INCREMENTAL SINGULAR VALUE DECOMPOSITION ALGORITHMS FOR HIGHLY SCALABLE RECOMMENDER SYSTEMS (SARWAR ET AL)

Presented by Sameer Saproo

RECOMMENDER SYSTEMS

• Apply Knowledge Discovery in Databases (KDD) to make personalized product recommendations during live customer interaction

• Offline Vs Online

• Not Google!

CF-BASED RECOMMENDER SYSTEMS

• Suggest new products or suggest utility of a certain product for a particular customer, based on customer's previous liking and the opinions of other like-minded customers

	Matrix	Pi	AI
Alice	5	3	Х
Bob	X	3	5
Carol	5	X	X

CHALLENGES

Quality of Recommendation (Q)Scalability of CF Algorithms (S)

$$Q \propto \frac{1}{S}$$

- SVD based Latent Semantic Indexing presents an approach to CF based recommendations, but stumbles in Scalability
- The paper produces an algorithm for improving scalability for SVD based CF by sacrificing accuracy a little.

IN NUTSHELL

o <u>Problem</u>

• The matrix factorization step in SVD is computationally very expensive

• <u>Solution</u>

• Have a small pre-computed SVD model, and build upon this model incrementally using inexpensive techniques

SINGULAR VALUE DECOMPOSITION

• Matrix factorization technique for producing lowrank approximations

$$SVD(A) = U \times S \times V^T$$

LOW RANK APPROXIMATION (USV^{T})

- U and V are orthogonal matrices and S is a diagonal matrix
- S has r non-zero entries for a rank r matrix A.
- \bullet Diagonal Entries (S $_1,$ S $_2,$ S $_3,$ S $_4,\ldots,$ S $_r) have the property that <math display="inline">S_1 \geq S_2 \geq S_3 \geq S \geq \ldots \geq S_r$
- SVD provides best *low-rank* linear approximation of the original matrix A i.e. if $A_k = U_k . S_k . V_k^T$ is a rank - k matrix whi ch is the closest approximat ion of A. More Specifical ly, A_k minimizes the Frobenius Norm $||A - A_k||_F$, where a Frobenius

Norm
$$\|A\|_F$$
 is defined as $\sqrt[2]{\sum_{ij}} |a_{ij}|^2$

- A low-rank approximation of the original space is better than the original space as small singular values which introduce noise in customer-product matrix are filtered out.
- SVD produces uncorrelated eigenvectors, and each customer/product is represented by its own eigenvector.
- This dimensionality reduction helps customers with similar taste to be mapped into space represented by same eigenvectors.

PREDICTION GENERATION

• Formally,

$$P_{i,j} = \overline{r_i} + \left(U_k \cdot \sqrt{S_k}^T(i) \right) \cdot \left(\sqrt{S_k}^T \cdot V_k(j) \right)$$

where,

 $P_{i,j}$ is the prediction for ith customer and jth product.

 \bar{r}_i is the row average.

We calculate the cosine similariti es between between m pseudo customers $U_k \cdot \sqrt{S_k}^T$ and n pseudo - products $\sqrt{S_k}^T \cdot V_k$

CHALLENGES OF DIMENTIONALITY REDUCTION

• Offline Step

- Also known as Model Building
- User-user similarity computation and neighborhood formation i.e. SVD decomposition
- Time consuming and infrequent
- O(m³) for m x n matrix A

o Online Step

- Also known as Execution step
- Actual prediction generation
- O(1)

INCREMENTAL SVD ALGORITHMS

- Borrowed from the LSI world to handle dynamic databases
- Projection of additional users provides good approximation to the complete model
- Authors build a suitably sized model first and then use projections to incrementally build on that
- Errors induced as the space is not orthogonal

FOLDING-IN

As depicted in the paper

New user vecto r N_u be t × 1 $P = U_k \times U_k \times N_u$ Append k - dimensiona 1 vector $U_k^T \cdot N_u$ as a new column of the k × d matrix $S_k \cdot V_k^T$

Found in Reference [1]

t is 1×n user vecto r its projection on the span of current product ve ctors (columns of V_k) $\hat{t} = tV_k \Sigma_k^{-1}$ Appended to columns of U_k

EXPERIMENTAL EVALUATION

- Dataset : <u>www.movielens.umn.edu</u>
- About 100,000 ratings
- User Movie matrix : 943 users and 1682 movies
- Training Test ratio : 80%
- Evaluation Metric
 - Mean Absolute Error (MAE) = $\frac{\sum_{i=1}^{N} |p_i q_i|}{N}$
 - $< p_i q_i >$ is a ratings prediction pair

MODEL SIZE

Optimal reduced Rank k=14 was found empirically

(943 – Model size) is projected using folding-in

RESULTS

Quality

Performance

For Model size of 600, quality loss was 1.22% whereas performance increase was 81.63%

ERRIE ELODIES hats all Folk A WARNER BROS. CARTOO DUBBED VERSION C 1995 TURNER ENTERTAINMENT CO. MUSIC 1995 WARNER BROS. 0 1995 WARNER BROS ALL LOGOS AND CHARACTERS ARE TRADEMARKS OF WARNER BROS.