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Abstract. The standard approach to answering an identifiable causal-
effect query (e.g., P (Y |do(X)) when given a causal diagram and
observational data is to first generate an estimand, or probabilistic
expression over the observable variables, which is then evaluated
using the observational data. In this paper, we propose an alternative
paradigm for answering causal-effect queries over discrete observable
variables. We propose to instead learn the causal Bayesian network
and its confounding latent variables directly from the observational
data. Then, efficient probabilistic graphical model (PGM) algorithms
can be applied to the learned model to answer queries. Perhaps sur-
prisingly, we show that this model completion learning approach can
be more effective than estimand approaches, particularly for larger
models in which the estimand expressions become computationally
difficult. We illustrate our method’s potential using a benchmark
collection of Bayesian networks and synthetically generated causal
models.1

1 Introduction2

Structural Causal Models (SCMs) are a formal framework for rea-3

soning about causal knowledge in the presence of uncertainty [23].4

When the full SCM is available, it is possible to use standard proba-5

bilistic inference [6, 8] to directly answer causal queries that evaluate6

how forcing some variable’s assignment X = x affects another vari-7

able Y , written as P (Y |do(X = x)). However, in practice the full8

causal model is rarely available; instead, only a causal diagram – a9

directed graph capturing the causal relationships of the underlying10

SCM – is assumed to be known. Causal diagrams typically include11

both observable variables, which can be measured from data, and12

latent variables, which are unobservable and for which data can-13

not be collected. A linchpin of causal reasoning is that many causal14

queries can be uniquely answered using only the observable variables15

[28, 24, 25, 11] and consequently estimated using observational data.16

The main approach developed in the past two decades for answering17

causal queries under such assumptions is a two-step process which18

we call estimand-based causal inference. The first step is to determine19

if the causal query is identifiable – i.e., uniquely answerable from the20

model’s observational distribution – and if so, construct an expression21

(“estimand”) that captures the answer symbolically using probabilities22

over only observed variables. Then, one can use the observed data to23

estimate the probabilities involved in the estimand expression. Over24

the past few years a variety of estimand-based strategies have been25

developed using different statistical estimation methods [14, 3].26

However, many of these approaches focus on specific, small, causal27

models, and do not examine the scalability of their approaches or28

provide significant empirical comparisons. In larger models, estimand 29

expressions can become large and unwieldy, making them either 30

computationally difficult, hard to estimate accurately, or both. 31

In this paper, we propose a straightforward yet under-explored al- 32

ternative: to learn the causal model, including latent dependencies, 33

directly from the observed data. Although the domains and distribu- 34

tional forms of these latent variables are unknown, recent work [34] 35

has shown that, if the visible variables are discrete, any SCM is equiva- 36

lent to one with discrete latent variables, and gives an upper bound on 37

their domain sizes. This allows us to apply well-known techniques for 38

learning latent variable models, such as the Expectation-Maximization 39

(EM) algorithm, to build a Causal Bayesian Network (CBN) over the 40

observed and latent variables. We can further apply model selection 41

techniques such as the Bayesian Information Criterion (BIC, [16]) to 42

select appropriate domain sizes. Then, given our learned model, we 43

can use efficient algorithms for reasoning in probabilistic graphical 44

models (PGMs) to answer one, or even many causal queries [6, 16]. 45

Perhaps surprisingly, we show that this approach is often signifi- 46

cantly more effective than the estimand-based methodology. Further- 47

more, we provide structural conditions that help decide when each 48

approach is likely to be more effective. The computational benefit 49

of our approach is tied to the complexity of the causal graph: if the 50

causal graph has low treewidth, then exact PGM algorithms (e.g., 51

bucket elimination or join-tree scheme) are efficiently applicable. As 52

an added benefit if there are multiple causal queries to perform on the 53

same model, since the model is learned only once, the learning time 54

can be amortized over all such queries. 55

Our empirical evaluation incorporates a spectrum of models, in- 56

cluding not only the small models common in causal effect literature, 57

but also large models based on benchmark Bayesian networks and 58

scalable classes of synthetic models; to the best of our knowledge this 59

is the first such extensive empirical evaluation of causal effect queries. 60

Contributions. This paper presents a new path for answering causal 61

effects queries by learning a Causal Bayesian Network that is consis- 62

tent with a causal graph and observational data. 63

• We propose to answer causal queries by directly learning the full 64

causal Bayesian network via EM, followed by query processing 65

using traditional PGM algorithms. 66

• We provide a first of its kind, empirical evaluation of algorithms 67

for causal effect queries on varied and large synthetic and real 68

benchmarks. 69

• We show empirically that our proposed learning approach gives 70

more accurate estimates than the estimand-based alternatives. 71
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(a) Causal diagram of a chain model with 7 observable and 3 latent variables.
Dashed bidirected edges represent latent variables.
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(b) The CBN for the model (a), showing latent variables explicitly.
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(c) The truncated causal diagram after intervention do(V0).
Figure 1: Illustration of a causal diagram, CBN, and truncated CBN for
evaluating a causal effect.

In settings with high-dimensional estimand expressions but low72

treewidth causal models, our approach allows more accurate estimates73

by retaining more information from the causal graph, and allowing74

variance reduction without impacting computational tractability.75

The rest of the paper is organized as follows. Section 2 provides76

background on related work and information and definitions, Section77

3 outlines the main idea of our approach, Section 4 provides empirical78

evaluation, and we conclude in Section 5.79

2 Background80

We first provide some definitions and technical background. We use81

capital letters X to represent variables, and lower case x for their82

values. Bold uppercase X denotes a collection of variables, with |X|83

its cardinality and D(X) their joint domain, while x indicates an84

assignment in that joint domain. We denote by P (X) the joint proba-85

bility distribution over X and P (X = x) the probability of X taking86

configuration x under this distribution, which we abbreviate P (x).87

Similarly, P (Y |X) represents the set of conditional distributions88

P (Y |X = x), ∀x.89

Definition 1 (Structural Causal Model). A structural causal model90

(SCM) [23] is a 4-tupleM = ⟨U ,V ,F , P (U)⟩ where: (1) U =91

{U1, U2, ..., Uk} is a set of exogenous latent variables whose values92

are affected by factors outside the model; (2) V = {V1, V2, ..., Vn} is93

a set of endogenous, observable variables of interest whose values are94

determined by other variables in the model; (3) F = {fi : Vi ∈ V }95

is a set of functions fi such that each fi determines the value vi of96

Vi as a function of Vi’s causal parents PAi ⊆ U ∪ (V \ Vi) so97

that fi : D(PAi) → D(Vi) and vi ← fi(pai); and (4) P (U) is a98

probability distribution over the latent variables. The latent variables99

are assumed to be mutually independent, i.e., P (U) =
∏

U∈U P (U).100

Causal diagrams. An SCMM induces a causal diagram which is101

a directed graph G = ⟨V∪U , E⟩, where each node in the graph maps102

to a variable in the SCM, and there is an arc from every observed or103

latent node X in the graph to Vi iff X ∈ PAi. An SCM whose latent104

variables connect to at most a single observable variable is referred105

to as Markovian, and one whose latent variables connect to at most106

two observable variables is called Semi-Markovian. It is known that107

any SCM can be transformed into an equivalent Semi-Markovian one108

such that answers to causal queries are preserved [27]. In the semi-109

Markovian case it is common to use a simplified causal diagram called110

an Acyclic Directed Mixed Graph (ADMG), which omits any latent111

variables with a single child, and replaces any latent variable with two112

children with a bidirectional dashed arc between the children, so that 113

latent variables are no longer explicitly shown (see, e.g., Figure 1). 114

The SCMM also induces a Causal Bayesian Network (CBN)
B = ⟨G,P⟩ specified by M’s causal diagram G = ⟨V ∪ U , E⟩
along with its associated conditional probability distributions P =
{P (Vi|PAi), P (Uj)}. The distribution P (V ,U) factors according
to the causal diagram:

P (V ,U) =
∏

Vi∈V

P (Vi|PAi) ·
∏

Uj∈U

P (Uj). (1)

The observational distribution, P (V ), is given by

P (V ) =
∑
u

P (V ,U = u). (2)

Causal effect and the truncation formula. An external interven-
tion, forcing variables X to take on value x, is modeled by replacing
the mechanism for each X ∈ X with the function X = x. This
is formally represented by the do-operator do(X = x). Thus the
interventional distribution of an SCMM by applying do(X) is,

P (V \X,U | do(X = x)) =
∏

Vj /∈X

P (Vj |PAj)·P (U)

∣∣∣∣
X=x

(3)

i.e., it is obtained from Eq. (1) by truncating the factors corresponding 115

to the variables in X and setting X = x. The effect of do(X) on a 116

variable Y , denoted P (Y |do(X)), is defined by marginalizing all the 117

variables other than Y . 118

Causal queries. While we normally have no access to the full struc- 119

tural causal modelM and cannot evaluate these expressions directly, 120

it is sometimes possible to evaluate the effect of an intervention given 121

only the observational distribution P (V ), specifically, if the answer is 122

unique for any full model that is consistent with the graph and P (V ) 123

[23]. More formally: 124

Definition 2 (Identifiability). Given a causal diagram G, the causal 125

effect query P (Y | do(X)) is identifiable if any two SCMs consistent 126

with G that agree on the observational distribution P (V ) also agree 127

on P (Y | do(X)). 128

Identifiability makes the causal-effect query well-posed: 129

Definition 3 (Causal-effect query). Given a causal diagram G = 130

⟨V ∪U , E⟩, data samples from an observational distribution P (V ), 131

and an identifiable query P (Y | do(X)), the task is to compute the 132

value of P (Y | do(X = x)). 133

Estimand-based approaches. The now-standard methodology for 134

answering causal-effect queries is to break the task into two steps. 135

The first is the identifiability step: given a causal diagram and a 136

query P (Y | do(X)), determine if the query is identifiable and 137

if so, generate an estimand, or algebraic expression in terms of the 138

observational distribution P (V ) that answers the query. A complete 139

polynomial algorithm called ID has been developed for this task [27, 140

24]. The second step is estimation: use samples from the observational 141

distribution P (V ) to estimate the value of the estimand expression. 142

A number of approaches have been applied to the estimation in the 143

second step. A simple approach, called the plug-in estimator, replaces 144

each term in the estimand with its empirical probability value in the 145

observed data. More sophisticated approaches include the line of work 146

by Jung et al., which apply ideas from data weighting and empirical 147

risk minimization [12, 13] and double or debiased machine learning 148



[14, 15]. Evaluating the estimand’s value from a PAC perspective is149

analyzed in [4].150

In practice, the estimand expression typically consists of multiple151

products or ratios of partially marginalized distributions. We illustrate152

with an example:153

Example 1. Consider the model in Figure 1a. To evaluate the query
P (V6 | do(V0)), the ID algorithm [27, 24] gives the expression:

P (V6 | do(V0)) =
∑

V1,V2,V3,V4,V5

P (V5|V0, V1, V2, V3, V4)

× P (V3|V0, V1, V2)P (V1|V0)
∑
v0

P (V6|v0, V1, V2, V3, V4, V5)

× P (V4|v0, V1, V2, V3)P (V2|v0, V1)P (v0). (4)

Unfortunately, in large models the expression elements quickly154

become unwieldy; Example 1 involves estimating conditional distri-155

bution terms over the entire joint configuration space of the model. In156

terms of scalability, this presents several practical problems as model157

sizes increase. The required distributions have exponentially many158

configurations, suggesting they may require a significant amount159

of data to estimate accurately. Moreover, the required marginaliza-160

tions are also over high-dimensional spaces, potentially also making161

them computationally intractable. These issues make it difficult to162

apply statistically sophisticated or machine learning-based estimators163

[12, 13, 14, 15] in such settings.164

On the other hand, we can often maintain tractability by using the165

simple plug-in estimator, in which each term is estimated only on the166

configurations seen in the observed data. This reduces computation,167

since each term is non-zero on only a subset of configurations, and168

summations can also be performed over only the non-zero configura-169

tions. However, this approach also limits the quality of our estimates –170

our plug-in estimates may have high variance, especially in settings171

with very large probability tables, and it is difficult to apply regular-172

ization or other variance-reduction techniques without destroying the173

sparsity property that makes it computationally feasible.174

These issues motivate us to explore the effectiveness of a model175

completion approach, in which we directly learn the Causal Bayesan176

Network model, including its latent variables, and then use the result-177

ing learned model to evaluate the query. A common technique for178

learning latent variable models is the EM algorithm:179

Expectation Maximization (EM). EM is a well-studied scheme to180

learn Bayesian network parameters when the graph itself is known but181

there are some latent variables, for which data are missing [9, 16]. EM182

is an iterative maximum likelihood approach that alternates between183

an Expectation, or E-Step, and a Maximization, or M-Step; see [19]184

for details. The E-step entails inference in the Bayesian network,185

which can be computationally hard in general; but when the graph186

has bounded treewidth1, the E-step can be performed using join tree187

or bucket elimination algorithms [19, 8]. Otherwise, approximate188

algorithms such as belief propagation can be used [22, 20]. While189

EM has also been applied to structure learning [10], in our setting the190

structure is assumed known via the provided causal diagram.191

Other related work. Motivated by similar model completion ideas,192

[7, 5] first convert the causal diagram to a circuit, exploiting the193

functional form of SCM mechanisms to yield compact circuits, then194

learn the circuit parameters via EM, and answer the causal queries.195

However, their work is restricted to binary-valued variables and, to the196

1 The treewidth is a graph parameter characterizing its sparseness; exact
inference is exponential in the treewidth [8].

best of our knowledge, no empirical evaluation is provided. Another 197

related line of work explores neural network approaches for causal 198

inference [30, 31]. In that work, the authors focus on counterfactual 199

queries and propose learning a Neural Causal Model (NCM) whose 200

functions are neural networks, a task which requires learning the 201

mechanisms of the underlying SCM, which is significantly more 202

challenging and unnecessary for our task of answering causal-effect 203

queries. Moreover, while the authors provide a theoretical analysis, 204

the empirical validation is only performed over very small, synthetic 205

networks. EM has also been applied to causality in [26, 33]; in the 206

latter, the authors assume knowledge of the functional mechanisms in 207

the SCM, with only the distributions of the discrete latent variables 208

unknown. In contrast, our method assumes knowledge of the graph 209

only. 210

3 Learning-Based Causal Inference 211

The approach we propose for the causal-effect task is to first learn 212

a full CBN B = ⟨G,P⟩ given the causal diagram G = ⟨V ∪U , E⟩ 213

and samples from the observational distribution P (V ). Then, we can 214

answer causal-effect queries based on the truncated formula Eq. (3) 215

using probabilistic inference over the learned CBN. However, there 216

could be many parameterizations P that are consistent with the same 217

observational distribution P (V ). Luckily, the identifiability property 218

ensures that the problem remains well-posed: as long as the query is 219

identifiable, any of these alternative parameterizations P will generate 220

the same answer: 221

Proposition 1. Assume a given SCMM = ⟨U ,V ,F , P (U)⟩ hav- 222

ing causal diagram G and observational distribution P (V ). Any CBN 223

B = (G,P) inducing the same observational distribution P (V ) via 224

Eq. (2) will agree with M on any identifiable causal-effect query 225

P (Y | do(X = x)). 226

We note that if the query P (Y | do(X = x)) is not identifiable, 227

then CBNs B = (G,P) with different parameters P inducing the 228

same observational distribution P (V ) may generate different answers 229

to the query. 230

Consequently, our problem reduces to the well-studied task of 231

estimating the parameters of a Bayesian network that includes latent 232

variables from observational data, given the network structure. A 233

widely used algorithm for this purpose is Expectation-Maximization 234

(EM), which aims to maximize the likelihood of the data. To apply 235

EM, however, we also require knowledge of the latent variables’ 236

distributional forms. 237

Usefully, in the case of discrete visible variables V , prior work has 238

shown that any SCM can be transformed into an equivalent SCM in 239

which the latent variables U take on discrete, finite domains [34], and 240

provides an upper bound on the required latent domain sizes. This 241

allows us to assume, without loss of generality, a discrete distribution 242

for the Uj . 243

However, the upper bound in [34] is conservative and often very
large. Moreover, such large domain sizes are sufficient but may not
be required for a given SCM. In practice, we use the discrete latent
domain sizes as a complexity control mechanism, to impose an ad-
ditional degree of regularity on the probability distribution over the
visible variables. In order to select the appropriate amount of regular-
ization, we take the domain sizes, k = {kUi}, as hyperparameters and
select their values by minimizing the model’s BIC score, which pe-
nalizes models with larger domain sizes for their increased flexibility
and potential to overfit [6]:

BICB,D = −2 · LLB,D + p · log(|D|) (5)



Algorithm 1: EM4CI
input : A causal diagram G = ⟨U∪V , E⟩, U latent and V

observables; D samples from P (V );
Query Q = P (Y | do(X = x)).

output :Estimated P (Y | do(X = x))

// k= latent domain size, BICB = BIC score of B, D,
// LLB is the log-likelihood of B, D

1. Initialize: BICB ←∞,
2. If ¬ identifiable(G, Q), terminate.
3. for k = 2, ..., to upper bound, do
4. (B′, LLB′)← max

LL
{EM(G,D, k)|for i = 1 to 10}

5. Calculate BICB′ from LLB′

6. if BICB′ ≤ BICB,
7. B ← B′, BICB ← BICB′

8. else, break.
9. endfor
10: BX=x← generate truncated CBN from B.
11: return ← evaluate PBX=x(Y )

where D are the data samples from P (V ), LLB,D is the log likeli-244

hood of the CBN model B learned via EM, and p is the number of245

free probability parameters θ in B.246

To optimize our CBN over both the domain sizes k and probability247

parameters θ, we propose a practical algorithm that searches greedily248

in the space of k while optimizing θ by EM. Larger domain sizes249

can facilitate the learning of complex models, but require more sam-250

ples and more time for convergence. For this reason, we prioritize251

searching the model space starting from smaller domain sizes. At the252

same time, having domain sizes slightly too large is unlikely to hurt253

performance significantly, so we adopt a simple strategy of keeping254

the latent domain sizes equal, i.e., set all kUi = k, and gradually255

increase the value k.256

Our learning strategy thus benefits from two sources of variance257

reduction compared to the simple plug-in estimates: first, from the258

graph structure itself, which imposes some regularity on P (V ), and259

second, from preferring smaller latent domain sizes k when possible,260

which encourages learning lower-rank distributions when supported261

by the data.262

Once a full CBN B = ⟨G,P⟩ is learned, any causal query263

P (Y | do(X = x)) can be answered based on Eq. (3). Let GX264

denote the graph obtained by deleting all incoming arrows to X .265

Let PX=x = {P (Vi|PAi), P (U)}Vi /∈X ∪ {P (X = x) = 1}. Let266

BX=x = ⟨GX ,PX=x⟩ be the truncated CBN. Then we have:267

Proposition 2. P (Y | do(X = x)) in the CBN B is given by P (Y )
in the truncated CBN BX=x, i.e.,

PB(Y | do(X = x)) = PBX=x(Y ). (6)

The iterative learning EM4CI algorithm (Algorithm 1 .) Since268

we use EM for learning we call our algorithm EM for Causal Inference269

(EM4CI), described in Algorithm 1. Its input is a causal diagram G,270

samples D from P (V ), and a query Q = P (Y | do(X = x)).271

After initialization, Step 2 checks if the query is identifiable. This272

can be accomplished by any variant of the well-known ID algorithm273

[27, 24], or via the Do calculus [23]. If the query is not identifiable,274

the algorithm terminates with failure. Otherwise Steps 3-9 provide275

the iterative learning scheme. Given samples D from P (V ), we use276

EM to learn a CBN B over the graph G with latent domain size k.277
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Figure 2: A subset of the small causal diagrams for models used in our
experiments. Blue variables are intervened on and red variables are the outcome
variables corresponding to the query P (Y | do(X)).

Table 1: Estimand Expressions for Models 1-8 in Fig. 2 & Table 3.
Model Estimate of P (Y | do(X))

1
∑

W P (X,Y |R,W )P (W )∑
W P (X|R,W )P (W )

2
∑

R P (R|X1)
∑

x1,Z
P (Y |R, x1, X2, Z)P (Z|R, x1)P (x1)

3 P (Y )
4

∑
R,S P (S|X1, X2, X3, Z)P (R|X1)

∑
x1,x3,Z

P (Y |R, x1, X2, x3, Z)P (x3|x1, X2, Z)P (x1, Z)

5
∑

Z1,Z2,Z3
P (Z3|Z2)P (Z1|X,Z2)

∑
x P (Y,Z3|x,Z1,Z2)P (x,Z2)∑
x P (Z3|x,Z1,Z2)P (x,Z2)

P (Z2)

6
∑

Z2
P (Y |X1, X2, Z2)P (Z2)

7
∑

Z2,Z3
P (Y |X1, X2, Z2, Z3)P (Z2, Z3)

8
∑

R,W,Z P (Z|R,W,X)P (R|W )
∑

x P (Y |R,W, x, Z)P (x|R,W )P (W )

EM outputs the parameters for a network, B′, and its corresponding 278

log-likelihood, LLB′ , with which we calculate the BICB′ score. 279

Since EM’s performance is known to be sensitive to initialization, 280

we perform ten runs of EM starting from randomly generated initial 281

parameters, and retain the model with the highest likelihood as the 282

candidate for the current latent domain size k. We then increase k, 283

and repeat the process. If the BIC score decreases (step 6), we adopt 284

the new candidate network and the process continues with increased 285

k; otherwise the current B is selected as the final learned network. 286

Step 10 generates the truncated CBN BX=x, and Step 11 employs 287

a standard PGM inference algorithm, like join-tree decomposition 288

[6, 8], to the CBN BX=x to compute PX=x(Y ). 289

Complexity of EM4CI Determining identifiability is polynomial 290

in the graph size [27]. The complexity of EM (Steps 3-9) depends 291

on the sample size |D|, the variables’ domain sizes, and the num- 292

ber of iterations needed for convergence which is hard to predict, 293

but complexity-wise provide only a constant factor and can be ig- 294

nored. The most extensive computation in each iteration of EM is 295

the Expectation step, which requires probabilistic inference and can 296

be accomplished in time and memory exponential in the treewidth 297

of the graph. Otherwise, approximation algorithms such as belief 298

propagation may be used. In our experiments, exact inference was 299

always possible. Thus, each iteration of EM takes O(|D|·nlw), where 300

n = |V ∪U | is the number of variables, l bounds the variable domain 301

sizes, and w is the treewidth. For T iterations we find that the com- 302

plexity of EM is O(T · |D| ·n · lw). Step 11 of probabilistic inference 303

is O(n·lw) if performing exact inference. In summary, the complexity 304

of algorithm EM4CI is O(T · |D| ·n · lw). Thus, the algorithm is most 305

effective for models with bounded treewidth. Note that the cost of the 306

EM learning process can be amortized over multiple queries. 307

4 Empirical Evaluation 308

We perform an extensive empirical evaluation of EM4CI and compare 309

against estimand-based approaches such as the brute-force empirical 310

plug-in method and a state-of-the-art scheme called weighted empiri- 311

cal risk minimization (WERM) [13]. All experiments were run on a 312

2.66 GHz processor with 8 GB of memory. 313

4.1 Benchmarks. 314

The inputs to a causal inference algorithm are a triplet: 1) a causal dia- 315

gram (of an underlying SCM), 2) data from the model’s observational 316

distribution, and 3) a query Q = P (Y | do(X)). We use two sources 317
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Figure 3: Example larger synthetic models.

for our benchmarks: synthetically generated scalable model classes,318

and real domains from the academic literature of various fields with319

causal interpretations [1].320

Synthetic networks. We generate each triplet benchmark instance321

by first choosing a causal diagram and a query. Then, picking domain322

sizes of observed and latent variables, we generate the conditional323

probability tables (CPTs), one per variable and its parents, to yield324

the full CBN. Given the full model we generate samples from its325

observational distribution by forward sampling [6] over all variables,326

then discard the values of the latent variables. We compute the exact327

answer to the target query on the full CBN via an exact algorithm328

(e.g., join-tree [6, 8]).329

The causal diagrams were selected in two ways. First, we take a set330

of 8 small diagrams from the causality literature [23, 14]; see Figure331

2 and the Appendix. Second, we examine three scalable classes of332

graphs whose treewidths vary but can be controlled. These are: chain333

networks (treewidth 2; Figure 3c), diamond networks (treewidth 5;334

Figure 3a), and cone-cloud networks (treewidth O(
√
n), Figure 3b),335

abbreviated CH, D, CC respectively.336

In the small diagrams (e.g., Figure 2), we set the domain size of the337

observed variables to d = 2, and of the latent variables to k = 10. For338

the chain, diamond, and cone-cloud models, we use (d, k) = (4, 10).339

The parameters of each CPT were generated by sampling from a340

Dirichlet distribution [6] with parameters α = [α1, . . . , αn]. We341

chose αi ∈ [0, 1) uniformly at random in order to generate conditional342

probabilities near the edges of the simplex (i.e., far from uniform).343

Use-case benchmarks. We also test on four networks created for344

real-world domains. The “Alarm” network was developed for on-line345

monitoring of patients in intensive care units [2]; the “A” network,346

from the UAI literature, is synthetic but known to be daunting to exact347

algorithms [17]; the “Barley” network was built for a decision support348

system for growing barley without pesticides [18]; and the “Win95”349

model is an expert system for printer troubleshooting in Windows 95 .350

Since no variables in these networks are specified as latent, we chose351

source vertices with at least two children to be latent confounding352

variables. We generated data by forward sampling and then discarding353

the latent variables’ values.354

Queries. We hand selected identifiable queries, aiming for non-355

trivial ones and prioritizing those that appear to be complex. The356

queries and their corresponding estimands are given in the Appendix.357

We selected several identifiable queries per model to better evaluate358

Table 2: Algorithms and Packages
Algorithm Use Software Package Programming Language

ID Algorithm Plug-In & EM4CI causaleffect R
Join-tree Decomposition EM4CI inference SMILE C++

EM Algorithm EM4CI learning SMILE C++
Sparse Plug-In Evaluation Plug-In Python

WERM R

Table 3: Results of EM4CI & Plug-In on P (Y |do(X)) (d, k) = (2, 10)
100 Samples 1,000 Samples

EM4CI Plug-In EM4CI Plug-In
Model klrn mad time(s) mad time(s) klrn mad time(s) mad times(s)

1 2 0.0037 0.4759 0.0104 1.9 2 0.0032 3.1 0.0025 2.3
2 2 0.1832 1.8643 0.1436 2.3 2 0.0490 8.4 0.0867 2.0
3 2 0.1288 0.9288 0.0569 1.1 2 0.0040 3.6 0.0039 0.7
4 2 0.1819 1.8169 0.1469 2.3 2 0.1438 12.0 0.0704 2.1
5 2 0.4910 1.6539 0.5000 2.0 2 0.0044 17.3 0.0058 2.2
6 2 0.2663 0.3004 0.3930 2.0 2 0.1263 0.5 0.1319 2.1
7 2 0.2520 0.7757 0.2509 1.9 2 0.0891 7.1 0.0238 2.0
8 2 0.1372 0.6348 0.1579 2.0 2 0.2340 4.7 0.1303 1.9

the methods, as well as to emphasize that the learning time can be 359

amortized over multiple queries. 360

4.2 Algorithms and performance measures. 361

EM4CI In our EM4CI algorithm we used the EM implementation 362

of SMILE: Structural Modeling, Inference, and Learning Engine 363

package [1], written in C++. In SMILE, inference is carried out via 364

join trees [22, 19], and used both in the E step of the EM algorithm 365

[19] and for answering queries over the learned model. 366

Estimand-based algorithms: Plug-In and WERM. We used the 367

ID algorithm in the causal effect package [29] to compute the es- 368

timands. Subsequently, the plug-in method evaluates the estimand 369

directly from the observational data, by plugging in the empirical con- 370

ditional probabilities. Our plug-in implementation uses sparse table 371

representations in Python, to ensure that the representation size of 372

each estimated probability term is linear in the data size, rather than 373

exponential in the number of variables. We also compare against a 374

state-of-the-art scheme called WERM [13] using the author-provided 375

implementation in R. A summary of the algorithms and implementa- 376

tions is given in Table 2. 377

Measures of performance. We report the results of EM4CI along 378

the two phases of the algorithm; the learning phase (steps 3-9) done 379

using the EM algorithm and the inference phase (steps 10-11) done 380

using the join tree algorithm. For the learning process, we report the 381

selected latent domain sizes and the total time at termination. For the 382

inference phase we report the mean absolute deviation (mad) between 383

the true answer and the estimated answer. The measure mad for a 384

query P (Y | do(X)) is computed by averaging the absolute error 385

over all single-value queries over all instantiations of the intervened 386

and queried variables, P (Y = y | do(X = x)) for x, y ∈ D(X)× 387

D(Y ). We also report average inference time over the same set of 388

query instantiations. In our experiments we increased k by twos 389

(k = 2, 4, 6, 8, 10 . . .) in the EM4CI algorithm. 390

4.3 Results 391

Results on small synthetic models. Results on models 1-8 (Figure 392

2) are presented in Table 3. Since these models are quite small we 393

report the total time (learning plus inference) for EM4CI. We compare 394

against the Plug-In estimand method (see estimand expressions in Ta- 395

ble 1), which is guaranteed to converge to the exact answer. Therefore, 396

we expect Plug-In to produce fairly accurate results on these small 397

models if given enough samples. We observe that the accuracy of 398

both methods are similar at both 100 and 1,000 samples, with EM4CI 399

being more accurate on some cases, and Plug-In on others. EM4CI 400



Table 4: Results of absolute error on Query P (Y = 1|do(X = 1)) on Models
1, 8, & 3’ by WERM and EM4CI. klrn is the learned domain sizes of latent
variables.

1,000 Samples 10,000 Samples

WERM EM4CI WERM EM4CI
Model error time(s) error time(s) klrn error time(s) error time(s) klrn

1 0.0071 18.7 0.0059 8.8 2 0.0031 32.6 0.0046 63.5 2
8 0.1082 25.8 0.1566 7.6 2 0.11 47.7 0.0001 81.4 2
3’ 0.027 27.2 0.0004 3.5 2 0.001 44.1 0.0009 53.1 2

Table 5: Results for EM4CI and Plug-In on P (Y |do(X)) (d, k) = (4, 10)

(a) 1,000 samples

EM4CI Plug-In
Model Query klrn mad Learn-time(s) inf-time(s) mad time(s)

5-CH P (V4|do(V0)) 4 0.0902 3.5 0.0001 0.1509 2.3
9-CH P (V8|do(V0)) 4 0.1204 11.5 0.0002 0.1516 2.4
25-CH P (V24|do(V0)) 2 0.0070 77.7 0.0003 0.0959 6.1
49-CH P (V48|do(V0)) 4 0.0005 161.2 0.0007 0.0319 17.8
99-CH P (V98|do(V0)) 6 0.0093 413.4 0.0023 0.0611 88.1

9-D P (V8|do(V0)) 2 0.0719 24.6 0.0002 0.1832 3.4
17-D P (V16|do(V0)) 6 0.0542 202.3 0.0006 0.0700 4.5
65-D P (V64|do(V0)) 4 0.0074 432.4 0.0012 0.1716 232.5
6-CC P (V0|do(V5)) 4 0.0088 23.5 0.0001 0.0156 2.3
15-CC P (V0|do(V14)) 4 0.0147 60.8 0.0001 0.0659 4.5
45-CC P (V0|do(V14, V36, V44)) 6 0.0097 199.2 2.7429 0.1509 18.6

(b) 10,000 samples

EM4CI Plug-In
Model Query klrn mad Learn-time(s) inf-time(s) mad time(s)

5-CH P (V4|do(V0)) 4 0.0508 17.3 0.0001 0.0537 2.5
9-CH P (V8|do(V0)) 4 0.0236 150.0 0.0002 0.1074 3.1
25-CH P (V24|do(V0)) 6 0.0068 697.1 0.0005 0.0714 26.4
49-CH P (V48|do(V0)) 10 0.0017 2412.6 0.0036 0.0160 133.7
99-CH P (V98|do(V0)) 6 0.0028 3887.9 0.0022 0.0433 850.6

9-D P (V8|do(V0)) 4 0.0611 390.7 0.0002 0.1481 3.0
17-D P (V16|do(V0)) 6 0.0360 1849.6 0.0007 0.0582 8.4
65-D P (V64|do(V0)) 4 0.0022 4787.2 0.0013 0.1376 2258.5
6-CC P (V0|do(V5)) 6 0.0138 116.9 0.0003 0.0136 2.7
15-CC P (V0|do(V14)) 4 0.0022 489.5 0.0043 0.0321 10.9
45-CC P (V0|do(V14, V36, V44)) 6 0.0026 1833.7 2.757 0.1561 105.8

had better time performance for 100 samples, but for 1,000 samples401

the Plug-In was faster since learning time of EM4CI was longer.402

WERM comparison. The results for Models 1, 8, and 3’ 2 compar-403

ing WERM [13] to EM4CI are given in Table 4. We use domain size404

d = 2, and 1,000 and 10,000 samples. Again, EM4CI produced more405

accurate results in several instances, though the disparities are smaller406

than with the Plug-In method. EM4CI was faster than WERM with407

1,000 samples but slower with 10,000 samples.408

Unfortunately, the available code for WERM is specific to these409

models, so we were unable to compare against it more generally. This410

also highlights a general lack of available estimand-based implemen-411

tations applicable to general settings.412

Results on large synthetic models. In Tables 5 and 6 we show413

results on larger models of chains, diamonds, and cone-cloud graphs.414

The first two tables compare EM4CI to the plug-in method for a415

single query over all the models. Specifically, Table 5a presents time416

and accuracy results for 1,000 samples. We see that EM4CI was417

consistently more accurate, and in many cases significantly better418

(e.g., in 45-cone-cloud). We see the same trend for 10,000 samples419

in Table 5b. The superior accuracy of learning for model completion420

compared with the Plug-In is visualized well in Figure 4, which shows421

the accuracy trends for each class as a function of model sizes, for422

both 1,000 and 10,000 samples. We can see that generally, EM4CI423

using only 1,000 samples is even more accurate than Plug-In with424

10,000 samples.425

Again, we expect this improvement is due to the variance reduction426

of the estimation process. By its nature, model completion exploits427

more information from the causal graph than is apparent in the esti-428

mand expression alone, implicitly capturing the known conditional429

independence structure in its estimates of P (V ). We can also include430

2 model 3’ is the same as Model 3 in Figure 2, but with edge Y → Z reversed
to match the hard-coded model in WERM.

Table 6: EM4CI & Plug-In on the 45 Cone Cloud
|V | = 45; |U | = 16; d = 4; k = 10; treewidth ≈ 11

(a) Plug-In

1,000 Samples 10,000 Samples

Query mad time(s) mad time(s)

P (V0|do(V14, V36, V44)) 0.1510 18.6 0.1561 105.8
P (V0|do(V12, V29, V34)) 0.1744 19.0 0.1043 100.98
P (V0|do(V10, V14, V40)) 0.1906 18.4 0.1201 131.4
P (V4|do(V15, V20, V40)) 0.2080 26.2 0.1282 121.6

(b) EM4CI

1,000 Samples 10,000 Samples

Learning: time = 199.2s klrn = 6 time= 1833.7s klrn = 6

Inference:
Query mad time(s) mad time(s)

P (V0|do(V14, V36, V44)) 0.0097 2.7682 0.0026 2.7566
P (V0|do(V12, V29, V34)) 0.0118 18.9881 0.0024 18.9896
P (V0|do(V10, V14, V40)) 0.0097 0.0590 0.0029 0.0577
P (V4|do(V15, V20, V40)) 0.0082 0.0175 0.0013 0.0164

simple and easy-to-impose complexity control, in the form of the 431

latent domain sizes, to further reduce variance. In contrast, it is dif- 432

ficult to impose meaningful regularity or variance reduction on the 433

plug-in estimates of P (V ) without creating significant computational 434

burdens. Thus our results suggest that whenever the causal graph’s 435

treewidth is bounded and the estimand expression has large scope 436

functions, we should prefer using model completion. Other settings 437

may require more study to determine the best approach. 438

Focusing on time, we see that the time of EM4CI is significantly 439

more costly than Plug-In, with EM learning being the most time 440

consuming part. Interestingly, while time grows with model size for 441

both schemes, the inference time component remains efficient, likely 442

due to the low treewidth of some of the models (e.g., the chains and 443

the diamonds). In the 45-cone case, inference time is impacted more 444

by model size, since its treewidth increases with the square root of the 445

number of variables. Generally, for a single query, we find Plug-In 446

has better time performance, and its time increases at a slower pace. 447

In both methods, time also increases with sample size, e.g., when 448

moving from 1,000 samples table to 10,000 samples. 449

Results on real-world data sets. Table 7, compares EM4CI against 450

Plug-In on a single query for all 4 networks. We observe the same 451

pattern of performance as in the synthetic networks: EM4CI provides 452

far more accurate results on all these models but with some time cost, 453

attributed to learning the models. Evaluation for multiple queries for 454

EM4CI and Plug-In are given in Table 8 for the A network. We find 455

the same latent domain size (klrn = 4) is selected for both sample 456

sizes. As before, learning time grows with sample size. Accuracy 457

results are excellent and improve with increased sample sizes as 458

Table 7: Results on EM4CI & Plug-In on Real Networks
(a) 1,000 Samples

EM4CI Plug-In
Model Query klrn mad Learn-time(s) inf-time(s) mad time(s)

A P (V51|do(V10)) 4 0.0139 71 0.0012 0.0584 8
Alarm P (HRBP |Shunt)) 2 0.0076 15.7 0.0002 0.0190 2.9
Barley P (protein|do(expY ield)) 14 0.0066 199 0.9038 0.0687 9.9
Win95 P (Output|do(NnPsGrphc)) 2 0.0113 109.1 0.0002 0.2674 1.5

(b) 10,000 samples

EM4CI Plug-In
Model Query klrn mad Learn-time(s) inf-time(s) mad time(s)

A P (V51|do(V10)) 4 0.0083 540.6 0.0012 0.0114 55.7
Alarm P (HRBP |Shunt)) 4 0.0043 181.3 0.0002 0.0075 5.7
Barley P (protein|do(expY ield)) 10 0.0031 819.5 0.8882 0.0655 63.4
Win95 P (Output|do(NnPsGrphc)) 4 0.0008 1080.8 0.0002 0.2894 2.0



Figure 4: Comparing the accuracy of EM4CI and Plug-In. While both methods improve with more samples (solid to dashed lines), the error (mad) of EM4CI is
smaller, even when compared to Plug-In with more samples.

well. Note that increased sample size improves accuracy but does not459

impact inference time, although more data may allow selection of460

a more complex model (larger latent domain size), which may also461

improve inference accuracy but may require more time. Results for462

Alarm, Win95, and Barley networks are similar (see Appendix).463

Answering multiple queries. Tables 6b and 8b highlight how learn-464

ing time of EM4CI can be amortized effectively over multiple queries.465

The table presents EM4CI’s learning and inference time separately466

on the multiple queries. In contrast, the Plug-In method requires esti-467

mation of each new query from scratch, even if on the same model;468

see Table 6a and 8a. Thus, for multiple queries, EM4CI may take far469

less time per query, while providing superior quality estimates. (See470

additional results on multiple queries in the Appendix.)471

Summary. Our experiments illustrate the strength of the direct-472

learning approach as a viable alternative for answering causal effect473

queries. We saw that model-completion by learning implemented in474

our EM4CI yields highly accurate estimates of causal effect queries475

on a variety of benchmarks, both synthetic networks and real life476

networks, on both small and large models. Moreover EM4CI shows477

clear superiority to the Plug-In estimands approach. In terms of time478

efficiency however, EM4CI was consistently slower due to learning479

time overhead. Yet, when answering multiple queries is desired the480

time overhead can be amortized over multiple queries.481

Table 8: Plug-In & EM4CI results on the A Network
|V | = 46; |U | = 8; d = 2; k = 2 treewidth ≈ 16

(a) Plug-In

1,000 Samples 10,000 Samples

Query mad time(s) mad time(s)

P (V51|do(V10)) 0.0584 8.0 0.0114 55.7
P (V51|do(V14)) 0.0319 8.3 0.0056 51.3
P (V51|do(V41)) 0.0255 13.9 0.0092 48.3
P (V51|do(V45)) 0.0496 9.8 0.0206 49.1

(b) EM4CI

1,000 Samples 10,000 Samples

Learning time = 71(s) klrn = 4 time(s) = 541 klrn = 4

Inference:
Query mad time(s) mad time(s)

P (V51|do(V10)) 0.0139 0.0012 0.0083 0.0012
P (V51|do(V14)) 0.0143 0.0047 0.0086 0.0046
P (V51|do(V41)) 0.0147 0.0042 0.0079 0.0041
P (V51|do(V45)) 0.0140 0.0031 0.0082 0.0030

5 Conclusion 482

In causal inference, the estimand-based approach has become stan- 483

dard: generating a potentially complex expression in terms of the 484

visible distribution, and then estimating the required probabilities 485

from observed data and evaluating the expression. While mathemati- 486

cally correct, this approach tends to ignore the difficulties inherent in 487

estimating the complex, conditional probabilities required, and in com- 488

putationally evaluating the resulting marginalized expression. These 489

difficulties become increasingly apparent as model size increases. 490

An alternative path, relatively less explored, is to leverage the causal 491

model structure more directly via learning. By performing model com- 492

pletion – i.e., learning a Causal Belief Network, including its latent 493

confounding variables, from the observed data – we exploit additional 494

information about the co-dependence structure in the distribution, 495

and can more easily apply complexity control and variance reduction 496

strategies to the parameter estimation process. Then, once an approx- 497

imate full model is available, traditional computationally efficient 498

PGM algorithms can be applied to answer the query, either exactly or 499

approximately. In settings where multiple queries are desired, their 500

cost can be amortized by performing the learning process once. 501

Our algorithm EM4CI uses the well-known EM algorithm to 502

learn the model and its latent variable distributions, then uses tree- 503

decomposition algorithms to answer the queries. 504

We carried out an extensive empirical evaluation, the first of its 505

scale in the causal community, over a collection incorporating both 506

synthetic networks and real world distributions. We evaluated and 507

compared EM4CI’s performance to the plug-in estimand approach, in 508

terms of both accuracy and time. 509

Our results appear conclusive: we show clearly that the model com- 510

pletion using EM4CI yields consistently superior results compared to 511

the estimand plug-in. This benefit does come with a cost in time from 512

the learning phase, which grows more quickly with networks size and 513

number of samples compared to the plug-in approach. However as 514

we show, learning time can be amortized over multiple queries on 515

the learned models, making a collection of queries significantly more 516

efficient. 517

Our EM4CI approach relies in part on the efficiency of inference; 518

when the treewidth of the graph is bounded, both learning and in- 519

ference using EM4CI are likely to be effective. Additionally, since 520

the structure of the graph is better exploited by model completion, 521

we reduce the variance of our estimators, resulting in better perfor- 522

mance for a given dataset size. Although in some cases, the estimand 523

approach may generate a simple and easy-to-estimate expression, in 524

larger models the expression is often complex. In such settings, the 525

estimand expression loses structural information, forcing us to esti- 526

mate high-dimensional probabilities and making it difficult to apply 527



variance reduction strategies without creating a computationally diffi-528

cult evaluation problem. Overall this suggests that model completion529

should be considered a competitive strategy for causal estimation.530
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