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Abstract—Alcohol consumption has a significant impact on
individuals’ health, with even more pronounced consequences
when consumption becomes excessive. One approach to pro-
moting healthier drinking habits is implementing just-in-time
interventions, where timely notifications indicating intoxication
are sent during heavy drinking episodes. However, the complexity
or invasiveness of an intervention mechanism may deter an
individual from using it in practice. Previous research tackled this
challenge using collected motion data and conventional Machine
Learning (ML) algorithms to classify heavy drinking episodes,
but with impractical accuracy and computational efficiency for
mobile devices. Consequently, we have elected to use Hyperdi-
mensional Computing (HDC) to design a just-in-time intervention
approach that is practical for smartphones, smart wearables, and
IoT deployment. HDC is a framework that has proven results
in processing real-time sensor data efficiently. This approach
offers several advantages, including low latency, minimal power
consumption, and high parallelism. We explore various HDC
encoding designs and combine them with various HDC learning
models to create an optimal and feasible approach for mobile
devices. Our findings indicate an accuracy rate of 89%, which
represents a substantial 12% improvement over the current state-
of-the-art.

Index Terms—Hyperdimensional Computing, Classification,
Machine Learning, Embedded Systems, Internet of Things,
Health Monitoring, Time Series Analysis, Accelerometers, Fea-
ture Extraction

I. INTRODUCTION

Alcohol is a harmful substance that contributes to more than
200 diseases, injuries, and health conditions [1]. According to
the World Health Organization, in 2022, 5.3% of global deaths
were attributed to alcohol use, accounting for three million
deaths annually. Furthermore, alcohol consumption is known
to lead to various mental and behavioral disorders and injuries.
The risks associated with alcohol significantly escalate when
excessive consumption occurs within short time intervals [2].

Consequently, the timely and accurate detection of intoxica-
tion becomes imperative for mitigating these risks. Measure-
ment methods for alcohol levels in the body can be categorized
into six major categories: early Nicloux oxidation separation

§Both authors contributed equally to this research.

methods, breath alcohol devices, bodily fluid testing, transder-
mal sensors, optical techniques, and intoxication estimation
machine learning algorithms [3]. In particular, transdermal
sensors are designed to gauge alcohol levels by detecting
the gaseous phase of alcohol in the air surrounding the skin.
These studies [4], [5] have revealed that TAC can accurately
identify moderate alcohol consumption, reflected when TAC
levels range between 0 and 0.02 g/dl. Nevertheless, they are
not reliable indicators of lower drinking levels (i.e. whether an
individual has ceased drinking), unless the number of drinks
consumed is known [6].

Unlike other categories of body alcohol measurement meth-
ods, intoxication estimation machine learning algorithms do
not directly measure ethanol, but instead use correlations be-
tween intoxication and other physiological measurements [3],
making them less intrusive and suitable for timely intervention
notifications. This study aims to establish a strong correla-
tion between transdermal alcohol concentration (TAC) mea-
surements and accelerometer data from users’ smartphones,
achieving accurate results without intruding on the user expe-
rience. This is particularly significant given the widespread use
of smartphones and the inherent presence of accelerometers
in these devices. Providing users with a tool to assess their
alcohol levels can heighten awareness and foster responsible
drinking habits.

While prior investigations have delved into this subject [7],
[8], our objective is to enhance both accuracy and efficiency.
Previous studies predominantly leaned on conventional ma-
chine learning algorithms, including Support Vector Machines
(SVM), Convolutional Neural Networks (CNN), or Random
Forest [7], [9], for classifying sobriety. Yet, the intricacy of
this challenge lies in accurately determining sobriety across
diverse scenarios, such as when the smartphone is in a pocket,
on a table, or actively in use (e.g., gaming, calling, texting, or
using various applications). Moreover, the data may be prone
to noise, and signals may intermittently be lost, presenting
hurdles in solving this issue. Our aspiration is to develop a less
resource-intensive solution that can operate on or with smart
wearables such as smartwatches or smart bracelets, enabling
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the seamless capture of information.
Hence, our approach involves leveraging Hyperdimensional

Computing (HDC) for classification. HDC has demonstrated
impressive results in handling noisy and real-time data across
different applications. These applications span from emotion
recognition [10], hand gesture recognition [11], [12], [13]
to language recognition [14] and multiclass classification of
electromyography (EMG), electroencephalography (EEG), and
electrocorticography (ECoG) [15] biosignals. This technology
provides several advantages, including low latency, low power
consumption, and high parallelism, making it an excellent
framework for addressing challenges within the Internet of
Things (IoT) domain.

II. RELATED WORK

The proliferation of smartphones and other mobile tech-
nologies in the last 20 years has enabled research in the field
of just-in-time adaptive interventions (JITAI). The purpose
of JITAIs are to provide personalized real-time interventions
for users, typically with a mobile device which also collects
data [16]. These have proven highly effective at helping with
issues such as weight management [17], managing stress [18],
exercise [19], nicotine addiction [20], and alcohol consump-
tion [21], [22]. In particular, the study performed in [21]
demonstrated that personalized JITAIs deterred hazardous be-
havior during drinking episodes.

The application of mathematical models has led to less
intrusive methods for predicting BAC or TAC, thereby opening
the door for predictive algorithms to be used in JITAIs.
Another study [23], employed a mathematical model that
incorporates TAC data and the specific types of beverages an
individual intends to consume to predict BAC. Furthermore,
novel techniques have emerged that utilize machine learning
and mobile data, such as accelerometer readings, to provide
a cost-effective and practical way of predicting BAC or TAC.
These techniques utilize classification algorithms like Random
Forest [8], [7], CNNs (Convolutional Neural Networks) [24],
[7], and SVMs (Support Vector Machines) [25], [7] to ef-
fectively process sensor data and accurately predict levels of
intoxication. Similarly, techniques utilizing regression models
have also been explored. Bayesian Regression Neural Net-
works (BRNN) have been used to perform regression analysis
for BAC levels from accelerometer data [24], and furthermore,
an ensemble of CNNs and bi-directional Long Short Term
Memory (bi-LSTM) were also used for regression analysis
that yielded promising results [26]. However, these neural
networks are often computationally expensive to train and
perform inference with, so they were not in the scope of
our work for exploring practical methods for real-time IoT
applications of JITAIs. Moreover, there was no code publicly
available to reproduce the claimed results.

Remarkably, HDC, which has demonstrated notable success
in embedded systems and time-series data, has not been previ-
ously employed in classification within this domain. HDC has
demonstrated significant performance and energy consumption
improvement over traditional methods for real-time and online

learning, such as sensorimotor control [27] and light weight
classifier performance through model quantization [28], model
compression [29], and HDC algorithm optimization [30]. As a
result, our HDC solution is strategically positioned to deliver
JITAIs with effective performance on smartphones and smart
wearables.

A. Contribution

Our approach offers a non-intrusive intoxication estimation
machine learning algorithm that has a higher accuracy than
the state-of-the-art while computationally efficient enough for
real-time and online learning on smart wearables. Our solution
fills the current research gap in JITAI systems for intoxication
by introducing a high-performing model capable of running
on embedded devices.

III. HYPERDIMENSIONAL COMPUTING

HDC is a brain-inspired framework that relies on high-
dimensional vectors to represent information. These hyper-
vectors have a dimensionality (d) on the order of thousands
which are randomly sampled from hyperspace. Depending on
the application’s requirements, a range of hyperspaces can
be selected [31], [32], [33], [34]. These spaces encompass
a spectrum from binary to complex value representations.
Among them, the Multiply Add Permute (MAP) [32] hyper-
space is one of the most popular thanks to its efficiency and
information representation capabilities. For that reason, we
have selected MAP as the hyperdimensional framework for
our application.

A. Distance Metric

Measuring the proximity of two hypervectors is crucial due
to their high dimensionality and the importance of orthogo-
nality. This metric determines whether two hypervectors are
identical, similar, or vastly dissimilar. In our context, this
metric aids in classifying which class a particular hypervector
belongs to, facilitating the accurate classification of data
points. Typically, the distance metric is computed using the
dot product, although, depending on data characteristics and
normalization, cosine similarity or hamming distance may also
be applied.

B. Operations

HDC relies on three fundamental operations:
a) Superposition: This operation, also known as

bundling, aggregates information from various hypervectors
into a single hypervector. It can be represented as⊕ : H×H →
H. Notably, the resulting hypervector bears a high resem-
blance to each hypervector contributing to its formation. This
operation is typically implemented as element-wise addition,
rendering it high efficiency and parallelizability [31], [35].

b) Binding: This operation binds two variables together,
similar to traditional computing’s assignment of a value to
a variable. It is represented as ⊗ : H × H → H. Unlike
superposition, the resulting hypervector is entirely distinct
from its components. In vector symbolic architectures, the
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inverse operation of binding can be performed by binding the
variable again with the same hypervector, effectively restoring
it to its original state, therefore making the binding operation
its self-inverse.

c) Permute: This operation establishes order among
hypervectors, this is vital for creating data structures and
capturing data patterns in time series applications [12]. It
can be represented as pi(h) where i denotes the number
of times the operation is applied. Similar to binding, the
resulting hypervector after the operation is dissimilar. The
inverse permute operation, p−i(h), reverts the hypervector to
its exact original state [36], [37].

C. Hyperdimensional Encoding and Classification

The HDC framework has incited interest in solving various
machine learning problems, spanning from regression [38],
reinforcement learning [39], and classification tasks [40] [41].
The fundamental workflow for hyperdimensional learning in-
cludes encoding training samples into the hyperspace, adding
each sample to its respective class, and storing this information
in associative memory per a chosen hyperdimensional learning
model, as illustrated in Figure 1.

Fig. 1. Hyperdimensional classification workflow.

The encoding phase within the hyperdimensional learn-
ing workflow is computationally intensive and significantly
impacts classification outcomes. Encodings can be either
unstructured or structured. Unstructured encodings are typ-
ically created through vector projections, including random
projection [42], sinusoid projection [43], or fractional power
encoding [44], [45]. Structured encodings employ different
types of basis hypervectors, such as random hypervectors, level
hypervectors with linear correlations, and circular hypervectors
suitable for circular data representation, such as seasonal
variations. These basis hypervectors are utilized to create
various structures, such as the key-value encoding [46], [47],
[42], n-gram encoding [48] and the generic encoding [49],
which combines elements of both n-gram and key-value en-
coding. Moreover, one can create more specific encodings that
better tailor their application by combining the aforementioned
encodings using hyperdimensional operations.

Once the training phase concludes, inference begins, encod-
ing test samples to the hyperspace, where it’s important to note
that the encoding process remains consistent for both training
and inference. For each encoded sample, a similarity metric
is employed to determine the class most similar to the given
instance, ultimately facilitating classification. While this serves
as the fundamental workflow, several enhancements to this

approach have been explored. These enhancements range from
improved single-pass learning using adaptive learning [50],
[51], to iterative training [51], and the use of dimension
regeneration [43], [52], for dimensions carrying minimal to
no information.

IV. METHODS

The initial stage of our method focused on data treatment,
which is a critical step for this application. This was particu-
larly significant because the problem is meant to be addressed
in real-time. It was also essential to have a streamlined and
efficient method for processing input data, along with the
removal of noise. Providing accurate parameters to the HDC
classification model is extremely important for obtaining high
accuracy results.

A. Data Selection and Cleaning

We utilized the ”Bar Crawl: Detecting Heavy Drinking”
dataset from a previous study [7], [53]. This dataset, gath-
ered from 11 iOS and 2 Android smartphones and TAC
measurements from a SCRAM ankle bracelet, consists of a
real-time series with a substantial 14 million accelerometer
readings and 715 TAC (Transdermal Alcohol Concentration)
readings. The usable data for the analysis consists of the
reading of 13 participants [7]. The raw accelerometer data
was collected at a sampling rate of 40Hz [7]. The TAC
data, obtained at 30-minute intervals using SCRAM ankle
bracelets, underwent two processing steps: (1) a zero-phase
low-pass filter to reduce noise without shifting phase, and (2)
a backward shift of 45 minutes to align labels more closely
with the true intoxication of the participant, considering the
45-minute duration for alcohol to exit through the skin [7].
Subsequently, the raw accelerometer data was windowed into
10-second overlapping windows (400 samples per window),
with TAC data interpolated for those 10-second intervals [7].

Minimizing the amount of data and treatment done to the
data is fundamental to reducing energy and execution time
in a real-time application, where fast and efficient responses
are necessary to be able to execute the application in a real
scenario. We considered the same engineered feature types as
used in a previous study [7], which resulted in a total of 600
features. Similar to the previous study, we used Autogluon [54]
to identify the top 20% (120) of features with the highest
importance scores, which measure how much each feature
influenced the resulting prediction. We then used these 120
features in our approach. However, upon further examination,
only 18 individual features had Gini importance higher than
0.0001, making clear that most of the 600 features almost did
not contribute to the right prediction. The feature types we
considered are listed in Table I. The list of types corrobo-
rated the importance of Mel Frequency Cepstral Coefficients
(MFCC) for this problem from the previous study [7].

B. HDC Approach

With our HDC approach, we first determined how data will
be encoded. In the literature [41] we observed that there is
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TABLE I
CATEGORIES OF MOST RELEVANT FEATURES CONSIDERED PER WINDOW.

Feature Type Description
Mean Average of each x, y, z signal
Standard Deviation Standard deviation of each x, y, z signal
Median Median of each x, y, z signal

Spectral Entropy Entropy in frequency and time domain (2 total
metrics) for each axis

Spectral Centroid Weighted mean of frequencies for each axis

Spectral Spread Measure of variance about the centroid for each
axis

RMS Root-mean-square of accelerations for each axis

MFCC Covariance MFCC covariance entries for each of 6 axis
combinations

a certain set of general encodings that have proved to work
well in similar applications. The four encodings mentioned
in Section III-C that we used for raw accelerometer time-
series data were the following: Key-Value (KV) [46], [47],
[42], N-gram (N) [48], Generic [49], Sinusoid projection (S.
Proj) [43].

We used the Density encoding [55] for the engineered
feature data. This encoding is an alternate implementation of
level hypervectors to encode information. Our final ensemble
encoding method was a combination of the Density encoding
and one of the four mentioned previously.

In addition to developing an encoding method, we needed
to determine which learning model would work best for our
classification problem. Several works have proposed different
classification learning models. These models differ in accuracy
and training time. However, inference time is very similar for
all of them [41]. We considered 6 different models:

• VanillaHD (V), proposes an approach where all samples
are added to the memory without modification. This is a
single-pass algorithm.

• AdaptHD (A) [50], This model performs adaptive learn-
ing, this is done by adding a sample to the memory if it
is misclassified. Can be single-pass or perform iterative
learning.

• OnlineHD (O) [51], This model builds upon AdaptHD
by doing a weighted addition of the samples. It can be
single-pass or perform iterative learning.

• RefineHD (R) [56], this model improves upon OnlineHD
and AdaptHD by adding samples that are correctly clas-
sified but differ largely from the class. Moreover, it
proposes the use of the flocet encoding in the key-
value encoding. It can be single-pass or perform iterative
learning.

• NeuralHD (N) [43], this model uses dimensions regener-
ation iterative training, and adaptive learning to improve
the model’s learning.

• DistHD (D) [52], this model combines dimension re-
generation, top two classifications, adaptive learning, and
iterative training to achieve better accuracy

From these models, the first four can be performed using
single-pass learning which is extremely useful for fast and
low-resource training and inference. If the training can be

offloaded and performed asynchronously, then performing
iterative training can help achieve better results.

The HDC learning models offer a key advantage by allowing
the capture of temporal information while training the model.
We leveraged this advantage by using the 400-sample raw
time-series data windows in our HDC approach, combining it
with our engineered features for classification. This is reflected
in our HDC encoding selection, where we explored HDC
encodings used to encode time-series data in order to develop
our own unique encoder. For this study, we used both raw
data and feature-engineered data. We used two approaches
for this problem, one where we shuffled the windows of all
13 participant and one where we used the windows sorted
in chronological order, this second approach was thought to
work better thanks to the inherent time dependence that this
problem carries. For example, in the HDC implementation of
the time-series classification algorithm MiniROCKET named
HDC-MiniROCKET, timestamps were able to be encoded in
addition to the feature data provided by the convolutions,
which allowed for significant accuracy improvements [57].
Similarly, we aimed to consider longer patterns occurring
during the bar crawl data collection period to enhance overall
accuracy.

C. Outline of Experiments

The outline of our experiments § was split into 3 phases.
The implementation of each phase of the experiments was
done using the Torchhd [58] a python library. The first phase
consisted of comparing combinations of the Density encoding
with the 4 other encodings used for the raw time-series
windows. We used RefineHD as a default for testing in this
phase. This provided us with an optimal encoding method
for the second phase, learning model selection. In the second
phase we used our finalized ensemble encoding method with
our 6 potential learning models to determine the best encoding
and learning method combination. Our third and final phase
of experiments consisted of refining our final encoding and
learning method combination with hyperparameter refinement.

For the execution of our experiments, we employed a
Raspberry Pi 4 Model B with a Quad core Cortex-A72 (ARM
v8) and 4GB of LPDDR4-3200 SDRAM memory [59]. We
chose this platform as it’s computational specifications are
similar in specifications to a low-end smartphone.

We divided the data into two sets, with a 70/30 ratio. When
the data was randomly shuffled, we divided it randomly. For
chronologically ordered data, we reserved the last 30%.

V. RESULTS AND DISCUSSION

Our results are split into the three major phases of our
experiments: encoding selection, learning model selection,
and hyperparameter tuning. We also performed a baseline
comparison with the results of the previous study, and explore
execution times of the different encodings on the Raspberry
Pi hardware. Encodings and methods are referred to by their

§Project link: https://github.com/mesegur1/bar crawl data
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abbreviations listed in Section IV-B when referenced in tables
and figures.

A. First Phase Results - Encoding Selection

Our findings for the encoding selection, presented in Table II
and Table III, shed light on the encoding selection process.
For each encoding that is paired with the Density encoding,
we recorded the accuracy and F1-score and compare results.
The F1-scores were expected lower with the chronologi-
cally ordered data, due to TAC levels being lower in the
chronologically last 30% of the data (mostly the negative
”sober” label). The Generic encoding and Density encoding
combination attains the one of the highest accuracy levels for
both shuffled and ordered data. The breakdown of our final
ensemble encoder is shown in Algorithm 1.

Algorithm 1: Ensemble HDC Encoder
Input : A window W , composed of raw

accelerometer data A, and engineered
features F .

Output: A hypervector.
1 // Apply Generic encoding to x, y,

and z axis to encode.
2 H1 ← GenericEncode(A.time,A.x,A.y,A.z)
3 // Apply Density encoding to 120

engineered features.
4 H2 ← DensityEncode(F )
5 // Bind and bundle H1 and H2.
6 Hf ← H1 ⊕H2 ⊕ (H1 ⊗H2)
7 return Hf

TABLE II
PERFORMANCE EVALUATION OF THE HDC ENCODINGS, WITH RANDOMLY

SHUFFLED DATA.

Metric KV (RL) S. Proj KV (SN) Generic
Accuracy 79.069 78.78 82.857 82.41
F1-Score 0.571 0.572 0.67 0.692

TABLE III
PERFORMANCE EVALUATION OF THE HDC ENCODINGS, WITH

CHRONOLOGICALLY ORDERED DATA.

Metric KV (RL) S. Proj KV (SN) Generic
Accuracy 89.274 89.476 84.085 89.47
F1-Score 0.239 0.242 0.287 0.241

We tested the ensemble Generic encoding and found it to be
effective. However, we also aimed to evaluate its performance
using different n-gram sizes as this can greatly impact the
algorithm’s effectiveness. To achieve this, we experimented
with sizes ranging from 2 to 7, as studies have shown that
this range tends to yield optimal results [41]. According
to Figure 2, we can conclude that the optimal n-gram size
achieved is 6, particularly when the input data is shuffled.
However, if the data is ordered, it is preferable to use an n-
gram of size 2, since it provides the same efficiency while

being more efficient and will result in faster training and
inference. For the purposes of the next experiments, we use
n-gram size 6.

Fig. 2. Performance evaluation of the generic encoding with different n-gram
sizes, with randomly shuffled and chronologically ordered data.

B. Second Phase Results - Learning Model Selection

Combining the ensemble Generic encoding with the learn-
ing models described in Section IV-B, we again experimented
with both randomly shuffled and chronologically ordered data,
and collected accuracy and F1-metrics as shown in Table IV
and Table V. Using the RefineHD model had one of the highest
accuracy scores among the different models, for both shuffled
and ordered data. Similar to the previous tests, the F1-Score
was lower for the ordered data due to the negative/positive
label ratio. We decided to use this combination for our
experimentation in the upcoming section.

TABLE IV
PERFORMANCE EVALUATION OF THE HDC CLASSIFICATION MODELS,

WITH RANDOMLY SHUFFLED DATA.

Metric V A O R N D
Accuracy 66.63 78.62 82.62 84.00 82.34 76.132
F1-Score 0.51 0.69 0.56 0.70 0.70 0.66

TABLE V
PERFORMANCE EVALUATION OF THE HDC CLASSIFICATION MODELS,

WITH CHRONOLOGICALLY ORDERED DATA.

Metric V A O R N D
Accuracy 47.18 89.73 78.75 89.47 89.69 62.94
F1-Score 0.139 0.24 0.23 0.24 0.24 0.14

C. Third Phase Results - Hyperparameter Tuning

After deciding on an ensemble Generic encoding with an
n-gram size of 6 and choosing the HDC learning model (Re-
fineHD), the next important step was to determine the optimal
learning rate for the iterative version. We experimented with
learning rates ranging from 1 to 5 for both shuffled and
ordered data to find the best option. The learning rates for
HDC learning models are typically larger than those used for
conventional ML models.
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TABLE VI
PERFORMANCE EVALUATION OF THE ENSEMBLE GENERIC ENCODING

AND REFINEHD MODEL USING DIFFERENT LEARNING RATES, WITH
RANDOMLY SHUFFLED DATA.

Metric α = 1 α = 2 α = 3 α = 4 α = 5
Accuracy 76.64 81.85 82.41 81.30 78.63
F1-Score 0.659 0.637 0.692 0.684 0.628

TABLE VII
PERFORMANCE EVALUATION OF THE ENSEMBLE GENERIC ENCODING

AND REFINEHD MODEL USING DIFFERENT LEARNING RATES, WITH
CHRONOLOGICALLY ORDERED DATA.

Metric α = 1 α = 2 α = 3 α = 4 α = 5
Accuracy 89.43 89.33 89.47 89.38 89.4
F1-Score 0.241 0.239 0.241 0.24 0.24

Fig. 3. ROC curve evaluation of the ensemble Generic encoding and
RefineHD model with different learning rates, with randomly shuffled data.

TABLE VIII
COMPARISON OF PRECISION, RECALL, AND SOBER/DRUNK ACCURACY

BREAKDOWN WITH LEARNING RATE α = 3, WITH RANDOMLY SHUFFLED
AND CHRONOLOGICALLY ORDERED DATA.

Metric Randomly Shuffled Chronologically Ordered
Accuracy 82.41 89.47
Sober Accuracy 86.12 93.33
Drunk Accuracy 72.63 28.51
Precision 0.661 0.209
Recall 0.726 0.285

Upon examining the results presented in Table VI, Ta-
ble VII, and the receiver operating characteristic (ROC) curves
in Figure 3, it becomes evident that setting the learning
rate to 3 yields the highest levels of accuracy with both
randomly shuffled data and chronologically ordered data.
Looking further into the performance with learning rate α = 3
in Table VIII, we consider accuracy, including sober and
drunk accuracy, precision, and recall metrics. Although the
precision and recall were lower in the chronologically ordered
case, due to the negative/positive label ratio, We can see that
the classifier excels at the classification of the negative case
(sober).

D. Baseline Comparison with Original Study

As a preliminary step, we sought to replicate the previous
study and make a comparative assessment of our approach. In
this specific experiment, we compared the results of our HDC
approach using randomly shuffled data and chronologically
ordered data with results of the methods of the previous
study, including their results for their SVM, CNN, and random
forest approaches [7]. Table IX provides a comprehensive view
of the results achieved by both methods. Our approach has
higher accuracy scores than previous used models, and also
higher recall when the data is randomly shuffled. When the
data is chronologically ordered, precision and recall drop as
before because of the negative/positive label ratio, but the
sober accuracy (negative label) is much higher. Notably, our
approach demonstrates a significant improvement when the
data is chronologically ordered, boasting a 12% increase in
general accuracy and a 12% enhancement in sober accuracy
compared to the results of the best performing random forest
model from the previous study.

TABLE IX
PERFORMANCE EVALUATION OF THE OUR HDC APPROACH (RANDOMLY

SHUFFLED DATA (S) AND CHRONOLOGICALLY ORDERED DATA (O)) VS
RESULTS OF PREVIOUS STUDY.

Metric SVM [7] CNN [7] RF [7] HDC (S) HDC (O)
Accuracy 74.67 74.27 77.48 82.39 89.47
Sober Acc 0.812 0.789 0.815 0.860 0.933
Precision 0.636 0.636 0.665 0.661 0.209
Recall 0.622 0.656 0.698 0.725 0.285

Finally with the final combination of our ensemble Generic
encoder with n-gram size 6 and a learning rate 3 with the
RefineHD method we obtain an 89% accuracy when the data
is ordered chronologically which surpasses the previous work
by 12%.

E. Hardware Execution Times per Window

To verify the feasibility of our approach for classifying live
data in real-time, we measured the average execution time
of classifying 1 10 second window with combinations of the
four encodings and the RefineHD model on the Raspberri Pi.
In order to be feasible, classification for a 10 window needs
to be significantly less than 10 seconds. We found that our
chosen ensemble Generic encoding approach with RefineHD
took on average 0.34 seconds on the Raspberry Pi, as shown
in Table X.

TABLE X
ENCODINGS EXECUTION TIME PER SAMPLE.

Metric KV (RL) S. Proj KV (SN) Generic
Time (s) 0.3 0.1 0.71 0.34

Our experiments on the Raspberry Pi 4 indicate the potential
for implementing our HDC approach on a smartphone, or
even a smartphone-smartwatch duo. This paves the way for
immediate assessments and JITAIs, allowing smartphones to

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 18,2024 at 19:14:36 UTC from IEEE Xplore.  Restrictions apply. 



process sensor data from smartwatches and conduct classifi-
cation without relying on more computing-intensive resources
such as cloud servers.

VI. FUTURE WORK

To address the shortcomings of using only accelerometer
data collected from smartphones, we are expanding our consid-
eration to additional sensor measurements besides accelerom-
eter data, collected by smart watches or other smart wearable
devices. These will include heart-rate, gyroscope, temperature,
and blood oxygenation level measurements, paired with TAC
measurements from a TAC measuring bracelet for correlation.
These new measurements have been found to have some
correlation to alcohol levels and intoxication [60]. We are
developing a mobile application for data collection of these
measurements from these smart wearables as part of a larger
future study.

Once we have a new dataset collected from smart wearables,
our next steps would be running our HDC approach on
smart wearable devices with the new dataset to classify TAC
measurements, and further refining our approach with the
results. Then, we can modify our smart wearable application
for reading live data. Our end goal is a complete JITAI solution
that can be deployed to consumers, and is both affordable and
accessible to the general public, ultimately leading to a more
significant impact on promoting healthier drinking habits.

VII. CONCLUSIONS

Alcohol consumption significantly impacts an individual’s
well-being, with more pronounced consequences when con-
sumed excessively. Various strategies aim to promote respon-
sible drinking habits; among these, JITAIs stand out as a
promising approach. To address this issue, we proposed the
use of HDC to test the feasibility of IoT-based JITAIs that
could address a wide range of alcohol consumption issues. Our
research demonstrated that hyperdimensional learning outper-
forms the traditional random forest model in this context. After
exploring various encoding methods and hyperdimensional
learning techniques, we found that the optimal configuration
involves using a generic encoding with an n-gram size of 6, es-
pecially when combined with the RefineHD hyperdimensional
learning method.

Our study shows significant improvement with an accuracy
rate of 89%, which is 12% higher than previous results.
Additionally, our work corroborates that organizing samples
temporally leads to an additional +7% accuracy, highlighting
the advantageous leverage that HDC gains from time series
data. In summary, this enables an accurate JITAI solution that
would be widely available to the general public, and would be
less invasive and cumbersome and provide less stigma when
used in practice.
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