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For many embedded applications, program code size is a critical design factor. One promising ap-

proach for reducing code size is to employ a “dual instruction set”, where processor architectures

support a normal (usually 32-bit) Instruction Set, and a narrow, space-efficient (usually 16-bit)

Instruction Set with a limited set of opcodes and access to a limited set of registers. This feature

however, requires compilers that can reduce code size by compiling for both Instruction Sets. Ex-

isting compiler techniques operate at the routine-level granularity and are unable to make the

trade-off between increased register pressure (resulting in more spills) and decreased code size. We

present a compilation framework for such dual instruction sets, which uses a profitability based

compiler heuristic that operates at the instruction-level granularity and is able to effectively take

advantage of both Instruction Sets. We demonstrate consistent and improved code size reduction

(on average 22%), for the MIPS 32/16 bit ISA. We also show that the code compression obtained by

this “dual instruction set” technique is heavily dependent on the application characteristics and

the narrow Instruction Set itself.
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1. INTRODUCTION

Programmable RISC processors are increasingly being used to design modern
embedded systems. Examples of such systems include cell-phones, printers,
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modems, handhelds etc. Using RISC processors in such systems offers the ad-
vantage of increased design flexibility, high computing power and low on-chip
power consumption. However, RISC processor systems suffer from the prob-
lem of poor code density which may require more ROM for storing program
code. As a large part of the IC area is devoted to the ROM, this is a severe
limitation for large volume, cost sensitive embedded systems. Consequently,
there is a lot of interest in reducing program code size in systems using RISC
processors.

Traditionally, ISAs have been fixed width (e.g., 32-bit SPARC,64-bit Alpha)
or variable width (e.g., x86). Fixed width ISAs give good performance at the cost
of code size and variable width ISAs give good performance at the cost of added
decode complexity. Neither of the above are good choices for embedded pro-
cessors where performance, code size, power, all are critical constraints. Dual
width ISAs are a good tradeoff between code size flexibility and performance,
making them a good choice for embedded processors. Processors with dual with
ISAs are capable of executing two different Instruction-Sets. One is the “nor-
mal” set, which is the original instruction set, and the other is the “reduced
bit-width” instruction set that encodes the most commonly used instructions
using fewer bits. A very good example is the ARM [Advanced RISC Machines,
Ltd. 2003] ISA with a 32-bit “normal” Instruction Set and a 16-bit Instruction
Set called “Thumb.”

Other processors with a similar feature include the MIPS 32/16 bit TinyRISC
[LSI LOGIC 2000], ST100 [ST Microelectronics 2004] and the Tangent A5 [ARC
Cores 2005]. We term this feature as the “reduced bit-width Instruction Set
Architecture” (rISA).

Processors with rISA feature dynamically translate (or decompress, or ex-
pand) the narrow rISA instructions into corresponding normal instructions.
This translation usually occurs before or during the decode stage. Typically,
each rISA instruction has an equivalent instruction in the normal instruction
set. This makes translation simple and can usually be done with minimal per-
formance penalty. As the translation engine converts rISA instructions into
normal instructions, no other hardware is needed to execute rISA instructions.
If the whole program can be expressed in terms of rISA instructions, then up
to 50% code size reduction can be achieved.

The fetch-width of the processor being the same, the processor when oper-
ating in rISA mode fetches twice as many rISA instructions (as compared to
normal instructions) in each fetch operation. Thus, while executing rISA in-
structions, the processor needs to make lesser fetch requests to the instruction
memory. This results in a decrease in power and energy consumption by the
instruction memory subsystem.

Typically, each rISA instruction has an equivalent instruction in the normal
instruction set. This makes the translation from rISA instructions to normal
instructions very simple. Research [Benini et al. 2001; Lekatsas et al. 2000]
have shown that the translation unit for a rISA design can be very small and can
be implemented in a fast, power efficient manner. Furthermore, we have shown
that significant energy savings achieved by executing rISA code [Shrivastava
and Dutt 2004].
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Thus, the main advantage of rISA lies in achieving low code size and low
energy consumption with minimal hardware alterations. However, since more
rISA instructions are required to implement the same task, rISA code has
slightly lower performance compared to the normal code.

Although the theoretical limit of code size reduction achievable by rISA is
50%, severe restrictions on the rISA IS severely limit the compiler capability
to achieve so. The rISA IS, because of bit-width restrictions, can encode only a
small subset of the normal instructions. Thus, not all normal instructions can
be converted into rISA instructions, and sometimes more than one rISA instruc-
tion may be the equivalent of one normal instruction. As a result, indiscriminate
conversion to rISA instructions may result in an increase in code size. Again,
due to bit-width restrictions rISA instructions can access only a restricted set
of registers. For example, the ARM-Thumb allows access to 8 registers out of
16 general purpose ARM registers. As a result indiscriminate conversion of
normal instructions to rISA instructions may result in register spilling, and
thus degradation in performance and increase in code size. Furthermore, sev-
eral options available in normal IS like predication and speculation may not
be available in the rISA mode. Such severe restrictions on the rISA IS make
the code-size reduction obtainable by using rISA very sensitive to the compiler
quality, the application features and the rISA Instruction Set itself.

The compiler technology to generate code for rISA architectures is still prim-
itive and does not consider all the trade-offs. To simplify the problem of code
generation for a rISA processor, compilers usually perform the conversion at
a routine-level granularity. In other words, all the instructions in a routine
have to be in one mode, normal or rISA. This simplification misses out several
significant opportunities to convert only the profitable regions of a routine.

This article makes three main contributions:

—We propose conversion to rISA instructions at a instruction-level granularity

—We present a novel compilation framework to exploit the conversion of in-
struction at instruction-level granularity, and show that our approach results
in on average 22% code compression, which is much more than the achievable
code compression by previous techniques.

—Finally, we use our retargetable code generation technique to explore several
interesting rISA designs. Our analysis reveals that the code compression
achieved by rISA is heavily dependent on the application characteristics and
the rISA design itself. It is therefore very important for application specific
processors to carefully design and tune the rISA.

The rest of the article is organized as follows: Section 2 discusses the hard-
ware and software aspects of implementing a reduced bit-width Instruction
Set Architecture. Section 3 discusses the impact of these architectural features
on the achievable code compression. Section 4 describes previous compilation
techniques to exploit rISA. Section 5 describes our compilation framework
to performs rISAization at instruction-level granularity to achieve high
compression. Section 5.2 describes the key contribution of this article, that
is, a register-pressure-based profitability heuristic to decide whether or not
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Fig. 1. Normal and rISA instructions co-exist in Memory.

to convert a sequence of normal instructions to rISA instructions. Converting
at instruction-level granularity incurs a penalty in the form of extra instruc-
tions that are needed for explicit mode change. Section 5.4 first defines and
then solves the problem of optimally inserting mode change instructions. In
Section 6, we first show the efficacy of our compilation approach, and then
perform exploration of several interesting rISA designs. We conclude with
ongoing research directions in Section 7.

2. REDUCED BIT-WIDTH INSTRUCTION SET

A rISA processor is one which supports instructions from two different Instruc-
tion Sets. One is the “normal” 32-bit wide Instruction Set, and the other is the
“narrow” 16-bit wide Instruction Set. The “narrow” instructions comprise the
reduced bit-width Instruction Set rIS. The code for a rISA processor contains
both normal and rISA instructions, but the processor dynamically converts the
rIS instructions to normal instructions, before or during the instruction decode
stage.

2.1 rISA: Software Aspects

2.1.1 Adherence to Word Boundary. The code for rISA processors contains
instructions from both the instruction sets, as shown in Figure 1(a). Many
architectures impose the restriction that all code should adhere to the word
boundary.

In order for the normal instructions to adhere to the word boundary, there
can be only even number of contiguous rISA instructions. To achieve this, a rISA
instruction that does not change the state of the processor is needed. We term
such an operation as rISA nop. The compiler can then pad odd-sized sequence
of rISA instructions with rISA nop, as shown in Figure 1(b). ARM-Thumb and
MIPS32/16 impose such architectural restrictions, while the ARC processor can
decode the instructions even if they cross the word boundary.

2.1.2 Mode Change Instructions. rISA processors operate in two modes,
the normal mode and the rISA mode. In order to change the execution mode
of a processor dynamically, there should be a mechanism in software to spec-
ify change in execution mode. For most rISA processors, this is accomplished
using explicit mode change instructions. We term an instruction in the nor-
mal instruction set that changes mode from normal to rISA the mx instruction,
and an instruction in the rISA instruction set that changes mode from rISA to
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Fig. 2. Simple translation of Thumb instruction to ARM instruction.

normal the rISA mx instruction. The code including the mode change instruc-
tions is shown in Figure 1(c).

In ARM/Thumb, ARM instructions BX or BLX switch the processor to Thumb
mode. The ARM BX instruction is a version of a ARM branch instruction, which
changes the execution mode of the processor to rISA mode. Similarly, the ARM
BLX instruction is a version of ARM BL instruction (Branch and Link), with
the additional functionality of switching the processor to rISA mode. Similar
earmarked instructions also exist in the Thumb instruction set to switch the
processor back to the normal mode of operation. The MIPS16 ISA has an in-
teresting mechanism for specifying mode changes. All routines encoded using
MIPS16 instructions begin at the half word boundary. Thus, calls (and returns)
to half word aligned addresses change the mode from normal to rISA. The ARC
Tangent A5 processor on the other hand allows native execution of the ARCom-
pact instructions. No special instruction is required to switch modes.

2.2 rISA: Hardware Aspects

Although the code for a rISA processor contains instructions from both the
Instruction Sets, the instruction fetch mechanism of the processor is oblivious
of the presence of rISA instructions. The fetched code is interpreted (decoded) as
normal or rISA instruction depending on the operational mode of the processor.
When the processor is in rISA mode, the fetched code is assumed to contain two
rISA instructions. The first one is translated into normal instruction, while the
second one is latched and kept for the next cycle of execution.

Figure 2 shows an example of translation of a Thumb-ADD instruction to
a normal ARM-ADD instruction. The translation can be realized in terms of
simple and small table look-ups. Since the conversion to normal instructions
is done during or before the instruction-decode stage, the rest of the processor
remains same. To provide support for rISA typically only decode logic of the
processor needs to be modified. The rISA instructions can be decoded by either
single-step decoding or two-step decoding.

Figure 3 shows the one-step decoding of rISA instructions. The single step
decoding of rISA instructions is just like performed at the same time as the
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Fig. 3. Single-step decoding of rISA instructions.

Fig. 4. Two-step decoding of Thumb instructions.

decoding of the normal instructions. Single-step decoding is typically simpler
because of the rISA instructions are “narrow”.

In the two-step decoding shows in Figure 4, the rISA instructions are first
translated to normal instructions. The normal instructions can then be decoded
as before. Although such implementation requires minimal logical changes to
the existing architecture, it may lengthen the cycle time. ARM7TDMI imple-
ments two step decoding approach of Thumb instructions.

3. COMPILATION ISSUES FOR RISA

Although up to 50% code compression can be achieved using rISA, owing to
severe restrictions on the number of operations, register accessibility and re-
duced functionality, it is in practice tough to consistently achieve more than
30% code size reduction. In order to alleviate such severe constraints, several
solutions have been proposed. We discuss several such architectural features
in the light of aiding code generation in rISA processors.

3.1 Granularity of rISAization

We term the compiler-process of converting normal instructions into rISA
instructions as rISAization. Existing compilers like the ARM-Thumb com-
piler (as yet) supports the conversion at a routine level granularity. Thus, all
the instructions in a routine can be in exactly one mode, the normal ARM
mode, or the Thumb mode. A routine cannot have instructions from both the
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Fig. 5. Code compression achieved by routine-level rISAization.

ISAs. Furthermore, existing Compilers rely on human analysis to determine
which routines to implement in ARM instructions, and which ones in Thumb
instructions.

Figure 5 plots the code compression achieved by MIPS32/16 compiler per-
forming indiscriminate rISAization. The compiler could achieve 38% code com-
pression on diff benchmark, that has only one routine and low register pressure.
All the instructions could be mapped to rISA instructions. However, on 1dpic,
the most important routine had high register pressure, that resulted in reg-
ister spilling and thus leading to an increase in code size. The case with adii
is similar. Some other benchmarks had routines in which the conversion re-
sulted in an increase in the code size. Thus, although routine-level granularity
of rISAization can achieve high degrees of code compression on small routines,
it is unable to achieve decent code compression on application level. In fact,
MIPS32/16 compiler could achieve only 15% code size reduction on our set of
benchmarks. This is because not many routines can be found whose conversion
results in substantial code compression. The inability to compress code is due
to two main reasons: (i) rISAization may result in an increase in code size and
(ii) rISAization of routines that have high register pressure results in register
spills and thus increase in the code.

Figure 6 explains the two major drawbacks of rISAizing at routine-level
granularity and shows that instruction-level granularity alleviates these
drawbacks.

First, a routine-level granularity approach misses out on the opportunity
to rISAize code sections inside a routine, which is deemed non profitable to
rISAize. It is possible that it is not profitable to rISAize a routine as a whole,
but some parts of it can be profitably rISAized. For example, the Function 1
and Function 3 are found to be nonprofitable to rISAize as a whole. Traditional
routine-level granularity approaches will therefore not rISAize these routines,
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Fig. 6. Routine level granularity versus instruction level granularity.

while instruction-level granularity approaches will be able to achive some code
size reduction by identifying and rISAizing only some profitable portions of the
routine.

Second, the compiler is not able to leave out some regions of code inside a
routine that may incur several register spills. It is possible that leaving out some
peices of code inside a profitable routine may increase the code compression
achieved. For example, in Figure 6, the instruction-level granularity approaches
have the choice to leave out some regions of code inside a routine to achieve
higher code compression.

Thus, consistently high degree of code compression can be achieved by rI-
SAization at instruction level granularity. However, instruction-level granular-
ity of rISAization has some overheads. Instruction-level granularity of rISAiza-
tion needs explicit mode change instructions. We define a normal instruction mx
changes the execution mode of the processor from normal to rISA, while a rISA
instruction rISA mx changes the execution mode of the processor from rISA
mode to normal mode. The mode change instructions have to be inserted in the
code at the boundaries of normal and rISA instructions. Unlike the conversion
at routine level granularity, this causes an increase in code size. But our results
show that, even with this code-size penalty, consistently higher degrees of code
compression can be achieved by rISAization at instruction-level granularity.

3.2 rISA Instruction Set

The rISA instruction set is tightly constrained by the instruction width. Typical
instruction sets have three operand instructions; two source operands and one
destination operand. Only 16 bits are available to encode the opcode field and
the three operand fields. The rISA design space is huge, and several instruction
set idiosyncrasies makes it very tough to characterize. As shown in Figure 7,
we informally define rISA wxyz as a rISA instruction set with opcode width
w-bits, and three operands widths as x-bit, y-bit, and z-bits respectively. Most
interesting rISA instruction sets are bound by rISA 7333 and rISA 4444.

The rISA 7333 format describes an instruction set in which the opcode field is
7-bit wide, and each operand is 3-bit wide. Such an instruction set would contain
128 instructions, but each instruction can access only 8 registers. Although such
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Fig. 7. rISA instruction format.

a rISA instruction set can rISAize large portions of code, but register pressure
may become too high to achieve a profitable encoding. On the other extreme
is the rISA 4444 format, which has space for only 16 instructions, but each
instruction can access up to 16 registers. For applications that do not use a wide
variety of instructions, but have high register pressure, such a rISA instruction
set is certainly a good choice.

The design space between the two extremes is huge. All realistic rISA in-
struction sets contain a mix of both type of instructions, and try to achieve
the “best of both worlds”. Designing a rISA instruction set is a essentially a
trade-off between encoding more instructions in the rISA instruction set, and
providing rISA instructions access to more registers.

The “implicit operand format” of rISA instructions is a very good example of
the trade-off the designers have to make while designing rISA. In this feature,
one (or more) of the operands in the rISA instruction is hard-coded (i.e., implied).
The implied operand could be a register operand, or a constant. In case a fre-
quently occurring format of add instruction is add Ri Ri R j (where the first two
operands are the same), a rISA instruction rISA add1 Ri R j , can be used. In
case an application that access arrays produces a lot of instructions like addr =
addr + 4, then a rISA instruction rISA add4 addr which has only one operand
might be very useful. The translation unit, while expanding the instruction,
can also fill in the missing operand fields. This is a very useful feature that
can be used by the compiler to generate good quality code. ARC Tangent A5
processor uses this feature extensively to optimize ARCompact instruction set
[ARC Cores 2005].

3.3 Limited Access to Registers

rISA instructions usually have access to only a limited set of processor regis-
ters. This results in increased register pressure in rISA code sections. A very
useful technique to increase the number of useful registers in rISA mode is to
implement a rISA move instruction that can access all registers. This is possi-
ble because a move operation has only two operands and hence has more bits
to address each operand.

3.4 Limited Width of Immediate Operands

A severe limitation of rISA instructions is the inability to incorporate large im-
mediate values. For example, with only 3 bits are available for operands, the
maximum unsigned value that can be expressed is 7. Thus, it might be useful to
vary the size of the immediate field-depending on the application and the values
that are (commonly) generated by the compiler. Increasing the size of the imme-
diate fields, however, reduces the number of bits available for opcodes (and also

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.



132 • A. Shrivastava et al.

the other operands). Several architectures implement a rISA extend instruc-
tion, which extends the immediate field in the next rISA instruction. Such an
instruction is very useful to be able to rISAize contiguous large portions of code.

4. RELATED WORK

Many leading 32-bit embedded processors also support the 16-bit (rISA) in-
struction set to address both memory and energy consumption concerns of the
embedded domain [Advanced RISC Machines, Ltd. 2003; LSI LOGIC 2000; ST
Microelectronics 2004; ARC Cores 2005].

There has been previous research effort to achieve further code compression
with the help of architectural modifications to rISA. The ARM Thumb IS was
redesigned by Kwon et al. [1999a] to compress more instructions and further
improve the efficiency of code size reduction. This new Instruction Set is called
Partitioned Register Extension (PARE), reduces the width of the destination
field and uses the saved bit(s) for the immediate addressing field. The register
file is split into (possibly overlapping) partitions, and each 16-bit instructions
can only write to a particular partition. This reduces the number of bits required
to specify the destination register. With a PARE-aware compiler, the authors
claim to have achieved a compression ratio comparable to Thumb and MIPS16.

Another direction of research in rISA architectures has been to overcome the
problem of decrease in performance of rISA code. Kwon et al. [1999b] proposed
a parallel architecture for executing rISA instructions. TOE(Two Operation
Execution) exploits Instruction Level Parallelism provided by the compiler. In
the TOE architecture all rISA instruction occur in pairs. With 1-bit specifying
the eligibility of the pair of rISA instructions to execute in parallel, the perfor-
mance of rISA can be improved. Since the parallelization is done by the compiler,
the hardware complexity remains low.

Krishnaswamy and Gupta [2003] observed that there exist Thumb instruc-
tion pairs that are equivalent to single ARM instructions throughout the 16-bit
Thumb code. They enhanced the Thumb instruction set by an AX (Augment-
ing Extensions) instructions. Compiler finds the pairs of Thumb instructions
that can be safely executed as single ARM instruction, and replace them by
AX+Thumb instruction pairs. They coalesce the AX with the immediately fol-
lowing Thumb instruction at decode time and generate an ARM instruction to
execute single instruction, thus increasing performance.

While there has been considerable research in the design of architectures/
architectural features for rISA, the compiler techniques employed to generate
code targeted for such architectures are rudimentary. Most existing compilers
either rely on user guidance or perform a simple analysis to determine which
routines of the application to code using rISA instructions. These approaches,
which operate at the routine level granularity, are unable to recognize opportu-
nities for code size optimization within routines. We propose instruction-level
granularity of rISAization and present compiler frmaework to generate opti-
mized code for such rISA architectures. Our technique, is able to aggressively
reduce code size by discovering codesize reduction opportunities inside a rou-
tine, resulting in high degrees of code compression.
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Fig. 8. Compilation steps for rISA.

5. COMPILATION FRAMEWORK FOR rISA

We implemented our rISA compiler technique in the EXPRESS retargetable
compiler. EXPRESS [Halambi et al. 2001] is an optimizing, memory-aware,
Instruction Level Parallelizing (ILP) compiler. EXPRESS uses the EXPRES-
SION ADL [Halambi et al. 1999] to retarget itself to a wide class of processor
architectures and memory systems. The inputs to EXPRESS are the applica-
tion specified in C, and the processor architecture specified in EXPRESSION.
The front-end is GCC based and performs some of conventional optimizations.
The core transformations in EXPRESS include RDLP [Novack and Nicolau
1997]—a loop pipelining technique, TiPS : Trailblazing Percolation Scheduling
[Nicolau and Novack 1993]—a speculative code motion technique, Instruction
Selection and Register Allocation. The back-end generates assembly code for
the processor ISA.

A rISA compiler not only needs the ability to selectively convert portions of
application into rISA instruction, but also heuristics to perform this conversion
only where it is profitable. Figure 8 shows the phases of the EXPRESS compiler
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with our rISAization technique. The code generation for rISA processors in
EXPRESS is therefore a multi-step process:

5.1 Mark rISA Blocks

Various restrictions on the rISA instruction set, means that several normal
instructions may not be convertible into rISA instructions. For example, an in-
struction with a large immediate value may not be rISAizable. The first step
in compilation for a rISA processor is thus marking all the instructions that
can be converted into rISA instructions. However, converting all the marked in-
structions into rISA instructions may not be profitable, because of the overhead
associated with rISAization. The next step is therefore, to decide which contigu-
ous list of marked instructions are profitable to convert to rISA instructions.
Note that a list of contiguous marked instructions can span across basic block
boundaries. To ensure correct execution, mode change instructions need to be
added, so that the execution mode of processor (normal or rISA) matches that
of the instructions it is executing. The instruction selection, however is done
within basic blocks. Contiguous list of marked instructions in a basic block is
termed rISABlock.

5.2 Profitability Heuristic for rISAization

Even though all the instructions in a rISABlock, can be rISAized, it may not
be profitable (in terms of code compression, or performance) to rISAize the rIS-
ABlock. For example, if a rISABlock is very small, then the mode change instruc-
tion overhead could outshine any code compression achievable by rISAization.
Similarly if the rISABlock is very big, the increase register pressure (and regis-
ter spilling therefore) could make rISAization the rISABlock a bad idea. Thus
an accurate estimation of code size and performance trade-off is necessary be-
fore rISAizing a rISABlock. In our technique, the impact of rISAization on code
size and performance is estimated using a profitability analysis (PA) function.
The PA function estimates the difference in code size (CS) and performance
(PF) if the block were to be implemented in rISA mode as compared to normal
mode. The compiler (or user) can then use these estimates to trade-off between
performance and code size benefits for the program. Next, we describe how the
PA function measures the estimated impact on code size and performance.

5.2.1 Code Size (CS). Figure 9 shows the portion of the PA function that
estimates the code size reduction due to rISA. Ideally, converting a block of code
to rISA instructions reduces the size of the block by half. However, the conver-
sion typically incurs an overhead that reduces the amount of compression. This
overhead is composed of three factors:

Mode Change Instructions (CS1). Before every block of rISA instructions, a
mx (Mode Change from normal to rISA) instruction is needed. This causes an
increase in code size by one full length instruction. At the end of every rISA
block, a rISA mx (Mode Change from rISA to normal) instruction is needed,
causing an increase in code size by the size of the rISA instruction. Thus, for
an architecture with normal instruction length of 4 bytes and rISA instruction
of 2 bytes, CS1 = 4 + 2 = 6 bytes.
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Fig. 9. Profitability heuristic for rISAization.

NOP (CS2). Most architectures require that normal instructions be aligned
at word boundaries. However, rISAizing a block with odd number of
instructions1 will cause the succeeding normal instruction to be misaligned.
In such cases, an extra rISA nop (No-operation instruction) needs to be added

1Including the rISA mx instruction.
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inside the rISA block. We conservatively estimate that each rISA block needs
a rISA nop instruction. CS2 = 2 bytes.

Spills/Reloads (CS3). Due to limited availability of registers, rISAizing a
block may require a large amount of spilling (either to memory or to non-rISA
registers). As this greatly impacts both code size and performance it is impor-
tant to accurately estimate the number of spills (and reloads) due to rISAiza-
tion. The PA function estimates the number of spills and reloads due to the
rISA block by calculating the average register pressure2 due to the variables
in the block.

The first step is to calculate the amount of spill code inserted if the block is
rISAized (line 20 in Figure 9). The block may contain variables that need to
be allocated to the rISA register set and variables that can be allocated to any
registers. Thus, rISA spill code is estimated as the total of spills due to rISA
variables (lines 05–13) and spills due to non-rISA variables (lines 14–19). The
constant K1 can be used to control the importance of spill code in estimation.

The function Avg Reg Press returns the average register pressure for
variables of a particular type (rISA or non-rISA) in a block. The function
Avg Live Len returns the average distance between the definition of a vari-
able in a block and its last use (i.e., its lifetime). In a block, the extra register
pressure (that causes spilling) is the difference between Avg Reg Press and the
number of available registers (lines 06, 14, 22). Each spill reduces the register
pressure by 1 for the life time of the variable. So, a block with size num instrs
requires num instrs/Avg Live Len spills to reduce the register pressure by 1.
Thus, the number of spills required to mitigate the register pressure is equal
to the extra register pressure multiplied by the number of spills required to
reduce register pressure by 1 (lines 09, 16, 24).

The next step is to estimate the total number of spills if the block is not con-
verted to rISA instructions (line 28). This is accomplished in a manner similar
to that of estimation of rISA variables.

As each spill also requires reloads to bring the variable to a register before
its use, it is necessary to also calculate the number of extra reloads due to
conversion to rISA. The PA function estimates the number of reloads as a factor
of number of spills in the rISA Block. The constant K2 can be used to control
the importance of reload code in estimation.

The total reduction in code size of the block due to rISAization (line 04) is
CS = 2×NumInstrs(rISABlock)−CS1−CS2−CS3. A CS value greater than
zero implies that converting the block to rISA instructions is profitable in terms
of code size.

5.2.2 Performance (PF). The impact of converting a block of instructions
into rISA on performance is difficult to estimate. This is especially true if the ar-
chitecture incorporates a complex instruction memory hierarchy (with caches).
Our technique makes a crude estimate of the performance impact based on
the latency of the extra instructions (due to the spills/reloads, and due to the
mode change instructions). A more accurate estimate can be made by also

2Register Pressure is defined as the number of variables live at the point in the program.
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considering the instruction caches and the placement of the blocks in program
memory.

5.3 Instruction Selection

EXPRESS uses a tree-pattern-matching-based algorithm for Instruction Selec-
tion. A tree of generic instructions is converted to a tree of target instructions.
In case a tree of generic instructions can be replaced by more than one target
instruction tree, the one with lower cost is selected. The cost of a tree depends
upon the user’s relative importance of performance and code-size. Our approach
towards compiling for rISA, looks at the rISA conversion as a natural part of
the Instruction Selection process. The Instruction Selection phase uses a prof-
itability heuristic to guide the decisions of which section of a routine to convert
to rISA instructions, and which ones to normal target instructions. All generic
instructions within profitable rISABlocks are replaced with rISA instructions
and all other instructions are replaced with normal target instructions. Re-
placing a generic instruction with a rISA instruction involves both selecting
the appropriate rISA opcode, and also restricting the operand variables to the
set of rISA registers.

5.4 Inserting Mode Change Instructions

After Instruction Selection, the program comprises of sequences of normal and
rISA instructions. A list of contiguous rISA instructions may span across ba-
sic block boundaries. To ensure correct execution, we need to make sure that
any possible execution path, whenever there is a switch in the instructions
from normal to rISA or vice-versa, there is an explicit and appropriate mode
change instruction. There should be a mx instruction when the instructions
change from normal to rISA instructions, and a rISA mx instruction when the
instructions change from rISA instructions to normal instructions.

If the mode of instructions change inside a basic block, then there is no choice
but to add the appropriate mode change instruction at the boundary. However,
when the mode changes at basic block boundary, the mode change instruction
can be added at the beginning of the successor basic block or at the end of
the predecessor basic block. The problem becomes more complex if there are
more than one successors and predecessors at the junction. In such a case, we
want to add the mode change instructions so as to minimize the performance
degradation. So we want to add them so that they will be executed the least.
We use profile information to find out the execution counts of the basic block
and then solve the optimality problem.

To further motivate the problem, consider two consecutive basic blocks, bi

and bj . Suppose bi is the successor of bj . Further suppose that the end mode
of bi and the start mode of bj , is the same, then there is no need to add a mode
change instruction. However, if there is another execution path from basic block
bk to bj , and the last instruction of bk is of a different mode, then explicit mode
change instructions need to be inserted.

There are two choices to insert the mode change instruction, we can either
insert the mode change instruction as the last instruction of bk , or as the first
instruction of bj . In the second solution, we will have to insert a mode change
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Fig. 10. Mode change instruction insertion.

instruction as the last instruction in bi too. Thus, the first solution seems to
be the winner. However, if execution frequency of bk is greater than sum of
execution frequencies of bi and bj , then first solution results in more increase
in Dynamic Code Size. In general, there can be many control flow edges coming
in bj , and going out of bk , making the problem more complex.

Along every possible execution path, whenever instructions change from nor-
mal to rISA, or otherwise, there should be an explicit mode change instruction.
The cost of inserting a mode change instruction is equal to the execution fre-
quency of the basic block. The problem is thus to insert mode change instruc-
tions with least cost.

The insertion of mode change instructions is performed in two steps. If mode
change occurs inside a basic block, corresponding mode change instructions are
inserted at the boundary of rISA Block.

After the first step, the CFG (Control Flow Graph) can be visualized as a
directed graph G = (V , E), where V represents the basic blocks, and E repre-
sent the Control Flow edges as shown in Figure 10(a). G has two distinguished

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.



Compilation Framework for Code Size Reduction Using rISAs • 139

vertices, the start vertex v0 and the end vertex vn. Three functions are thus
defined on V ,

—ExecFrequency : V → N gives the execution frequency for each vertex.

—EntryMode : V → {Normal, rISA} gives entry mode of the basic block rep-
resented by the vertex is Normal or rISA. EntryMode(Vi) is rISA if the first
instruction of the basic block is a rISA instruction. Otherwise, it is Normal.

—ExitMode : V → {Normal, rISA}. ExitMode(Vi) is rISA if the last instruction
of the basic block is a rISA instruction. Otherwise, it is Normal.

We get ExecFrequency for each basic block from the profile information. The
functions EntryMode and ExitMode are computed for each basic block.

We can switch the EntryMode, or ExitMode of a vertex by inserting a mode
change instruction at the start of the basic block, or at the end of the basic block
respectively. However, switching the EntryMode or ExitMode of the vertex vi

costs ExecFrequency(vi).
The problem of mode change instruction insertion is to find EntryMode and

ExitMode for each vertex so that, for each edge (vi, vj ) ∈ E,

ExitMode(vi) == EntryMode(vj )

such that the switching cost is minimized. The switching cost essentially rep-
resents the Dynamic Code Size.

To solve this problem, we transform our graph G. We break each vertex vi

into two vertices, vi1 and vi2 in graph G ′ as shown in Figure 10(b). Vertex vi1

represents the entry of vi, and vi2 represents the exit of vi. All the incoming
edges into vi now come to vi1, and all the outgoing edges from vi, now emanate
from vi2. Two functions are defined on vertices of G ′,

—ExecFrequency(vij ) = ExecFrequency(vi)

—Mode(vi1) = EntryMode(vi)

—Mode(vi2) = ExitMode(vi)

The new Graph G ′ = (V ′, E ′) is a forest of connected components. Our prob-
lem now reduces into finding Mode for each vertex so that all the vertices in a
connected component have the same mode.

We identify all the connected components of G ′ = {g1, g2, . . . , gk}, as de-
picted in Figure 10(c). Each connected component is a subgraph gi = (Vi, Ei),
containing a subset of vertices,

Vi ⊂ V ′, Vi = {u1, u2, . . . , ur}.
These vertices are partitioned into two (possibly empty) sets VNormal and

Vr I S A.

Vi = VNormal
⋃

Vr I S A, and VNormal
⋂

Vr I S A = φ.

Cost of converting all vertices to rISA Mode =
�i=1..|VNormal|ExecFrequency(ui).

Cost of converting all vertices to Normal Mode =
�i=1..|Vr I S A|ExecFrequency(ui).
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We pick the lower cost conversion and thus decide upon the Mode of each
vertex in G ′ and hence EntryMode and ExitMode of each vertex in G. Finally,
we insert the appropriate mode change instructions. To change the EntryMode
of a basic block from Normal to rISA, we add a mx instruction as the first
instruction of the basic block. To change the EntryMode of a basic block from
rISA to Normal, we add a rISA mx instruction as the first instruction of the
basic block. To change the ExitMode of a basic block from Normal to rISA, we
add a mx instruction as the last or second last instruction of the basic block. To
change the ExitMode of a basic block from rISA to Normal, we add a rISA mx
instruction as the last or second last instruction of the basic block.

Note that, if the last instruction of a basic block is a branch operation, and
the machine does not have a delay slot, then the mode change instruction has
to be added as the second last instruction in the basic block.

5.5 Register Allocation

The actual register allocation of variables is done during the Register Alloca-
tion phase. The EXPRESS compiler implements a modified version of Chaitin’s
solution [Briggs et al. 1994] to Register Allocation. Since code blocks that have
been converted to rISA typically have a higher register pressure (due to lim-
ited availability of registers), higher priority is given to rISA variables during
register allocation.

5.6 Insert NOPs

The final step in code generation is to insert rISA nop instruction in rISABlocks
that have odd number of rISA instructions. This is a straightforward step, and
we do not discuss it.

6. EXPERIMENTS

In this section, we first demonstrate the efficacy of our compilation scheme
over an existing rISA architecture. We show that the register-pressure-based
profitability function to decide which regions of code to rISAize performs good
consistently. We then design several interesting rISA design points, and study
the code compression obtained by using them. We show that the code compres-
sion achieved is very sensitive to the rISA design, and that a custom rISA can
be designed for a set of applications to achieve high code compression.

We perform our experiments over MIPS32/16 ISA on a set of applications
from numerical computation kernels (Livermore Loops), and DSP application
kernels, that are often executed in embedded processors.

6.1 Compiler Comparison

Our first experiment is to study the efficacy of our compilation technique. We
compare the code compressions we achieve with the code compression GCC can
achieve using the MIPS32/16 rISA. To this effect, we first compile the applica-
tions using GCC for MIPS32 ISA. We then compile the applications using GCC
for MIPS32/16 ISA. We perform both the compilations using-Os flags with the
GCC to enable all the code size optimizations. The percentage code compression
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Fig. 11. Percentage code compressions achieved by GCC and EXPRESS for MIPS32/16.

achieved by GCC for MIPS16 is computed and is represented by the light
bars in Figure 11. The MIPS32 code generated by GCC is compiled again
using the register pressure based heuristic in EXPRESS. The percentage code
compression achieved by EXPRESS is measured and plotted as dark bars in
Figure 11.

It can be clearly seen from Figure 11 that the register-pressure-based heuris-
tic performs consistently better than GCC and successfully prevents code infla-
tion. GCC achieves, on an average, 15% code size reduction, while EXPRESS
achieved an average of 22% code size reduction. We used SIMPRESS [Khare
et al. 1999], a cycle accurate simulator, to measure the performance impact due
to rISAization. We simulated the code generated by EXPRESS on a variant
of the MIPS R4000 processor that was augmented with rISA MIPS16 Instruc-
tion Set. The memory subsystem was modeled with no caches and a single-cycle
main memory. The performance of MIPS16 code is, on an average, 6% lower than
that of MIPS32 code, with the worst case being 24% lower. Thus, our technique
is able to reduce the code size using rISA with a minimal performance impact.

6.2 Sensitivity on rISA Designs

Due to highly constrained design of rISA, the code compression achieved is very
sensitive to the rISA chosen. rISA design space is huge and several instruction
set idiosyncrasies make it very tough to characterize. To show the variation
of code compression achieved with rISA, we take a designer’s approach. We
systematically design several rISA, and study the code compression achieved
by them. We start with the extreme rISA designs of rISA 7333 and rISA 4444
and gradually improve upon them.

The first rISA design point is (rISA 7333). In this rISA, the operand is rep-
resented by 7-bits, and each operand is encoded in 3-bits. Thus, there can be 27

instructions in this rISA, but each instruction can have access to only 8 regis-
ters, or be a constant that can be represented in 3-bits. However, instructions
that have 2 operands (like move) have 5-bit operands; thus, they can access 32
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Fig. 12. Percentage code compression achieved by using rISA 7333.

(= all the registers in our architecture model) registers. Owing to the unifor-
mity in the instruction format, the translation unit is very simple for this rISA
design.

Figure 12 shows that the rISA 7333 design on an average achieves 12%
code compression. EXPRESS is unable to achieve good code compressions for
applications that have high register pressure, for example, adii, and those with
large immediate values. In such cases, the compiler heuristic decides not to
rISAize large portions of the application to avoid code size increase due to extra
spill/reload and immediate extend instructions.

The first limitation of rISA 7333 is overcome in the second rISA design, that
is, rISA 4444, which takes us to the other limit. In this rISA, the opcode as
well as each operand is encoded in 4-bits. Although only 16 instructions are
allowed in such a rISA design, it allows each operand to access 16 registers.
We profiled the applications and incorporated the 16 most frequently occurring
instructions in this rISA.

Figure 13 shows that the register pressure problem is mitigated in the
rISA 4444 design. It achieves better code-size reduction for benchmarks that
have high register pressure, but performs badly on some of the benchmarks
because of its inability to convert all the normal instructions into rISA instruc-
tions. rISA 4444 achieves about 22% improvement over normal instruction set.

We now attack the second problem faced in rISA 7333 (small immediate
values). For instructions that have immediate values, we decrease the size of
opcode, and use the bits to accommodate as large an immediate value as possi-
ble. This design point is called rISA 7333 imm. Because of the nonuniformity
in the size of the opcode field, the translation logic is complex for such a rISA
design.

As Figure 14 shows, the rISA 7333 imm design achieves slightly better code
compressions as compared to the first design point since it has large immediate
fields, while having access to the same set of registers. rISA 7333 imm achieves
about 14% improvement over normal instruction set.
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Fig. 13. Percentage code compression achieved by using rISA 4444.

Fig. 14. Percentage code compression achieved by using rISA 7333 imm.

Another optimization that can be performed to save precious bit-space is
to encode instructions with same operands with different opcode. Since fewer
operands are required to express such an instruction, it requires fewer instruc-
tion bits, which can be used in two ways: first is the direct way by providing
increased register file access to the remaining operands, and second (a more
indirect way) is that this instruction can afford a longer opcode, another in-
struction which has tighter constraints on the opcode field (e.g., an instruction
with immediate operands) can switch opcode with this instruction. We apply
the implied operands feature in rISA 7333 and obtain our forth rISA design
that is, rISA 7333 imp opnd. This rISA design matches the MIPS16 rISA.

Figure 15 plots the code compression achieved by rISA 7333 imp opnd. The
graphs show that the rISA 7333 imp opnd on average achieves about the same
code size improvement as the rISA 4444 design. Note that the performance
benefits of using implicit operands is substantial for some applications such as
state and dpred. rISA 7333 imp opnd achieves about 22% improvement over
normal instruction set.
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Fig. 15. Percentage code compression achieved by using rISA 7333 imp opnd.

Fig. 16. Percentage code compression achieved by using rISA hybrid.

The fifth rISA design point that is, rISA hybrid, is a custom ISA for each
benchmark. All the previous techniques are used to define a custom rISA, for
each benchmark. In this rISA, design instructions can have variable register
accessibility. Complex instructions with operands having different register set
accessibility are also supported. The register set accessible by operands varies
from 4 to 32 registers. We profiled the applications and manually (heuristically)
determine the combinations of operand bit-width sizes that provide best-code
size reduction. The immediate field is also customized to gain best-code size
reduction.

Figure 16 plots the code compression achieved by rISA hybrid. Because
it is customized for the application set, the rISA hybrid achieves the best-
code size reduction. rISA Hybrid achieves about 26% overall improvement
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Fig. 17. Code size reduction for various rISA architectures.

over normal instruction set. The code compression is consistent across all
benchmarks.

Figure 17 shows the average (over benchmarks) reduction in code compres-
sion achieved in various rISA designs. It can be deduced from the experimental
results presented that the code compression achieved is very sensitive to the
application characteristics and the rISA itself. Choosing the correct rISA for
the applications can result in up to 14% more code compression (26%–12%).
Thus, it is very important to design and tune the rISA to the applications.

We have shown that the register pressure heuristic consistently achieves
high code compressions (up to 22%). We also observe that the code compression
obtained is very sensitive on the application and the rISA itself. Therefore, there
is a need to explore the rISA design space effectively and that high degrees of
code compression can be achieved by tuning the rISA for specific applications.

7. SUMMARY AND FUTURE WORK

rISA (or reduced bit-width Instruction Set Architecture) refers to architectures
that support execution of instructions of two different widths. rISA is a popular
architectural feature in modern processors not only to decrease code size, but
also to reduce power consumption. However, the code-generation techniques
exploiting the rISA architectural feature still remain rudimentary. A critical
problem in generating code for rISA is deciding upon which parts of code to
convert into rISA instructions. Existing techniques perform this conversion at
routine-level granularity, and therefore are not able to achieve high code com-
pressions. In this article, we propose instruction-level granularity of conversion
and demonstate consistently high degrees of code compression. Furthermore,
indiscriminate conversion into rISA instructions can cause an increase in the
code size due to spilling caused by increase in register pressure. Traditional
approaches did not take this factor into account. In this article, we proposed
a register-pressure-based proftiability heuristic to avoid the regions of code,
whose conversion leads to an increase in the code size due to register spilling.
Compared to previous code-generation techniques, our compilation consistently
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obtains high degrees of code compression. In addition, we use our compilation
technique to explore several rISA designs. We observe that code compression
achieved by a rISA is dependent not only on the application characteristics,
but also on the rISA design itself. Our results imply that it is very important
for application specific processors to tune the rISA design. However, the rISA
design space is huge and full exploration cannot be performed. Our future work
will include developing intelligent heuristics to effectively explore rISA design
space and develop strategies to tune rISA design to application characteristics.
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