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Overview
We propose an alternative to the estimand based paradigm for 
answering causal queries. The idea is to learn the full causal 
model from the observational data and causal diagram, and then 
answer the query by applying Probabilistic Graphical Models 
(PGM) algorithms. We show that this model completion learning 
approach can be far more effective than estimated approaches, 
particularly in large models when the estimand computation is 
complex and the induced width of the diagram is small.    

Contributions:

1. Provide a first of its kind, extensive empirical evaluation on 
causal effect algorithms on varied and large synthetic and 
real networks. 

2. Show empirically that our approach has more accurate 
estimates than estimated based schemes.

Benefits & Challenges

Problem
Given a causal diagram, an identifiable query  

and samples from the observed distribution, the task is to output 
the distribution of .

P(Y |do(X = x))

P(Y |do(X = x))

Motivating Example

Using the estimated based approach we get the expression: 

 

 

• As model size increases, we have scalability issues. 
• However, the induced width of this model is only 3.

P(V7 ∣ do(V1)) = ∑
V2,V3,V4,V5,V6

P(V6 ∣ V1, V2, V3, V4, V5)P(V4 ∣ V1, V2, V3)P(V2 ∣ V1)

× ∑
V′ 1

P(V7 ∣ V′ 1, V2, V3, V4, V5, V6)P(V5 ∣ V′ 1, V2, V3, V4)P(V3 ∣ V′ 1, V2)P(V′ 1)

Current Practice 
1. Apply state of the art algorithms for identifiability. These are 

polynomial algorithms involving the graph and the query only. 
[Tian, 2002] 

2. Generate an estimand, namely an algebraic expression for  the 
query involving only probabilistic expressions over the visible 
variables.  

3. Estimate the estimand from the observational data. 
Limitations  

1. More sophisticated statistical estimation techniques don’t scale 
when functions in the estimand are too large. 

2. We can use the Plug-In method, in which each term is estimated 
only on the configurations seen in the observed data. However, 
this approach also limits the quality of our estimates. 

Background
Structural Causal Model:  
•  set of unmeasurable latent variables 
•  set of observable variables 
•  is a set of functional mechanisms  that 

each determine the value  of their corresponding  as a 
function of 's causal parents  

•   is a probability distribution over the exogenous 
variables 

Causal Diagram: A SCM  can be associated with a directed 
graph  called a causal diagram. Each node in 
the graph uniquely corresponds to a variable in the SCM.  
There is an arc from node   to node  iff 

 

Causal effect and the truncaPon formula: We use 
 to denote the distribuTons resulTng from an 

intervenTon which fixes the value of , and is called the 
causal effect of  on  

 

M = ⟨U, V, F, P(U)⟩
U = {U1, . . . , Uk}
V = {V1, V2, . . . , Vn}
F = {fi : Vi ∈ V} fi

vi Vi
Vi PAi ⊆ U∪V∖Vi

P(U)

M
G = ⟨V∪ U, E⟩

X ∈ (U ∪ V) Vi ∈ V
X ∈ PAi

P(Y |do(X))
X

do(X) Y
P(V, U ∣ do(X)) = ∏Vj∉X P(Vj |PAj) ⋅ P(U)

Causal Diagrams: 

Blue variables are intervened on and red variables are the 
outcome variables corresponding to the query P(Y ∣ do(X))

Conclusion
• EM4CI was extremely accurate on all benchmarks we tried. 

• Inference on mulTple queries was very fast a[er learning. 

• EM4CI is another tool for causal inference, not meant to 
replace the esTmand based approach but used as an 
alternaTve when beneficial.  

Notation

Empirical Analysis

Competing Scheme: WERM

• Learns causal effects by weighted empirical risk minimizaTon. 
• State of the art method that focuses on estimating the quantities 

in the estimand using statistical methods.

[Y. Jung et al., 2020]

Baseline Comparison: Plug In Method

Learning for Causal Inference
IdenPfiability  

• Any two models that agree on the observaTonal distribuTon 
and causal diagram will also agree on .P(Y |do(X = x))

Complexity 

• Time and memory are exponenTal in the induced width. 

1. Check if query is identifiable. 
2. Using samples from the observed distribution  to learn a 

full causal Bayesian network  with domain size k consistent 
with  using the the resulting model with maximum 
log likelihood from running the EM algorithm ran 10 times. 

3. Compute the BIC score and increase k. 
4. Stop when we find the minimum BIC score. 
5.  truncate  into the causal model  by removing the 

function associated with  and assigning  in all functions 
where  appears. 

6. Apply a PGM algorithm to answer apply a PGM algorithm to 
answer the associated query . 

7. Return .

P(V)
B

(𝒢, P(V))

M MX
X X = x

X

P(Y |X = x)
P(Y |do(X = x))

EM for Causal Inference (EM4CI)

Experimental Setup

Challenges 
1. In order to learn the full model we need to learn a domain size 

for the latent variables.  
2. There exists theoretical bounds on sufficient domain sizes.  

However the bounds are very conservative & can be very large 
to be practical [J. Zhang et al, 2022].  

3. EM algorithm can be slow and converge to incorrect local 
optima in high dimensional space.

Benefits 
1. Learning phase only needs to be performed once to answer 

any identifiable of form ; traditionally a 
new estimand would need to be derived for each query. 

2. EM4CI consistently yields extremely accurate results.  

P(Y |do(X = x))

Benchmarks 
• Each benchmark includes a causal diagram,  a query, and 

observaTonal data syntheTcally generated from the full model. 

• Used a range of domain sizes of for the variables. 

• Test on bayesian networks from real world domains, and created 
latent confounders from the source verTces.

Performance Measures 
• To evaluate the accuracy of , we use the mean 

absolute deviaTon (mad): averaging the absolute error over all 
single-value queries over all instanTaTons of the intervened and 
queried variables.  

• BIC score is used to evaluate fitness of the learned model and 
impose some regularizaTon over the domain sizes. 

P(Y |do(X = x))

• Capital legers ( ) represent variables, & small legers ( ) 
represent their values. Boldfaced capital legers ( ) denote a 
collecTon of variables. 

• , ,  in the true model, and 
the latent domain of the learned model

X x
X

n = |V | d = |D(V ) | k = |D(U) |
klrn = |D′ (U) |

Cone Cloud Model

UAI Benchmark Results

Synthetic Network Results 

Model 1
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