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Multi-level range search



Example: Rectangular range counting

Data: 2d points represented as (x , y) coordinate pairs

Query: How many points are inside a given rectangle?

Answer = 5



Binary search tree on x-coordinates

Query range

= entire subtree in range

= single node in range

Query range: left and right x-coordinates of rectangle

Decomposes the points whose x-coordinate is in range into
▶ O(log n) individual points
▶ O(log n) larger sets of points



Multi-level structure

Binary search tree of points sorted by x-coordinates

Each node stores a 1D range search structure for intervals of y -coordinates, for points
in its subtree (e.g. a sorted array)
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Using a multi-level structure

To count points in a query rectangle:
▶ Perform query on x-range of rectangle
▶ For each individual point (x , y) found by query:

Test whether y is in range
▶ For each subtree identified by query:

Use 1d structure at subtree root to count
descendants whose y coordinate is in range

▶ Add the results and return the total



Multi-level analysis

If x-tree is balanced ⇒ each point contributes to y -structures in O(log n) ancestors ⇒
total space is O(n log n)

Each rectangle query makes O(log n) calls to one-dimensional y -structures ⇒ query
time is O(log2 n)



Making it dynamic

Suppose we want to insert or delete points?
▶ Use a dynamic binary search tree on x-coordinates
▶ Replace 1D sorted arrays by dynamic binary search trees on y -coordinates

We cannot rotate quickly because that would cause big changes to the 1D structures

Instead, use weight-balanced binary search tree on x-coordinates, and when we rebuild
a subtree we also rebuild the recursive structures stored in its nodes



Weight-balanced trees

Also called BB[α]-trees
Jörg Nievergelt and Ed Reingold, 1973

Each node stores a number, the size of its subtree

Constraint: left and right subtrees at each node have sizes within a factor of α of each
other ⇒ height ≤ log1/(1−α) n = O(log n)

Original update scheme: rotations, works only for small α

Simpler: rebuild unbalanced subtrees, amortized O(log n)/update
(potential function: sum of unbalance amounts at each node)



Fractional cascading



Related binary searches

In the multi-level structure for rectangular range counting, each query does O(log n)
binary searches:
▶ In one-dimensional structures stored at certain tree nodes
▶ All searching for the same y -coordinates

(top and bottom coordinates of query rectangle)
▶ In a related sequence of nodes

(children of the nodes on a tree path)

Goal of fractional cascading: Speed up multiple related binary searches without paying
too big a penalty in space



A simpler multi-binary-search problem

Data: k sorted lists of numbers S0, S1, . . .Sk−1

Total length: n = |S0|+ |S1|+ · · ·+ |Sk−1|

No repeated values, even in different lists

Query: find the successors of a given number q in each list

(si = successor of q in list Si )



Example

Data:
▶ S0 = [0, 10, 20, 30, 40, 50, 60, 70]
▶ S1 = [1, 2, 13, 25, 27, 51, 57]
▶ S2 = [21, 22, 31, 32, 33, 41, 99]
▶ S3 = [67, 68, 69]

Total length n = 8 + 7 + 7 + 3 = 25

Query for q = 24 would find
s0 = 30 s1 = 25 s2 = 31 s3 = 67



Naïve solutions

Do the binary searches separately

Space = O(n) for storing each Si as a sorted list

Query time = O(k log n) for k binary searches

Merge into one list

For each value x , store k-tuple of successors
for queries that return x as their smallest value

0:(0,1,21,67), 1:(10,1,21,67), 2:(10,2,21,67), 10:(10,13,21,67), 13:(20,13,21,67),
20:(20,25,21,67), 21:(30,25,21,67), . . .

Binary search in merged sorted array + look up k-tuple

Space O(kn), query time O(k + log n)



Fractional cascading

Working backwards through the sequence of lists Si ,
construct Ti : merged structure for (Si + half the elements of Ti+1)

Choosing the half of the elements that are in odd-numbered positions e.g. if
T = 1, 2, 3, 5, 7, 11, 20 then 1

2T = 2, 5, 11

So Ti consists of:
▶ A sorted array of the merged items from Si +

1
2Ti+1

▶ A dictionary mapping each merged item x to a pair (a, b) where one of a or b is x ,
and the other one is the successor of x in the other merged list

▶ When there is no successor in the other list, use +∞



Example

▶ S3 = 67, 68, 69 T3 = S3 (nothing to merge) Half elements: 68
▶ S2 = 21, 22, 31, 32, 33, 41, 99
▶ T2 = 21:(21,68), 22:(22,68), 31:(31,68), 32:(32,68), 33:(33,68), 41:(41,68), 68:(99,68),

99:(99,+∞)
▶ Half the elements of T2: 22, 32, 41, 99
▶ S1 = 1, 2, 13, 25, 27, 51, 57
▶ T1 = 1:(1,22), 2:(2,22), 13:(13,22), 22:(25,22), 25:(25,32), 27:(27,32), 32:(51,32),

41:(51,41), 51:(51,99), 57:(57,99), 99:(+∞,99)
▶ Half the elements of T1: 2, 22, 27, 41, 57
▶ S0 = 0, 10, 20, 30, 40, 50, 60, 70
▶ T0 = 0:(0,2), 2:(10,2), 10:(10,22), 20:(20,22), 22:(30,22), 27:(30,27), 30:(30,41),

40:(40,41), 41:(50,41), 50:(50,57), 57:(60,57), 60:(60,+∞), 70:(70,+∞)



Searching fractionally cascaded lists

To find the successors of q:
▶ Binary search for successor t0 in merged list T0

▶ Set i = 0
▶ Then, repeat:

▶ Use dictionary for Ti to find the pair (a, b)
where a = si = successor in Si
and b is successor in 1

2Ti+1
▶ Output si
▶ Let c be the (skipped) element of Ti+1 just before b
▶ If q < c then ti+1 = c else ti+1 = b
▶ Set i = i + 1



Example (continued)

To search for the successor of q = 24:
▶ Binary search in T0 finds successor t0: 27:(30,27)
▶ Output s0 = 30, successor in S0

▶ Successor in T1 might be either 27 or previous item, 25
▶ Because q < 25, successor in T1 is 25:(25,32)
▶ Output s1 = 25, successor in S1

▶ Successor in T2 might be either 32 or previous item, 31
▶ Because q < 31, successor in T2 is 31:(31,68)
▶ Output s2 = 31, successor in S2

▶ Successor in T3 might be either 68 or previous item, 67
▶ Because q < 67, successor in T3 is 67
▶ Output s3 = 67, successor in S3



Fractional cascading analysis

Query time

One binary search + O(1) for each list after the first

Total O(k + log n)

Space and set-up time

Each element of Si contributes 1 to the length of Ti , 1
2 to the length of Ti−1, 1

4 to the
length of Ti−2, . . .

So the total space and total set-up time is O(n)

Best combination of time and space from naïve solutions

Also works for multi-level search trees, for example rectangular range counting with
O(n log n) space and O(log n) query time



Summary



Summary

▶ Ranking and unranking operations; efficient dynamic implementation by
augmenting search tree with relative ranks

▶ Types of range searching problems including range counting, range reporting,
range minimum, and range sum; decomposable problems using associative binary
operation

▶ Dynamic range searching by augmenting search tree with value of its subtree and
decomposing range into a logarithmic number of subtrees and individual nodes

▶ Cell probe model of computing and lower bound on dynamic prefix sums
▶ Multi-level range search and multi-level augmented binary search trees
▶ Fractional cascading


