CS 261: Data Structures
Week 6—7: Binary search

Lecture 7b: Multi-level structures and fractional
cascading

David Eppstein
University of California, Irvine

Spring Quarter, 2024

This work is licensed under a Creative Commons Attribution 4.0 International License

Multi-level range search

Example: Rectangular range counting

Data: 2d points represented as (x, y) coordinate pairs

Query: How many points are inside a given rectangle?

°o® e
()
]
(]
()
® (]
()
Answer =5

]

]

Binary search tree on x-coordinates

= entire subtree in range

@ = single node in range

Query range

Query range: left and right x-coordinates of rectangle

Decomposes the points whose x-coordinate is in range into
» O(log n) individual points
» O(log n) larger sets of points

Multi-level structure

Binary search tree of points sorted by x-coordinates

Each node stores a 1D range search structure for intervals of y-coordinates, for points

in its subtree (e.g. a sorted array)

@814 8,14
@413 71 112 33 134 55 96 1,7 148 6,9 10,10 2,11 12,12 4,13 8,14
.12,12
@211 4,13 12,12
@10.10 71 33 55 1,7 6,9 2,11 413 11,2 13,4 9.6 14,8 10,10 12,12
@69 / \
@148 2,11 10, 10 14,8
°l7 33 1,7 211 71 55 6,9 11,2 96 1010 134 14,8
) 9,6
@55 3 3 5 5 71 96 12 13,4
@134 3 3 5 5 7 1 9,6 12 13,4
) 33
@ll2
) 7,1 . X,y
& y-sorted list

Using a multi-level structure

To count points in a query rectangle:
» Perform query on x-range of rectangle
» For each individual point (x,y) found by query:
Test whether y is in range
> For each subtree identified by query:

Use 1d structure at subtree root to count
descendants whose y coordinate is in range

» Add the results and return the total

Multi-level analysis

If x-tree is balanced = each point contributes to y-structures in O(log n) ancestors =
total space is O(nlog n)

Each rectangle query makes O(log n) calls to one-dimensional y-structures = query
time is O(log? n)

Making it dynamic

Suppose we want to insert or delete points?
» Use a dynamic binary search tree on x-coordinates

> Replace 1D sorted arrays by dynamic binary search trees on y-coordinates

We cannot rotate quickly because that would cause big changes to the 1D structures

Instead, use weight-balanced binary search tree on x-coordinates, and when we rebuild
a subtree we also rebuild the recursive structures stored in its nodes

Weight-balanced trees

Also called BB[«]-trees
Jorg Nievergelt and Ed Reingold, 1973

Each node stores a number, the size of its subtree

Constraint: left and right subtrees at each node have sizes within a factor of « of each
other = height < log; (;_,) n = O(log n)

Original update scheme: rotations, works only for small «

Simpler: rebuild unbalanced subtrees, amortized O(log n)/update
(potential function: sum of unbalance amounts at each node)

Fractional cascading

Related binary searches

In the multi-level structure for rectangular range counting, each query does O(log n)
binary searches:

» |n one-dimensional structures stored at certain tree nodes

» All searching for the same y-coordinates
(top and bottom coordinates of query rectangle)

» In a related sequence of nodes
(children of the nodes on a tree path)

Goal of fractional cascading: Speed up multiple related binary searches without paying
too big a penalty in space

A simpler multi-binary-search problem

Data: k sorted lists of numbers Sg, S1,...Sk_1
Total length: n = |So| + |S1] + - - + |Sk—1]|

No repeated values, even in different lists

Query: find the successors of a given number g in each list

(s; = successor of g in list S;)

Example

Data:
» So = 0,10, 20, 30, 40, 50, 60, 70]
» S =11,2,13,25,27,51,57]
> S, =[21,22,31,32,33,41,99]
> S3=[67,68,69]

Total length n=8+7+7+3=25

Query for g = 24 would find
50:30 51:25 52:31 53:67

Naive solutions

Do the binary searches separately

Space = O(n) for storing each S; as a sorted list

Query time = O(k log n) for k binary searches

Merge into one list

For each value x, store k-tuple of successors
for queries that return x as their smallest value

0:(0,1,21,67), 1:(10,1,21,67), 2:(10,2,21,67), 10:(10,13,21,67), 13:(20,13,21,67),
20:(20,25,21,67), 21:(30,25,21,67), ...

Binary search in merged sorted array + look up k-tuple

Space O(kn), query time O(k + log n)

Fractional cascading

Working backwards through the sequence of lists S;,
construct T;: merged structure for (S; + half the elements of T;;1)

Choosing the half of the elements that are in odd-numbered positions e.g. if
T=1,2,3,57,11,20 then 3T =2,5,11

So T; consists of:
> A sorted array of the merged items from S; + %T,-H

» A dictionary mapping each merged item x to a pair (a, b) where one of a or b is x,
and the other one is the successor of x in the other merged list

» When there is no successor in the other list, use +o00

Example

S3 =67, 68,69 T3 = S35 (nothing to merge) Half elements: 68
S, =21, 22, 31, 32, 33, 41, 99

T, = 21:(21,68), 22:(22,68), 31:(31,68), 32:(32,68), 33:(33,68), 41:(41,68), 68:(99,68),
99:(99,400)

Half the elements of Ty: 22, 32, 41, 99
S =1,2, 13, 25, 27, 51, 57

Ty = 1:(1,22), 2:(2,22), 13:(13,22), 22:(25,22), 25:(25,32), 27:(27,32), 32:(51,32),
41:(51,41), 51:(51,99), 57:(57,99), 99:(+00,99)

Half the elements of T7: 2, 22, 27, 41, 57
So = 0, 10, 20, 30, 40, 50, 60, 70

To = 0:(0,2), 2:(10,2), 10:(10,22), 20:(20,22), 22:(30,22), 27:(30,27), 30:(30,41),
40:(40,41), 41:(50,41), 50:(50,57), 57:(60,57), 60:(60,+00), 70:(70,+0c)

Searching fractionally cascaded lists

To find the successors of g:

> Binary search for successor tp in merged list Ty

> Seti=0

» Then, repeat:

» Use dictionary for T; to find the pair (a, b)

where a = s; = successor in S;
and b is successor in 1 Ti;q
Output s;
Let ¢ be the (skipped) element of T;i; just before b
If g<cthenti,; =celseti;=>b
Seti=i+1

vvyyvyy

Example (continued)

To search for the successor of g = 24:

>

vVVvVvvyVvVvVYvVvyVVYyVYYVYY

Binary search in Ty finds successor tp: 27:(30,27)
Output sy = 30, successor in Sy

Successor in T; might be either 27 or previous item, 25
Because g < 25, successor in Ty is 25:(25,32)

Output s; = 25, successor in S;

Successor in T, might be either 32 or previous item, 31
Because g < 31, successor in T is 31:(31,68)

Output s, = 31, successor in Sy

Successor in T3 might be either 68 or previous item, 67
Because g < 67, successor in T3 is 67

Output s3 = 67, successor in S3

Fractional cascading analysis

Query time

One binary search + O(1) for each list after the first
Total O(k + log n)

Space and set-up time
Each element of S; contributes 1 to the length of T;, % to the length of T;_q, % to the
length of T; 5, ...

So the total space and total set-up time is O(n)

Best combination of time and space from naive solutions

Also works for multi-level search trees, for example rectangular range counting with
O(nlog n) space and O(log n) query time

Summary

v

Summary

Ranking and unranking operations; efficient dynamic implementation by
augmenting search tree with relative ranks

Types of range searching problems including range counting, range reporting,
range minimum, and range sum; decomposable problems using associative binary
operation

Dynamic range searching by augmenting search tree with value of its subtree and
decomposing range into a logarithmic number of subtrees and individual nodes

Cell probe model of computing and lower bound on dynamic prefix sums
Multi-level range search and multi-level augmented binary search trees

Fractional cascading

