Program transformation. Given a (lisp) program for an invertible function, how do we automatically find a program for the inverse function? Considers more general simultaneous inverses of multiple functions. The heuristic part involves type inference for finding conditionals to use in certain if statements.
(MacLISP source code – Kawabe's Common Lisp port)
Automata theory. A reset sequence for a DFA is an input such that, no matter which state the DFA starts in, it ends up after the input in a known state. These have been used by Natarajan and Goldberg for certain robot motion planning problems (in fact the conference version of this paper used the title "Reset sequences for finite automata with application to design of parts orienters"), and also in coding theory where they arise in the design of self-synchronizing codes. This paper considers DFAs in which the transition functions respect a given cyclic ordering of the states, and shows that their shortest reset sequences can be found quickly. It also considers parallel algorithms for the problem. There remains open a gap between n2 and n3 in the maximum length of reset sequences for general automata.
Structural complexity theory. Constructs oracles in which BPP (a probabilistic complexity class) and UP (the class of problems with a unique "witness") contain languages that in a very strong sense are not contained in the other class. The conference version used the title "Probabilistic and unambiguous computation are incomparable".
Considers persistence for a naive form of dynamic algorithm in which each update rebuilds a static solution. The space bounds for this can often be reduced by maintaining an offline solution over a sequence of updates constructed from an Euler tour of the persistent update history tree.
Describes data structures for maintaining the solution of a dynamically changing subset sum problem, and uses them to find a cut in a graph minimizing the difference between the heaviest and lightest cut edge.
Uses geometric optimization techniques to find, among n weighted values, the k to drop so as to maximize the weighted average of the remaining values. The feasibility test for the corresponding decision problem involves k-sets in a dual line arrangement.
We study the problem of minimizing transitions in address signals on a bus. The UDRC part of the title refers to an algorithm for coding signals with at most one transition per signal (using an increased number of wires); we combine this with a scheme for caching previously coded addresses and use trace data to compare our technique with previous approaches.
We study practically efficient methods for finding few flawed items among large sets of items, by testing whether there exist flaws in each of a small number of batches of items.
We investigate several simplified models for k-anonymization in databases, show them to be hard to solve exactly, and provide approximation algorithms for them.
The min-max bin covering problem is closely related to one of our models. An input to this problem consists of a collection of items with sizes and a threshold size. The items must be grouped into bins such that the total size within each bin is at least the threshold, while keeping the maximum bin size as small as possible.
(Slides)
An overview of the Theoretical Computer Science question and answer exchange web site.
We study the problem of distinguishing workers (people who complete their assigned tasks) from slackers (people who do not contribute towards the completion of their tasks) by grouping people in pairs and assigning a task to each group.
We study cuckoo hashing data structures in a model of flash memory in which each memory cell has a limited number of times it can be changed, so the goal is to prevent hot spots that change many times.
We consider a broad class of highest averages methods for proportional allocation (the problems of allocating seats to parties after a parliamentary election, or of allocating congressmen to states based on total population). We show that these methods can be simulated by an algorithm whose running time is proportional only to the number of parties or states, independent of the number of seats allocated or the number of voters.
(Slides)
We provide upper and lower bounds on the query complexity of a problem in which the input is a collection of two-colored items, and the problem is to either find an item of the majority color or to determine that there is no majority, by performing queries that determine the discrepancy of fixed-size subsets of the items.
(Slides)
A cuckoo filter is an approximate set data structure that can be used in place of a Bloom filter, but with several practical advantages: it uses less space, has better locality of reference, and can handle element deletions. We provide the first theoretical analysis of a simplified variation of cuckoo filters, showing that these advantages can be guaranteed to hold theoretically and not just experimentally.
(Slides)
We consider a model of vehicle scheduling in which vehicles arrive at an intersection in indivisible platoons (or individual vehicles of variable length) and the goal is to find a schedule for them to all cross the intersection without collisions, minimizing the maximimum delay incurred by any platoon. We show that for many types of intersections, an optimal schedule can be found in polynomial time by a combination of dynamic programming and parametric search.
We provide parallel versions of our bit-parallel algorithms from PODS 2017 for sparse set intersection.
We experiment with sorting algorithms in the evolving data model, in which, at the same time as the algorithm compares pairs of elements and possibly chooses a new ordering based on the results of the comparison, an adversary randomly chooses two adjacent elements in the sorted order and swaps them. As we show, bubble sort and its variants appear to maintain an order that is within inversion distance of optimal.
Suppose that a collection of objects has a linear order that is evolving by swaps of randomly chosen consecutive elements. We would like to maintain an approximation to this order using an algorithm that performs one comparison per swap. We show that repeated insertion sort can maintain linear inversion distance from the underlying order, the best possible.
For several problems with polynomial-time solutions, we show that finding a sequence of steps that converts one solution into another (maintaining a valid solution at each step) is hard. These include planar monotone not-all-equal 3-sat, subset sum on integers of polynomial magnitude, and 0-1 integer programming with a constant number of linear inequality constraints.
(Slides)
This short opinion piece explains Wikipedia's guidelines for inclusion of articles on academics, and outlines steps to help improve Wikipedia's coverage of women in mathematics.
We study a class of problems involving computing a value
We show how to determine the outcome of a Schulze method election,
from an input consisting of an
We describe the experience of editing mathematics articles on Wikipedia, with the aim of providing helpful advice for new editors and encouraging mathematicians to become Wikipedia editors.
Publications – David Eppstein – Theory Group – Inf. & Comp. Sci. – UC Irvine
Semi-automatically filtered from a common source file.