
Reducing Code Size for
Heterogeneous-Connectivity-Based VLIW DSPs through

Synthesis of Instruction Set Extensions

Partha Biswas
partha@cecs.uci.edu

Nikil Dutt
dutt@cecs.uci.edu

Center for Embedded Computer Systems
School of Information and Computer Science

University of California, Irvine, CA 92697

ABSTRACT
VLIW DSP architectures exhibit heterogeneous connections
between functional units and register files for speeding up
special tasks. Such architectural characteristics can be effec-
tively exploited through the use of complex instruction set
extensions (ISEs). Although VLIWs are increasingly being
used for DSP applications to achieve very high performance,
such architectures are known to suffer from increased code
size. This paper addresses how to generate ISEs that can
result in significant code size reduction in VLIW DSPs with-
out degrading performance. Unfortunately, contemporary
techniques for instruction set synthesis fail to extract le-
gal ISEs for heterogeneous-connectivity-based architectures.
We propose a Heuristic-based algorithm to synthesize ISEs
for a generalized heterogeneous-connectivity-based VLIW
DSP architecture. We achieve an average code size reduc-
tion of 25% on the MiBench suite with no penalty in per-
formance by applying our ISE generation algorithm on the
TI TMS320C6xx, a representative VLIW DSP.

Categories and Subject Descriptors
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General Terms
Instruction Set Extensions, Instruction Set Architecture, Static
Single Assignment

Keywords
Heterogeneous-Connectivity-based DSP, Restricted Data De-
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1. INTRODUCTION
Embedded processors for Systems-on-Chip present unique

opportunities to increase performance under stringent re-
quirements of reduced code size, low power and low cost. A
digital signal processor (DSP) is a class of embedded pro-
cessors designed to perform common operations on digital
encodings of analog signals. The operations carried out are
signal processing tasks and are generally math-intensive. To
support such operations effectively, a DSP architecture typi-
cally has special-purpose datapath units and special-purpose
connections between units and register files. Such special-
purpose processors can also serve as coprocessors to the main
processors.

In order to boost performance, modern DSPs are increas-
ingly employing VLIW-style architectures that can execute
more instructions in parallel. A VLIW DSP, by virtue of
having a regular instruction set presents a compiler-friendly
processor model at the cost of larger code size. When these
processors are embedded on a chip together with instruc-
tion memory, the code size has to be limited. The problems
that VLIW architectures have with code size often confine
their application to time-critical code segments. We present
a novel algorithm to augment the instruction set of a VLIW
DSP with complex instructions that can significantly reduce
the code size. Our algorithm guarantees that the perfor-
mance realizable by the compiler is preserved.

We call the VLIW DSP architecture with functional units
having restricted accesses to register files, a Heterogeneous-
Connectivity-based DSP or simply an HCDSP. The TI
TMS320C6xx [1] processor is an example of an HCDSP that
issues 8 instructions per cycle to 8 functional units parti-
tioned into 2 clusters. Conceptually, the TMS320C6xx ar-
chitecture contains 2 register files with any functional unit
in each cluster able to access one or both register files based
on the connectivity.

There has been a large body of work on synthesizing In-
struction Set Extensions (ISEs) for special purpose DSP s.
However, in the presence of heterogeneous connectivity be-
tween the register files and the functional units, contem-
porary techniques used for synthesizing ISEs fail to exploit
and generate legal extensions to the instruction set. In this
paper, we present a Heuristic-based algorithm that synthe-
sizes new complex instructions for extending the instruction
set of HCDSPs with the goal of code size reduction. On
a representative HCDSP architecture (the TI TMS320C6xx
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[1]), we demonstrate the ability of our algorithm to achieve
significant code size reduction (up to 37%) over the base in-
struction set architecture through synthesized ISEs with no
loss in performance.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss related research work. Section 3 presents
the motivation for our work. Section 4 discusses our model
of an HCDSP architecture. Section 5 presents the latency
constraints for the architecture. In Section 6, we present a
heuristic-based algorithm to minimize the code size. Section
7 outlines our entire framework. Section 8 shows the efficacy
of our algorithm on the MiBench suite. Finally, Section 9
concludes the paper.

2. RELATED WORK
We discuss related research work in two domains: code

size reduction in VLIW DSP processors and application-
specific instruction set synthesis.

The hardware solutions ([2],[3],[4],[5],[6]) developed for
minimizing code size in VLIW processors mainly focus on
changing the instruction formats to incorporate new tem-
plates which can lead to compressed code. A typical ap-
proach stores instructions in a compressed form in both
memory and instruction cache. The instructions are ex-
panded each time they are fetched from cache. The code
size reduction thus comes at a cost of increased complexity
in the control path. The software solution ([7]) to the same
problem is integrated in a compiler which trades-off code
size for performance while scheduling code for the VLIW
processor. Our approach is complementary to these previ-
ous approaches, since we reduce code size by synthesizing
ISEs with no penalty in performance.

Several research efforts have studied instruction set syn-
thesis. One of the important steps used in automatic syn-
thesis of ISEs is Clustering of atomic instructions (i.e., in-
structions that cannot be further subdivided). This cluster-
ing step can take two flavors: clustering dependent instruc-
tions and clustering parallel instructions. In the context of
pipelined RISC processors, a complex instruction obtained
by clustering instructions connected through a dependency
chain in the data flow graph results in increased performance
by exercising forwarding paths between the execution units.
This is exemplified by a recent work [8] that generated ISEs
for a pipelined RISC processor under bitwidth constraints
and demonstrated a significant increase in performance over
the native instruction set. The other kind of clustering (that
groups independent instructions) was used in architectures
containing parallel execution units with the goal of minimiz-
ing code size in DSP processors [9] [10].

The ISEs were also used as specialized instructions in co-
processors, which are extensions to the main processor in-
struction set ([11], [9], [12] and [13]). The main goal in
these efforts was to maximize performance of the system in
the presence of coprocessor(s) supporting specialized ISEs.
Both kinds of clustering were employed in synthesizing ISEs
with a bound on the number of read/write ports in the reg-
ister file.

To the best of our knowledge, no work has yet been done
to synthesize complex instructions for HCDSP processors.
Due to its heterogeneous connectivity between the register
files and the functional units, the HCDSP presents a more
generalized model of a VLIW DSP than a simple VLIW
architecture. We define a complex instruction (that can oc-

cupy one of the VLIW slots) as a composition of base in-
structions connected with each other by a read-after-write
dependency chain. Our goals are to minimize the generated
code size as well as to minimize the number of new ISEs
generated. The second goal ensures that there is maximum
reuse of the ISEs.

3. MOTIVATION
Figure 1 shows the execution time and memory usage in a

representative benchmark for different VLIW DSPs. Out of
these DSPs, TMS320C6xx is the only one with an HCDSP
architecture and is the fastest. However, it also has the high-
est program memory bandwidth requirements. If we can
extend the instruction set of the TMS320C6xx with useful
complex instructions, the memory requirement can be de-
creased substantially to make the architecture comparable
with other VLIW DSPs in terms of memory usage, without
sacrificing performance.
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Figure 1: VLIW DSPs: (a) Execution Time on Com-
plex Block FIR (b) Memory Usage on FSM Bench-
mark

YX

A1 M1

add.A1 mul.M1 mul.M2

M2 A2

add.A2

Figure 2: An Example of HCDSP Architecture

We present in Figure 2, a typical scenario of an HCDSP ar-
chitecture. Instructions add.A1, add.A2, mul.M1 and mul.M2
can only be executed by functional units A1, A2, M1 and
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M2 respectively. The instruction add.A2 cannot read regis-
ters written by mul.M1 because M1 can only write into the
register file X and A2 can read source operands only from
the register file Y. Similarly, mul.M2 writes into registers
which cannot be read by add.A1 based on the connections
of functional units A1 and M2 to register files X and Y. The
only legal combinations allowed for a MAC instruction are:
mul.M1;add.A1 and mul.M2;add.A2.

*

+

mul.M1

add.A1

(a)

*

+

mul.M2

add.A2

(b)

*

+

mul.M1

add.A2

(c) (d)

*

+ add.A1

mul.M2

Legal Combinations Illegal Combinations

Figure 3: Possible Combinations for a MAC Instruc-
tion

Figure 3 shows the possible legal and illegal combinations
of instructions that are allowed based on the connectivity of
functional units to specific register files. Clustering instruc-
tions just on the basis of data-flow in an application results
in spurious instruction combinations: mul.M2;add.A1 and
mul.M1;add.A2. Therefore, connectivity information is an
important parameter in synthesizing valid ISEs for HCD-
SPs.

In a VLIW DSP architecture, the instructions, after dis-
patch may finish execution in varied time intervals. During
the execution of an instruction, a functional unit reads the
operands from register file(s), performs execution and writes
the result into a register file. We call the difference between
the finish time and the dispatch time of an instruction, the
execution latency of the instruction. After waiting for a
time equal to the execution latency of an instruction, the
dependent instruction can start execution.

mul.M1 pipeline

add.A1 pipeline

mul.M1 finishes

add.A1 finishes

....... E1 E2 E3 E4 E5

....... E1 E2 E3 E4 E5

....... E1 E2 E3 E4 E5

mul.M1;add.A1 finishes

pipeline
mul.M1;add.A1

(a)

(b)

Figure 4: Instruction Pipeline for (a) mul.M1 In-
struction Followed by add.A1 Instruction (b) Com-
plex Instruction mul.M1;add.A1

In TMS320C6xx, the execution latencies of multiply and
add instructions are 2 cycles and 1 cycle respectively. Ap-

plying these values to the sample architecture shown in Fig-
ure 2, we show the pipeline with a mul.M1 instruction fol-
lowed by a dependent add.A1 instruction in Figure 4(a).
The instruction add.A1 begins execution after waiting 2 cy-
cles for mul.M1 to finish execution.

Figure 4 (b) shows the pipeline for mul.M1;add.A1, a com-
plex instruction formed by combining mul.M1 and add.A1.
It is assumed here that the other instruction on which add.A1
is dependent has been scheduled before mul.M1 and there
are no resource conflicts for dispatching add.A1 along with
mul.M1.

It is important to note that the execution of mul.M1;add.A1
terminates exactly at the same point where mul.M1 fol-
lowed by add.A1 finishes. This clearly shows that using
mul.M1;add.A1 compacts two instructions into one without
affecting the performance. Therefore, we conclude here that
clustering instructions into a complex instruction in a VLIW
architecture does not affect performance.

4. ARCHITECTURAL MODEL
We propose a generalized model of the heterogeneous con-

nectivity in an HCDSP architecture (shown in Figure 5).

XXX

1 2 3

Register Files

Functional Units

F-1 F

1 2 R

Y Y Y Y Y
s1 s2 d s1 s2 d s1 s2 d s1 s2 ds1 s2 d

Figure 5: Heterogeneous Connectivity Model

The architecture has a set of R register files, X = {X1,
X2, ..., XR} and a set of F functional units, Y = {Y1, Y2, ...,
YF}, where F ≥ R. The heterogeneity is in the connection
between the register files and the functional units.

The relation between a functional unit Yi (1 ≤ i ≤ F) and
a register file Xj (1 ≤ j ≤ R) can be represented as follows:

Yi � Xj ← {P1, P2, ..., Pm} operator {Q1, Q2, ..., Qn}
where,
� implies Yi ”writes into” Xj , operator defines the operation
to be performed by the instruction, the first source operand
is a register in {P1, P2, ..., Pm} ⊂ X , the second source
operand is a register in {Q1, Q2, ..., Qn} ⊂ X , and 1 ≤
m,n ≤ R. A base instruction run in unit Yi is of the form,
mnemonic.Yi.

We define three functions that are used in deriving the
connectivity constraints:

❒ Writes(Yi): returns the register file written by Yi

based on connectivity.
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❒ WrittenBy(Xj): returns a set of functional units
that can write into the register file Xj .

❒ Binds(Yi): returns a set of operations bound to Yi.

In order to legally combine two instructions, the following
connectivity constraint must be obeyed.

An instruction i1.X can be combined with another instruc-
tion i2.Y dependent on the former through a source ’si’,
where i = 1 or 2 and X,Y ∈ Y, iff there exist paths from
output ’d’ of X to a register file and from the same register
file to input ’sj’ of Y, where j = 1 or 2. (The output port ’d’
and the input ports ’s1’ and ’s2’ are shown in Figure 5.) We
represent the resultant complex instruction as i1.X;i2.Y.

Our goal is to compact 3-operand instructions of the form
I1: x = a op1 b and I2: y = x op2 c into a 4-operand in-
struction, y = (a op1 b) op2 c, where x and y are register
operands; a, b and c can be register or immediate operands,
and op1 and op2 are operators. The operations op1 and op2
to be executed by instructions I1 and I2 respectively, are
bound to functional units Y1 and Y2 ∈ Y. For the model
presented in Figure 5, the connectivity constraint for oper-
ation in I2 is as follows:
Y2 � Writes(Y2) ← {P1, P2, ..., Pm} op2 {Q1, Q2, ..., Qn}
It follows that the legal data flow across functional units for
execution of I2 in Y2 can be expressed as:
Y2 ← Y Y1, Y Y2

where,

Y Y1 =
m�

i=1

WrittenBy(Pi)

Y Y2 =
n�

j=1

WrittenBy(Qj)

In other words, the instruction I2 executing in functional
unit Y2 can legally get the first and the second source operands
from the outputs of any of the functional units in Y Y1 and
Y Y2 respectively. Thus instruction I2 can be coupled as a
second instruction only with any instruction in Binds(Y Y1)
and Binds(Y Y2) supplying first and second sources respec-
tively for I2. This specifies the connectivity constraint for
instruction I2. Similarly, we derive the connectivity con-
straints for all the other instructions.

In this paper, we use the TMS320C6xx architecture as an
exemplar for illustrations and experiments. The TMS320C6xx
is an 8-issue HCDSP with eight functional units (L1, L2,
S1, S2, M1, M2, D1 and D2) and two register files A and B,
each having 16 32-bit registers. This architecture fits into
the HCDSP model with Y = {L1,L2,S1,S2,M1,M2,D1,D2}
and X = {A,B}.
Architectural Assists
In order to apply our ISE synthesis approach, the generic
HCDSP model defined above needs some architectural as-
sists that are discussed below.

A complex instruction of the form B1;B2 (where B1 and
B2 are base instructions) is processed through the pipeline
as follows:

1. After decoding, the instruction B1;B2 residing in a
VLIW instruction slot expands into two constituent
instructions B1 and B2 (in decode or dispatch phase).

2. In dispatch phase, dispatcher issues B1 and B2 to re-
spective functional units.

3. In execute phase, B2 starts execution after B1 has
written its result.

This ensures that a synthesized complex instruction retains
the performance achievable by the constituent base instruc-
tions (as shown in Figure 4).

The bit 0 in the TMS320C6xx instruction format (called
the p-bit) determines whether the instruction executes in
parallel with its next instruction. All instructions executing
in parallel constitute an execute packet. A compiler tar-
geting TMS320C6xx ensures that the execute packet is free
of resource conflicts. When the instruction set is extended
with complex instructions, the execute packet having one or
more complex instruction(s) results in fewer than 8 instruc-
tions per packet because each complex instruction accounts
for 2 instructions. With the aid of the p-bit, it is possible
to have any number of instructions in the packet.

Each instruction in TMS320C6xx is 32-bit wide, in which
5 format-select bits are used for selecting one of 10 avail-
able formats. Using the format-select bits, it is possible to
implement 32 different formats. Therefore, the bandwidth
is sufficient to accommodate 22 additional formats. By ac-
commodating the complex instructions in the unused format
space, the decoder does not have to be entirely redesigned.
Each operand field consumes 5 bits for accessing 32 registers
(16 registers in either of the two register files). Therefore,
with a p-bit, a 5-bit wide format-select field, and an opcode
field varying in length depending on the instruction, we can
allow only up to 4 operands in the 32-bit instruction format.
This essentially means that our algorithm should look for
opportunities to combine two instructions only, each having
at the most 3 operands.

5. LATENCY CONSTRAINTS
While the connectivity constraints help prune illegal com-

binations, latency constraints are important for preserving
the performance of the VLIW DSP architecture. Figure 6
shows a sequence of regular instructions which will be sub-
ject to the following dependency and latency considerations
for valid combinations:

y = (a op1 b) op2 d

y = a op1 b
y = y op2 d

x = a op1 b
...
y = x op2 d

...
d = ...pc-n2

pc

pc+n1

z = ...
...

.. = z ...
nop cnst

(I1)

(I2)

(I3) pc

(b) (a)

Figure 6: Instruction Sequence: (a) Candidate Pair
�I1,I2� (b) Complex Instruction Generated from
�I1,I2�
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➤ Primary Constraint: Within a basic block, an instruc-
tion, I1 at pc and another dependent instruction, I2 at
(pc + n1) can be combined to form a complex instruc-
tion if (1) I2 does not have a second source operand or
the second source is dependent on an instruction, I3
at (pc - n2), where n1,n2 > 0 and (2) I2 does not have
any resource conflict with the execute packet at pc.
The condition (1) is a dependency constraint and the
condition (2) is a resource constraint. If conditions (1)
and (2) are true, we call the instruction pair {I1,I2}, a
candidate pair. All the subsequent considerations are
latency constraints (Refer to Figure 6(a)).

➤ For two instructions, I1 and I2 to be combined, there
must be an empty slot at pc. When combination takes
place, the instruction I2 moves up to pc. If there is
any other instruction residing at (pc + n1), the latency
constraints for all other instructions are maintained by
default and this combination is allowed. Else, all the
subsequent constraints must be imposed to meet the
latency constraints and to ensure profitability:

➤ If ( latency(I3) ≤ (n2 + latency(I1)) ), only then it is
legal to combine I1 and I2 so that I2 gets the result of
I3 well in time (Figure 6(a)).

➤ Figure 6(b) shows the execution semantics of the com-
plex instruction obtained by combining instructions I1
and I2 shown in Figure 6(a). If the result x produced
by I1 is also used in an instruction at (pc + n3) such
that n3 > 0, then I1 cannot be combined with I2 be-
cause x does not exist in the complex instruction.

➤ In TMS320C6xx, a multi-cycle nop instruction, ’nop
cnst’ can replace cnst number of nop instructions and
save space for (cnst-1) instructions. When I2 moves up
to pc, it leaves behind an empty slot. If all the other
slots are empty, this might result in violation of latency
constraints for other instructions. If a multi-cycle nop
instruction is present in the vicinity (as shown in Fig-
ure 6(a)), it can be used to satisfy the latency con-
straint without consuming any extra space. Other-
wise, the combination is not profitable. (For details,
refer to [14].) If I1 can be profitably combined with I2,
’nop cnst’ can simply be converted into ’nop (cnst+1)’
without losing any code size for preserving the latency
constraints.

6. ISE SYNTHESIS ALGORITHM
We first define a Restricted Data Dependence Graph (RDDG)

as GRDDG(N,E) where each node ∈ N is an instruction and
an edge ∈ E exists between two nodes only if the pair of
nodes satisfies the latency constraints. The RDDG is ef-
fectively a restricted subset of the Data Dependence Graph
(DDG). Each data dependence edge between two instruc-
tions I1 and I2 in RDDG is potentially a complex instruction
combining I1 and I2 through one of the sources of I2. Two
data dependencies conflict when using one dependency as a
complex instruction invalidates the possibility of the other
becoming a complex instruction.

We now introduce the notion of Dependence Conflict Graph
(DCG) which is the heart of our algorithm. A DCG is a
graph GDCG(Nd,Ec) where Nd is a set of nodes representing
data dependencies and Ec is a set of edges connecting two

Algorithm 1 SynthesizeISE DCGbased()

Input: BasicBlock BB
CI ⇐ NULL
G⇐ CreateDCG(BB)
while G �= NULL do

n⇐ SelectCandidateNode(G, CI)
CI ⇐ CI

�
n

Delete n from Graph G
Delete nodes adjacent to n from Graph G

end while

nodes with conflicting dependencies. Figure 7(b) illustrates
a DCG generated from an RDDG shown in Figure 7(a).

A greedy solution to the problem would consider sequen-
tially each unmarked instruction I in a basic block and test
the possibility of legally and profitably combining I with
each instruction I1 ∈ DefUseChain(I) into a complex in-
struction. The test of legality and profitability is based
on testing the connectivity and latency constraints (as dis-
cussed in Section 4 and Section 5). If the test evaluates to
true, the greedy approach would immediately add the pair
{I,I1} to a set representing generated complex instructions
and mark the constituent base instructions. The consider-
ation of only unmarked instructions for combination allows
a valid replacement by the generated complex instruction.
The order in which the greedy algorithm examines the in-
structions is determined by the sequence of instructions in
the basic block, which may not be optimal. So, we propose
a better Heuristic-based ISE Synthesis approach which em-
ploys the DCG representation to solve the problem. Hence,
we call this approach a DCG-based approach.

Algorithm 1 (SynthesizeISE DCGbased procedure) out-
lines the DCG-based approach, which has two main objec-
tives: To maximize the reduction in code-size without af-
fecting the performance and to minimize the number of new
complex instructions generated. Finding the Maximum In-
dependent Set (MIS) for GDCG can yield the solution to
the first objective - getting maximum code size reduction
without hampering the performance. Unfortunately, MIS
is known to be NP-complete [15]. So, any heuristic em-
ployed for getting a maximal solution should pay attention
to the second objective i.e., minimizing the number of new
instructions generated. Our DCG-based algorithm, shown
as Algorithm 1 strives to meet both the objectives. The al-
gorithm uses SatisfyConnDepCons procedure to determine
if two instructions i and j can be legally combined based on
the dependency and connectivity constraints (as explained
in Section 4). It also uses SatisfyLatConstraints procedure
for evaluating the latency constraints which ensures a prof-
itable composition (as discussed in Section 5).

The algorithm, embedded in SynthesizeISE DCGbased pro-
cedure starts by creating the DCG from the DDG using Cre-
ateDCG procedure (Algorithm 2). By checking whether the
latency constraints are satisfied, this procedure effectively
generates the DCG from the RDDG. The algorithm then
calls SelectCandidateNode procedure (Algorithm 3), which
selects a candidate node representing a profitable complex
instruction to be added to a growing list called CI. The Se-
lectCandidateNode procedure selects a node in DCG with
minimum degree in order to maximize the chances of com-
bination to form complex instruction. For instance, in Fig-
ure 7(b), selecting node 2 (with degree=4) as a complex
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Algorithm 2 CreateDCG()

Input: BasicBlock BB
Returns: Graph G(N, E)

N ⇐ E ⇐ NULL
foreach I ∈ Instructions[BB] do

foreach J ∈ DefUseChain[I ] do
if SatisfyLatConstraints(I, J, dep[I, J ]) then
{{I,J} represents a complex instruction}
ciNode⇐ CreateNode(G, {I, J})
Instr1[ciNode]⇐ I
Instr2[ciNode]⇐ J
sn[ciNode]⇐WhichSource(dep[I, J ], J)
N ⇐ N

�
ciNode

end if
end for

end for
foreach n ∈ N do

I1 ⇐ Instr1[n]
I2 ⇐ Instr2[n]
foreach I ∈ UseDefChain[I1]

�
UseDefChain[I2] do

if Node[{I, I1}] ∈ N then
e⇐ CreateEdge(G,n, Node[{I, I1}])

else if Node[{I, I2}] ∈ N then
e⇐ CreateEdge(G,n, Node[{I, I2}])

end if
E ⇐ E

�
e

end for
foreach I ∈ DefUseChain[I1]

�
DefUseChain[I2] do

if Node[{I1, I}] ∈ N then
e⇐ CreateEdge(G,n, Node[{I1, I}])

else if Node[{I2, I}] ∈ N then
e⇐ CreateEdge(G,n, Node[{I2, I}])

end if
E ⇐ E

�
e

end for
end for
return G

Algorithm 3 SelectCandidateNode()

Input: Graph G, Set CI
Returns: Node n

N ⇐ Set of nodes with minimum degree
foreach n ∈ N do

if ∃n1 ∈ CI such that CmplxInstr[n1] = CmplxInstr[n]
then

Frequency[CmplxInstr[n]] + +
return n

else
if SatisfyConnDepCons(Instr1[n], Instr2[n], sn[n])
then

return n
else

return NULL
end if

end if
end for
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Figure 7: Running DCG-based Algorithm (a) Re-
stricted Data Dependence Graph (b) Dependence
Conflict Graph

instruction invalidates the possibilities of nodes 3, 4 and
5 to be considered as complex instructions, while choosing
node 1 (having degree=2) jeopardizes the consideration of
only node 2. The SelectCandidateNode also checks for the
dependency and connectivity constraints to ensure a legal
combination. When there are more than one nodes having
the minimum degree, the heuristic breaks the tie by select-
ing the node having the complex instruction that has already
been encountered before and increments its frequency. This
guarantees maximum reuse of the selected complex instruc-
tion. The selected node and all its adjacent nodes are then
deleted from the DCG. The process of selection and dele-
tion is continued till the graph becomes empty. The list
CI finally contains the nodes representing newly generated
complex instructions with frequencies of their occurrence
stored in Frequency. A possible output of the DCG-based
algorithm is presented in Figure 7(a) as bold edges. The
corresponding DCG is shown in Figure 7(b). The complex
instructions are generated in the order: 1,3,10,7.

The running time of SynthesizeISE DCGbased() is O(n2),
where n is the number of instructions. The algorithm is
integrated with other complex phases of the compiler such
as Instruction Selection and Scheduling. Therefore, the time
taken to perform synthesis of new instructions is dominated
by the time taken by the other, more complex phases.

7. METHODOLOGY
Figure 8 shows the flow of our framework. The target ar-

chitecture is specified in terms of datapath connectivity and
instruction set architecture (ISA) from which the instruction
latencies and the connectivity model are derived. An input
application is converted into an Intermediate Representa-
tion (IR) suitable for compiler optimizations. The IR is in
Static Single Assignment (SSA) [16] form so that there are
only Read-After-Write (RAW) dependencies. The instruc-
tion selection phase transforms each generic instruction into
all possible target instructions. For example, an integer mul-
tiplication operation is mapped to MPY.M which encom-
passes two target instructions MPY.M1 and MPY.M2. The
instruction scheduler schedules the target instructions to ap-
propriate functional units based on the available resources.
The scheduler ensures that the instructions in a candidate
pair (as defined in Section 5) are separated by the latency
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distance dictated by the first instruction in the pair. This
guarantees that the resource(s) used by complex instruc-
tion representing the candidate pair does not conflict with
subsequent instructions. The Gen Complex Op phase (Fig-
ure 8) takes the scheduled code as input and generates new
complex instructions, which are legal and profitable combi-
nations of the base instructions.

8. EXPERIMENTAL RESULTS
We integrated our algorithm in the EXPRESSION [17]

framework used for generating a retargetable compiler and
simulator. We extracted from the EXPRESSION model of
TI TMS320C6xx, the instruction latencies used for deriv-
ing latency constraints and the connectivity model used for
deriving the connectivity constraints. For our purpose, we
modified the retargetable compiler to explore opportunities
for compacting instructions.

We conducted our experiments on MiBench [18] bench-
marks from the University of Michigan. The results are
collectively presented in Table 1 and Figure 9. The leftmost
column in the table shows the benchmarks (BMs) in the
order of different areas in Embedded applications: Telecom-
munications, Security, Consumer, Automotive and Indus-
trial Control, Office Automation and Network applications.
The next column shows the number of base instructions in
memory (# BaseIns). The subsequent columns together
present the efficacy of using ISEs (generated by greedy or
DCG-based approach). The metrics used are the number
of instances when a complex instruction replaces two base
instructions (# Inst) and the percentage code size reduction
(% Impr). The percentage code size reduction is calculated
as follows:

%Impr = (#Inst/#BaseIns)X100

On an average, the DCG-based algorithm achieves 25%
reduction in code size, 1% more than that obtained by the
greedy algorithm. Figure 9 shows that the DCG-based algo-
rithm also results in fewer new complex instructions than the

Table 1: Experimental Results on MiBench Bench-
marks

BMs # BaseIns Greedy DCG-based
# Inst % Impr # Inst % Impr

FFT 736 179 24 181 24
crc 32 150 35 23 36 24
adpcm 417 75 17 75 17
gsm 9855 2763 28 2806 28

pgp 40886 7750 18 8107 19
rijndael 3674 1378 37 1385 37
blowfish 3015 827 27 897 29

sha 410 109 26 110 26

mad 13230 3274 24 3369 25
gif2tiff 36983 8473 22 8814 23
jpeg 32827 8602 26 8756 25

susan 7232 2065 28 2217 30
qsort 247 49 19 49 19

bitcount 612 166 27 169 27
basicmath 994 171 17 172 17

sphinx 56097 12720 22 13170 23
rsynth 6318 1378 21 1408 22

stringsearch 997 274 27 282 28

dijkstra 292 75 25 76 26

greedy algorithm. Thus, using the DCG-based algorithm,
the base instruction set needs augmentation with fewer new
instructions and at the same time the augmented instruction
set achieves more code size reduction than that obtained us-
ing the greedy algorithm.

The ISE synthesis algorithm is restricted to finding com-
plex instructions within a basic block. Therefore, the chances
of combination are higher in applications having larger ba-
sic blocks, as is demonstrated in rijndael benchmark. The
largest benchmark is sphinx having 56097 instructions from
the base instruction set. For this application, the DCG-
based algorithm synthesizes 274 new instructions, which when
used as extensions to the instruction set yields 23% reduc-
tion in code size. The total number of new instructions
synthesized for all the benchmarks was 523. Note that we
can easily incorporate the newly generated complex instruc-
tions into the existing instruction set since there is sufficient
unused encoding space for adding 22 more instruction for-
mats, each accommodating up to 32 instructions totaling
704. Some of the examples of the generated complex instruc-
tions are MPYDP.M1;ADDDP.L2, LDDW.D1;ADDSP.L1,
AND.S2;ADD.S1 etc. With an average 25% improvement
in code size as obtained by the heuristic-based algorithm,
the memory usage of TMS320C6xx (illustrated by the tall
bar for the TMS320C6xx in Figure 1(b)) becomes compara-
ble with the other VLIW DSPs (i.e., same level as the other
DSPs in Figure 1(b)).

The performance of a VLIW DSP is essentially attributed
to the Instruction Scheduler of the compiler. The oppor-
tunities to find legal combinations of instructions are af-
fected by the work done by the scheduler: If fewer VLIW
slots are utilized by the Instruction Scheduler, then there
are more opportunities for combination. This enables us to
do a trade-off between the performance achievable by op-
timally scheduled instructions and the code-size reduction
obtainable by exploiting the opportunities of using complex
instructions. A complex instruction utilizes one register less
than the number of registers used by the constituent base
instructions. Consequently, there is an overall reduction in
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Figure 9: Comparison of the number of New Com-
plex Instructions Generated

register pressure for every combination of base instructions.
Therefore, it is likely that a spilled code can be freed of
spilling just by efficiently combining instructions. As a re-
sult, the performance cannot degrade but at the best can
increase.

One might argue that adding complex instructions to a
regular instruction set of a VLIW machine can lead to in-
crease in compiler complexity. In that context, it is im-
portant to note that the same algorithm for synthesizing
complex instructions can be used to generate code for a
VLIW machine having these complex instructions. This al-
gorithm can be added as a back-end to a compiler targeting
an HCDSP architecture like TMS320C6xx having a regular
instruction set.

9. SUMMARY
We presented a Heuristic-based algorithm to synthesize

Instruction Set Extensions (ISEs) that reduce code size for
a Heterogeneous-Connectivity-based DSP (HCDSP) archi-
tecture like TMS320C6xx. By modeling the architecture
in a retargetable framework, the connectivity and latency
constraints were derived from the architecture description.
Based on these constraints and the dependency constraints
derived from the application, our framework was able to gen-
erate profitable complex instructions as extensions to the
existing instruction set. The generated ISEs were able to
achieve an average code size reduction of 25% without los-
ing any performance. In order to apply our technique to
HCDSPs, a generalized superset of a simple VLIW DSP, we
augmented the generic connectivity model of HCDSP with a
few architectural assists. We also assumed that it is possible
to implement those architectural assists obeying timing and
area constraints; future work will study this issue further
and also quantify the performance improvements attainable
using the generated ISEs.
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