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Overview Learning for Causal Inference Empirical Analysis
We propose an alternative to the estimand based paradigm for dentifiabili Baseline Comparison: Plug In Method
: : : . ldentifiability
answering causal queries. The idea is to learn the full causal
model from the observational data and causal diagram, and then e Any two models that agree on the observational distribution Table 3: Results of EM4CI & Plug-In on P(Y'|do(X)) (d, k) = (2, 10)
answer the.query by applying PrQbabiIistic Graphi'cal Mod.els and causal diagram will also agree on P(Y | do(X = x)). " 10 Sumples - EM4CII’OOOSMPICS -
(PGM) algorlthms. We show that this model COmp|Et|On |earn|ng Model | kirn mad time(s) mad time(s) | Kirn mad time(s) mad times(s)
approach can be far more effective than estimated approaches, EM for Causal Inference (EMA4CI) 1|2 007 0479 | 00108 19 | 2 0om2 a1 | 00025 23
particularly in large models when the estimand computation is Algorithm 1: EM4CI i g g:gi;g (l)gfgg 8?323 ;; g g:(l)ggg 132:60 818%3 (2)?
complex and the induced width of the diagram is small. input : A causal diagram G — (UUV, E), U latent and 5 2 04910 16539 | 05000 20 2 00044 173 | 0008 22
. . 7 2 0.2520 0.7757 | 0.2509 1.9 2 0.0891 7.1 0.0238 2.0
ContributionS' tp ¢ 1::/ ?bser\(;ag?;;’lD;aggles fr());n P(V)’ 8 2 0.1372 0.6348 | 0.1579 2.0 2 0.2340 4.7 0.1303 1.9
' output :Estimate ol X =a
1. Provide a first of its kind, extensive empirical evaluation on /| k= latent domain size, BICg = BIC score of B, D, Competing Scheme: WERM  [¥..ung etal, 2020]
causal effect algorithms on varied and large synthetic and // LLpg is the log-likelihood of B, D | 1,000 Samples 10,000 Samples
real networks. 1. Initialize: BICp + inf, Model WERM © Et‘."““(”) . WERM © Et’.““‘(f‘) .
oae CITor mels €ITor 1meil(s Irn CITor me(s CITor 1Me(s Irn
2. Show empirically that our approach has more accurate 2. If —identifiable(G, @), terminate. I 100071 187 | 00059 88 > | 00031 326 | 00046 635 2
. estimates than estimated based schemes. ) 3. for k = 2, ..., to upper bound, do ;‘ 06.1002872 ggg g(l)ggg ;g g 093(;1 j}} g% *5‘;‘1‘ g
b ~| 4 (B, LLp )+ max{EM(G,D,k)|for i = 1to 10}
Problem LL e Learns causal effects by weighted empirical risk minimization.
5. Calculate BICp: from LLg; e State of the art method that focuses on estimating the quantities
. . . . 6. if BICx < BICj3, . . . .
Given a causal diagram, an identifiable query P(Y | do(X = x)) . 3 <—BB’_ BIC’:<— BIC in the estimand using statistical methods.
. . : , B
and samples from the observed dlst;b;tlo)l’}, the task is to output 8. else, break. Synthetic Network Results
the distribution of P o(X = Xx)).
( | ( )) 9. endfor Number of Variables vs Mad
10: Bx—a < generate truncated CBN from B. —— Plug-in 1,000 Samples
Current Practice 11: return < evaluate Pg,__(Y) 0.14 - —— EM4CI 1,000 Samples

—== Plug-In 10,000 Samples
-== EM4CI] 10,000 Samples

1. Apply state of the art algorithms for identifiability. These are
polynomial algorithms involving the graph and the query only. 1. Checkif query is identifiable.

0.12 -

[Tian, 2002] 2. Using samples from the observed distribution P(V) to learn a 0.10 -
2. Generate an estimand, namely an algebraic expression for the full causal Bayesian network B with domain size k consistent © 0,08 -
query involving only probabilistic expressions over the visible with (&, P(V)) using the the resulting model with maximum - oe
variables. log likelihood from running the EM algorithm ran 10 times.
3. Estimate the estimand from the observational data. 3. Compute the BIC score and increase k. e e N N
Limitations 4. Stop when we find the minimum BIC score. S U U N
1. More sophisticated statistical estimation techniques don’t scale || 5. truncate M into the causal model M by removing the T
when functions in the estimand are too large. function associated with X and assigning X = x in all functions 20 0 60 80 100
2. We can use the Plug-In method, in which each term is estimated where X appears. N:j’::;:: ‘;’s:r':t:ezhj's";::e'

only on the configurations seen in the observed data. However, || g
this approach also limits the quality of our estimates.

Apply a PGM algorithm to answer apply a PGM algorithm to

—— Plug-In 1,000 Samples
— EM4CI 1,000 Samples
—== Plug-In 10,000 Samples
-== EMA4CI 10,000 Samples
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answer the associated query P(Y | X = x).

7. Return P(Y |do(X = x)). o107
Motivating Example 0.125 -

Complexity 0.100 -
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Figure 1: Chain Model with 7 observable variables and 3 latent variables ™ —
Using the estimated based approach we get the expression: Benefits & Challenges 0.000 -
10 20 30 40 50 60
Number of Variables in Diamond
P(V;ldo(V))= 3 P(Vg| Vi, Vo, Vs, Vi VOP(Vy | Vi, Vi, VAP(V, | V) Challenges Number of Variables vs Mad
V2, V3 Vo Vs Ve 1. In order to learn the full model we need to learn a domain size 016 o
X ZP(V7 | V,a V29 V39 V4, Vs, V6)P(V5 | V,, V29 V39 V4)P(V3 | V,’ Vz)P(V,) for the latent variables. 01ad EMZCI 1,600 Sampﬁes Z
" o o 2. There exists theoretical bounds on sufficient domain sizes. | DD puan 0000 Samples 7
e As model size increases, we have scalability issues. . 017 - 000 Samples .
g the induced width of thi del v 3 However the bounds are very conservative & can be very large
[
OWEVED the Ihduced wi O this modetis only 5. to be practical [J. Zhang et al, 2022]. 0.10 -
\ /| 3. EM algorithm can be slow and converge to incorrect local = 0,08 -
4 ™| optimain high dimensional space. =
Background P & P
H 0.04 -
Structural Causal Model: M = (U, V,F, P(U)) _ Benefits
, 1. Learning phase only needs to be performed once to answer 0.02 -
e U=1{U,,...,U,} set of unmeasurable latent variables , - o
. any identifiable of form P(Y | do(X = x)); traditionally a 0.00 -
o V=1{V,V,,...,V } set of observable variables , , . . , . , . , , .
, , , new estimand would need to be derived for each query. 5 10 15 20 25 30 35 40 45
e F = {f,: V. € V}isaset of functional mechanisms f. that . . Number of Variables in Cone-Cloud
, , , 2. EMACI consistently yields extremely accurate results.
each determine the value v, of their corresponding V; as a \_ Y, UAI Benchmark Results
function of V.'s causal parents PA; C UUV'\ V. 4 ™
P(U) | lb bilit dp, byt ‘T ttwj \Vi E . 1S Table 1: Plug-In & EM4CI results on the A Network
. .
. blls a probability distribution over the exogenous xpenmenta etug V| =46; |U|=8; d=2; k = 2 treewidth ~ 16
variabies Benchmarks —— —
. . ug-in
. . . . e Each benchmark includes a causal diagram, a query, and 1,000 Samples 10,000 Samples 1,000 Samples 10,000 Samples
Causal Diagram: A SCM M can be associated with a directed observational data synthetically generated from the full model. Query mad  time(s) mad time(s) mad time(s) mad time(s)
graph G = (VU U, E) called a causal diagram. Each node in o | iE oliggz“jﬂ;; gggf‘; 2‘3’ 8'8(1,;2 zf; g-gifg 8%3 8%22 8%}12
the graph uniquely corresponds to a variable in the SCM. * Used a range of domain sizes of for the variables. P( :1|d°(Vu)) 00255 139 00092 483 00147 00042 00079  0.0041
. : , , (Vsi|do(Vis))  0.0496 9.8  0.0206 49.1  0.0140 0.0031 0.0082 0.0030
Thereis an arc fromnode X € (UU V)tonode V; € V iff e Test on bayesian networks from real world domains, and created EMACI Learning _tme=71(5), k. — 4 (1,000 Samples) and Gme=341(5), ke, — 4 (10,000 Samples)
X € PA, latent confounders from the source vertices. e
. Performance Measures et
Causal effect and the truncatjlon. for.mula. We %Jse e To evaluate the accuracy of P(Y |do(X = x)), we use the mean
P(Y|do(X)) to denote the distributions resulting from an absolute deviation (mad): averaging the absolute error over all
intervention which fixes the value of X, and is called the single-value queries over all instantiations of the intervened and
causal effect of do(X) on Y queried variables.
PV, U do(X)) = 1_[VjeéX P(VJ | PAJ) - PU) e BIC score is used to evaluate fitness of the learned model and
Causal Diagrams: impose some regularization over the domain sizes. e
Model 1 g ' '\‘__ r _ Ve - <
)C@ / Notation Conclusion
// /;' - - - e Capital letters (X) represent variables, & small letters (x) e EMA4CI was extremely accurate on all benchmarks we tried.
/ / ’Q;)\. represent their values. Boldfaced capital letters (X) denote a : : :
@ Q ’ _ _ e Inference on multiple queries was very fast after learning.
( : —> Cone Cloud Model collection of variables.
o Vo e . e EMACI is another tool for causal inference, not meant to
Blue variables are intervened on and red variables are the en=|V]|,d=|DV)|, k= [D(U)]| inthe true model, and replace the estimand based approach but used as an
— / : . . .
_ outcome variables corresponding to the query P(Y | do(X)) | ki = | D'(U) | the latent domain of the learned model _ alternative when beneficial. )
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