
CS 261: Data Structures

Week 6–7: Binary search

Lecture 7b: Multi-level structures and fractional
cascading

David Eppstein
University of California, Irvine

Spring Quarter, 2024

This work is licensed under a Creative Commons Attribution 4.0 International License

Multi-level range search

Example: Rectangular range counting

Data: 2d points represented as (x , y) coordinate pairs

Query: How many points are inside a given rectangle?

Answer = 5

Binary search tree on x-coordinates

Query range

= entire subtree in range

= single node in range

Query range: left and right x-coordinates of rectangle

Decomposes the points whose x-coordinate is in range into
▶ O(log n) individual points
▶ O(log n) larger sets of points

Multi-level structure

Binary search tree of points sorted by x-coordinates

Each node stores a 1D range search structure for intervals of y -coordinates, for points
in its subtree (e.g. a sorted array)

1,7

1,7
1,7

2,11

2,11

3,3

3,3
3,3

4,13

4,13

5,5 5,5

6,9
6,9

7,1

7,1

8,14 8,14
7,1 11,2 3,3 13,4 5,5 9,6 1,7 14,8 6,9 10,10 2,11 12,12 4,13 8,14

9,6

9,6

10,10

10,10

11,2

11,2

12,12
12,12

11,2 13,4 9.6 14,8 10,10 12,12

13,4
13,4

5,5 7,1 9,6 11,2 13,4

14,8 14,8
3,3 1,7 2,11 7,1 5,5 6,9 11,2 9,6 10,10 13,4 14,8

Key: x,y
y-sorted list

7,1 3,3 5,5 1,7 6,9 2,11 4,13

Using a multi-level structure

To count points in a query rectangle:
▶ Perform query on x-range of rectangle
▶ For each individual point (x , y) found by query:

Test whether y is in range
▶ For each subtree identified by query:

Use 1d structure at subtree root to count
descendants whose y coordinate is in range

▶ Add the results and return the total

Multi-level analysis

If x-tree is balanced ⇒ each point contributes to y -structures in O(log n) ancestors ⇒
total space is O(n log n)

Each rectangle query makes O(log n) calls to one-dimensional y -structures ⇒ query
time is O(log2 n)

Making it dynamic

Suppose we want to insert or delete points?
▶ Use a dynamic binary search tree on x-coordinates
▶ Replace 1D sorted arrays by dynamic binary search trees on y -coordinates

We cannot rotate quickly because that would cause big changes to the 1D structures

Instead, use weight-balanced binary search tree on x-coordinates, and when we rebuild
a subtree we also rebuild the recursive structures stored in its nodes

Weight-balanced trees

Also called BB[α]-trees
Jörg Nievergelt and Ed Reingold, 1973

Each node stores a number, the size of its subtree

Constraint: left and right subtrees at each node have sizes within a factor of α of each
other ⇒ height ≤ log1/(1−α) n = O(log n)

Original update scheme: rotations, works only for small α

Simpler: rebuild unbalanced subtrees, amortized O(log n)/update
(potential function: sum of unbalance amounts at each node)

Fractional cascading

Related binary searches

In the multi-level structure for rectangular range counting, each query does O(log n)
binary searches:
▶ In one-dimensional structures stored at certain tree nodes
▶ All searching for the same y -coordinates

(top and bottom coordinates of query rectangle)
▶ In a related sequence of nodes

(children of the nodes on a tree path)

Goal of fractional cascading: Speed up multiple related binary searches without paying
too big a penalty in space

A simpler multi-binary-search problem

Data: k sorted lists of numbers S0, S1, . . .Sk−1

Total length: n = |S0|+ |S1|+ · · ·+ |Sk−1|

No repeated values, even in different lists

Query: find the successors of a given number q in each list

(si = successor of q in list Si)

Example

Data:
▶ S0 = [0, 10, 20, 30, 40, 50, 60, 70]
▶ S1 = [1, 2, 13, 25, 27, 51, 57]
▶ S2 = [21, 22, 31, 32, 33, 41, 99]
▶ S3 = [67, 68, 69]

Total length n = 8 + 7 + 7 + 3 = 25

Query for q = 24 would find
s0 = 30 s1 = 25 s2 = 31 s3 = 67

Naïve solutions

Do the binary searches separately

Space = O(n) for storing each Si as a sorted list

Query time = O(k log n) for k binary searches

Merge into one list

For each value x , store k-tuple of successors
for queries that return x as their smallest value

0:(0,1,21,67), 1:(10,1,21,67), 2:(10,2,21,67), 10:(10,13,21,67), 13:(20,13,21,67),
20:(20,25,21,67), 21:(30,25,21,67), . . .

Binary search in merged sorted array + look up k-tuple

Space O(kn), query time O(k + log n)

Fractional cascading

Working backwards through the sequence of lists Si ,
construct Ti : merged structure for (Si + half the elements of Ti+1)

Choosing the half of the elements that are in odd-numbered positions e.g. if
T = 1, 2, 3, 5, 7, 11, 20 then 1

2T = 2, 5, 11

So Ti consists of:
▶ A sorted array of the merged items from Si +

1
2Ti+1

▶ A dictionary mapping each merged item x to a pair (a, b) where one of a or b is x ,
and the other one is the successor of x in the other merged list

▶ When there is no successor in the other list, use +∞

Example

▶ S3 = 67, 68, 69 T3 = S3 (nothing to merge) Half elements: 68
▶ S2 = 21, 22, 31, 32, 33, 41, 99
▶ T2 = 21:(21,68), 22:(22,68), 31:(31,68), 32:(32,68), 33:(33,68), 41:(41,68), 68:(99,68),

99:(99,+∞)
▶ Half the elements of T2: 22, 32, 41, 99
▶ S1 = 1, 2, 13, 25, 27, 51, 57
▶ T1 = 1:(1,22), 2:(2,22), 13:(13,22), 22:(25,22), 25:(25,32), 27:(27,32), 32:(51,32),

41:(51,41), 51:(51,99), 57:(57,99), 99:(+∞,99)
▶ Half the elements of T1: 2, 22, 27, 41, 57
▶ S0 = 0, 10, 20, 30, 40, 50, 60, 70
▶ T0 = 0:(0,2), 2:(10,2), 10:(10,22), 20:(20,22), 22:(30,22), 27:(30,27), 30:(30,41),

40:(40,41), 41:(50,41), 50:(50,57), 57:(60,57), 60:(60,+∞), 70:(70,+∞)

Searching fractionally cascaded lists

To find the successors of q:
▶ Binary search for successor t0 in merged list T0

▶ Set i = 0
▶ Then, repeat:

▶ Use dictionary for Ti to find the pair (a, b)
where a = si = successor in Si
and b is successor in 1

2Ti+1
▶ Output si
▶ Let c be the (skipped) element of Ti+1 just before b
▶ If q < c then ti+1 = c else ti+1 = b
▶ Set i = i + 1

Example (continued)

To search for the successor of q = 24:
▶ Binary search in T0 finds successor t0: 27:(30,27)
▶ Output s0 = 30, successor in S0

▶ Successor in T1 might be either 27 or previous item, 25
▶ Because q < 25, successor in T1 is 25:(25,32)
▶ Output s1 = 25, successor in S1

▶ Successor in T2 might be either 32 or previous item, 31
▶ Because q < 31, successor in T2 is 31:(31,68)
▶ Output s2 = 31, successor in S2

▶ Successor in T3 might be either 68 or previous item, 67
▶ Because q < 67, successor in T3 is 67
▶ Output s3 = 67, successor in S3

Fractional cascading analysis

Query time

One binary search + O(1) for each list after the first

Total O(k + log n)

Space and set-up time

Each element of Si contributes 1 to the length of Ti , 1
2 to the length of Ti−1, 1

4 to the
length of Ti−2, . . .

So the total space and total set-up time is O(n)

Best combination of time and space from naïve solutions

Also works for multi-level search trees, for example rectangular range counting with
O(n log n) space and O(log n) query time

Summary

Summary

▶ Ranking and unranking operations; efficient dynamic implementation by
augmenting search tree with relative ranks

▶ Types of range searching problems including range counting, range reporting,
range minimum, and range sum; decomposable problems using associative binary
operation

▶ Dynamic range searching by augmenting search tree with value of its subtree and
decomposing range into a logarithmic number of subtrees and individual nodes

▶ Cell probe model of computing and lower bound on dynamic prefix sums
▶ Multi-level range search and multi-level augmented binary search trees
▶ Fractional cascading

