)00005-4

)

) ,

Computing the Suffix table
 Compute a table, suf, such that suf[i] is the length

of the longest suffix of x ending at position i in x.

 We can compute the suf table like the KMP Failure
function, but in reverse (j = g+m-1-f):

Algorithm description from https://doi.org/10.1016/S1570-8667(03)00005-4

Computing the MATCH table

 Given the suffix table, suf, we compute MATCH
to be sMatch in the following algorithm:

Algorithm description from https://doi.org/10.1016/S1570-8667(03)00005-4

Summary for the Boyer-Moore Algorithm

 The Boyer-Moore algorithm runs in O(n + m) time
in the worst case.

 It runs in O(n/m + m) time in the best case.

 It can be further optimized to find all occurrences
of a pattern in a text using at most 1.5n character
comparisons.

Experimental Analysis

 Since completely random strings are not useful for
analyzing exact string-matching algorithms, we
need alternatives:

 Seeded random strings: Create a random text
string, T, of length n (e.g., n=1,000,000), and a
random pattern, P, of length m (e.g., m=5, 10, 20, …).
Then insert P into T at 1 to100 random locations.

 English text: Use a corpus of large English text (e.g.,
emails) and search for patterns of various lengths
(e.g., email addresses, English words, English
phrases).

Varying the Pattern Length

 One type of experiment: Keep the text size fixed
at a reasonably large amount and vary the
pattern size.

Images from https://dearxxj.github.io/post/4/, http://orion.lcg.ufrj.br/Dr.Dobbs/books/book5/chap10.htm

Varying the Text Length

 Another type of experiment: Vary the text length, n,
with certain pattern lengths (e.g., m=10, 20, 100)
or as a function of n (e.g., m=n1/2 or m=n/8).

Image from https://www.researchgate.net/figure/A-comparison-of-the-convolution-KMP-and-Boyer-Moore-algorithms-for-the-exact-matching_fig2_220444712

Data Type Duality

 Rather than rely only on comparing characters,
numerical matching algorithms take advantage of
the fact that characters in a string can also be
viewed as (binary) numbers.

 This concept is referred to as data type duality.

Image from https://www.javatpoint.com/java-char-to-int

The Rabin-Karp Algorithm

 The Rabin-Karp string searching algorithm calculates a hash
value for the pattern, and for each M-character substring of
text to be compared.

 If the hash values are unequal, the algorithm will calculate
the hash value for next M-character sequence.

 If the hash values are equal, the algorithm will do a Brute
Force comparison between the pattern and the M-character
sequence at this location (in case of a hash value collision
causing a false match).

 In this way, there is only one comparison per text
subsequence, and Brute Force is only needed when hash
values match.

 (Recall that we highlighted Michael Rabin in a previous
lecture.)

Michael Rabin

 1959: Invented nondeterministic finite automata
and introduced polynomial time as a notion of
algorithm efficiency

 1976: Received the Turing Award.

 1987: Developed the Rabin-Karp string
searching algorithm with Richard Karp.

Image from https://www.heidelberg-laureate-forum.org/laureate/michael-o-rabin/

Richard Karp

 1985: Received the Turing Award.

 1987: Developed the Rabin-Karp string
searching algorithm with Michael Rabin.

 He is also known for publishing a landmark paper
proving 21 problems to be NP-complete.

 The PhD advisor of UCI Professor Sandy Irani.
Image from https://en.wikipedia.org/wiki/Richard_M._Karp

Rabin-Karp Example

 Text T = cbabacabb

 Pattern P = abaca

Rabin-Karp Algorithm (High Level)

text is n characters long, pattern is m characters long

hash_p=hash value of pattern

hash_t=hash value of first m letters in text

repeat

 if (hash_p == hash_t)

 do brute force comparison of pattern and selected section of text

 hash_t = hash value of next section of text, one character over

until (end of text or brute force comparison == true)

 Running time is O(nm) if we recompute hash_t for each
substring of m characters in the text, which is no better than
brute-force matching!

Rabin-Karp Rolling Hash Function

 We can do better by using a rolling hash function, which allows
us to compute each hash value from the previous hash value.

 Consider an m-character sequence as an m-digit number in
base b, where b is the number of letters in the alphabet. The
text subsequence t[i : i+m-1] is mapped to the number

Given x(i) we can compute x(i+1) for the next substring t[i+1 : i+M] in constant time:

Polynomial Rolling Hash Function

 The original Rabin-Karp algorithm used the a
standard polynomial hash function:

 This requires 2 multiplications and an addition and
subtraction to compute each new hash value.

 Multiplications are generally slower than
comparing characters, and these multiplications
are in the “inner loop” of the algorithm.

 So it may be helpful to have a different hash
function.

Bitwise Operators

 Typical built-in bitwise (bit-parallel) operators,
which are faster than multiplication:

Image from https://realpython.com/python-bitwise-operators/

Examples

 Bitwise operations:

Cyclic shift by 1 bit:

Note the following:

• X AND X =X

• X OR X = X

• X XOR X = 0

Note that bit vectors are indexed

from right to left.

Typical Syntax for Cyclic Shift

 To do a cyclic shift by k bits in C (assumes k < Integer.SIZE):

 return (bits << k & MASK) | (bits >> (Integer.SIZE - k))

Cyclic shift by 1 bit:

MASK: 1 1 1 1 1 1 1 0

Cyclic Polynomial Hash Function
 Let the function s be a cyclic binary rotation (or

circular shift): it rotates the bits by 1 to the left,
pushing the leftmost bit around to the first position.

 E.g., s(101)=011, s(101)=011.

 Define the hash H as follows, where ⊕ is XOR and
h is a random hash function (or lookup table):

 The new hash value (2 shifts and 2 XORs):

The Rabin-Karp Algorithm
 Assumes a shiftHash(f, T, i) function for computing a shifted rolling

hash value for position i in T given the hash value, f, for position i-1 in T.

Let H be the hash of the pattern, i.e., H = h(P)

for i ← 0 to n − m do

 if i = 0 then // initial hash

 f ← h(T[0 : m − 1])

 else

 f ← shiftHash(f, T, i)

 if f == H then

 // check P against T[i : i + m − 1]

 j ← 0

 while j < m and T[i + j] = Pk[j] do

 j ← j + 1

 if j = m then

 return j as a match location

Analysis of the Rabin-Karp Algorithm

 We are given a test of length n and a pattern of
length m.

 Use a hash function that is random enough so
the probability of a false match is at most 1/m.

 Then the expected running time to find a first
match for the pattern (if it exists) is O(n+m).

	Slide 1: Exact Matching Algorithms
	Slide 2: Review: Strings
	Slide 3: Application: fgrep
	Slide 4: Alfred Aho
	Slide 5: Brute-force Pattern Matching
	Slide 6: Brute-Force Matching Example
	Slide 7: Expected-case Analysis for Brute-force
	Slide 8: Donald Knuth
	Slide 9: The KMP Algorithm
	Slide 10: The KMP Failure Function
	Slide 11: The KMP Algorithm
	Slide 12: Computing the Failure Function
	Slide 13: Example
	Slide 14: The Boyer-Moore-Horspool Algorithm
	Slide 15: Last-Occurrence Function
	Slide 16: The Boyer-Moore-Horspool Algorithm
	Slide 17: Example
	Slide 18: Analysis
	Slide 19: The Boyer-Moore Algorithm
	Slide 20: Case 1 for the good suffix rule
	Slide 21: Case 2 for the good suffix rule
	Slide 22: Good Suffix Rule
	Slide 23: Good suffix rule (cont'd)
	Slide 24: The good suffix shift table
	Slide 25: The bad character shift table
	Slide 26: The Boyer-Moore Algorithm
	Slide 27: Computing the Suffix table
	Slide 28: Computing the MATCH table
	Slide 29: Summary for the Boyer-Moore Algorithm
	Slide 30: Experimental Analysis
	Slide 31: Varying the Pattern Length
	Slide 32: Varying the Text Length
	Slide 33: Data Type Duality
	Slide 34: The Rabin-Karp Algorithm
	Slide 35: Michael Rabin
	Slide 36: Richard Karp
	Slide 37: Rabin-Karp Example
	Slide 38: Rabin-Karp Algorithm (High Level)
	Slide 39: Rabin-Karp Rolling Hash Function
	Slide 40: Polynomial Rolling Hash Function
	Slide 41: Bitwise Operators
	Slide 42: Examples
	Slide 43: Typical Syntax for Cyclic Shift
	Slide 44: Cyclic Polynomial Hash Function
	Slide 45: The Rabin-Karp Algorithm
	Slide 46: Analysis of the Rabin-Karp Algorithm

