An investigation of 3d visibility problems in which the viewing position moves along a straight flight path, with various assumptions on the complexity of the viewed scene.
Finds boundary representations of CSG objects. Uses techniques from dynamic graph algorithms, including a tree partitioning technique of Frederickson and a new data structure for maintaining the value of a Boolean expression with changing variables in time O(log n / log log n) per update.
This paper introduces the diameter-treewidth property (later known as bounded local treewidth): a functional relationship between the diameter of its graph and its treewidth. Previously known results imply that planar graphs have bounded local treewidth; we characterize the other minor-closed families with this property. Specifically, minor-closed family F has bounded local treewidth if and only if there exists an apex graph G that is not in F; an apex graph is a graph that can be made planar by removing a single vertex. The minor-free families that exclude an apex graph (and therefore have bounded local treewidth) include the bounded-genus graphs (for which, as with planar graphs, we show a linear bound for the treewidth as a function of the diameter) and K3,a-free graphs. As a consequence, subgraph isomorphism for subgraphs of bounded size and approximations to several NP-hard optimization problems can be computed efficiently on these graphs, extending previous results for planar graphs.
Some of these results were announced in the conference version of "subgraph isomorphism for planar graphs and related problems" but not included in the journal version. Since its publication, there have been many more works on local treewidth. The class of problems that could be solved quickly on graphs of bounded local treewidth was extended and classified by Frick and Grohe, "Deciding first-order properties of locally tree-decomposable structures", J. ACM 48: 1184–1206, 2001; the proof that bounded local treewidth is equivalent to having an excluded apex minor was simplified, and the dependence of the treewidth on diameter improved, by a subsequent paper of Demaine and Hajiaghayi, "Diameter and treewidth in minor-closed graph families, revisited", Algorithmica 40: 211–215, 2004. The concept of local treewidth is the basis for the theory of bidimensionality, a general framework for fixed-parameter-tractable algorithms and approximation algorithms in minor-closed graph families; for a survey, see Demaine and Hajiaghayi, "The bidimensionality theory and its algorithmic applications", The Computer J. 51: 292–302, 2008.
We consider several variations of the problem of coloring the squares of a quadtree so that no two adjacent squares are colored alike. We give simple linear time algorithms for 3-coloring balanced quadtrees with edge adjacency, 4-coloring unbalanced quadtrees with edge adjacency, and 6-coloring balanced or unbalanced quadtrees with corner adjacency. The number of colors used by the first two algorithms is optimal; for the third algorithm, 5 colors may sometimes be needed.
Describes a graph drawing technique combining ideas of confluent drawing with Sugiyama-style layered drawing. Uses a reduction to graph coloring to find and visualize sets of bicliques in each layer.
We introduce the concept of a layered path decomposition, and show that the layered pathwidth can be used to characterize the leveled planar graphs. As a consequence we show that finding the minimum number of tracks in a track layout of a given graph is NP-complete. The GD version includes only the parts concerning track layout, and uses the title "Track Layout is Hard".
We study the problem of splitting the vertices of a given graph into a bounded number of sub-vertices (with each edge attaching to one of the sub-vertices) in order to make the resulting graph planar. It is NP-complete, but can be approximated to within a constant factor, and is fixed-parameter tractable in the treewidth.
(Slides)
We provide upper and lower bounds on the query complexity of a problem in which the input is a collection of two-colored items, and the problem is to either find an item of the majority color or to determine that there is no majority, by performing queries that determine the discrepancy of fixed-size subsets of the items.
(Slides)
We provide near-linear-time algorithms for minimum and maximum spanning trees on Euclidean graphs given by multicolored point sets, where each point forms a vertex, and each bichromatic pair of points forms an edge with length equal to their Euclidean distance.
We consider problems of constructing the maximum-length plane (non-self-crossing) spanning tree on Euclidean graphs given by multicolored point sets, where each point forms a vertex, and each bichromatic pair of points forms an edge with length equal to their Euclidean distance. We show that several such problems can be efficiently approximated.
A leaf power graph is the graph formed from the leaves of a tree by making two leaves adjacent when their tree distance is at most k. We show that recognizing these graphs is fixed-parameter tractable in a combination of two parameters: k and the degeneracy of the graph.
(James Nastos has pointed out a minor error in our statement of known prior results: the figure depicting chordal graphs that are not 4-leaf powers is labeled as a complete set of forbidden subgraphs, but it is only the complete set among graphs without true twin vertices.)
We show that finding clustered planar drawings can be done in fixed-parameter-tractable time, depending only on a single width parameter of the input clustered graph.
There exist graphs with edges labeled by linear real functions, such that
the number of different minimum spanning trees obtained for different
choices of the function argument is
(Slides)
For any point set, the numbers of non-crossing paths, non-crossing Hamiltonian paths, non-crossing surrounding polygons, and non-crossing Hamiltonian cycles can be bounded above and below by functions of two simple parameters: the minimum number of points whose deletion leaves a collinear subset, and the number of points interior to the convex hull. Because their bounds have the same form, the numbers of the two types of paths are bounded by polynomials of each other, as are the numbers of the two types of polygons. We use these relations to list non-crossing Hamiltonian paths and polygonalizations in time polynomial in the number of outputs.
Journals – Publications – David Eppstein – Theory Group – Inf. & Comp. Sci. – UC Irvine
Semi-automatically filtered from a common source file.