
Estimating Causal Effects from Learned Causal Networks

Anna K. Raichev
1

Jin Tian
2

Alexander Ihler
1

Rina Dechter
1

1Computer Science Dept., University of California, Irvine, Irvine, CA, USA
2Computer Science Dept., University of Iowa, Iowa City, IA, USA

1 INTRODUCTION

The standard approach to answering an identifiable causal-1

effect query (e.g., P (Y |do(X)) when given a causal dia-2

gram and observational data is to first generate an estimand,3

or probabilistic expression over the observable variables,4

which is then evaluated using the observational data. In this5

paper, we propose an alternative paradigm for answering6

causal-effect queries over discrete observable variables. We7

instead learn the causal Bayesian network and its confound-8

ing latent variables directly from the data. Then, efficient9

probabilistic graphical model (PGM) algorithms can be ap-10

plied to the learned model to answer queries. Surprisingly,11

we show that this model completion learning approach can12

be more effective than estimand approaches, particularly for13

larger models in which the estimand expressions become14

computationally difficult. We illustrate our method’s poten-15

tial using a benchmark collection of Bayesian networks and16

synthetically generated causal models.17

2 BACKGROUND

Definition 1 (Structural Causal Model). A structural18

causal model (SCM) Pearl [2009] is a 4-tuple M =19

hU ,V ,F , P (U)i where: (1) U = {U1, U2, ..., Uk} is a20

set of latent variables; (2) V = {V1, V2, ..., Vn} is a set of21

endogenous, observable variables; (3) F = {fi : Vi 2 V }22

is a set of functions fi such that each fi determines the value23

vi of Vi as a function of Vi’s parents PAi ✓ U [(V \ Vi);24

and (4) P (U) is a probability distribution over the latent25

variables.26

Causal effect and the truncation formula. An external27

intervention, forcing variables X to take on value x, is28

modeled by replacing the mechanism for each X 2 X with29

the function X = x. This is formally represented by the do-30

operator do(X = x). Thus the interventional distribution31

of an SCM M by applying do(X) is,32

P (V \X,U | do(X = x)) =
Y

Vj /2X

P (Vj |PAj) · P (U)

����
X=x

(1)

Example 1. Consider the model in Figure 1. To evaluate
the query P (V6 | do(V0)), the ID algorithm Tian [2002],

Shpitser and Pearl [2006] gives the expression:

P (V6 | do(V0)) =
X

V1,V2,V3,V4,V5

P (V5|V0, V1, V2, V3, V4)

⇥ P (V3|V0, V1, V2)P (V1|V0)
X

v0

P (V6|v0, V1, V2, V3, V4, V5)

⇥ P (V4|v0, V1, V2, V3)P (V2|v0, V1)P (v0). (2)

Unfortunately, in large models the expression elements be- 33

come unwieldy. In terms of scalability, the required distribu- 34

tions have exponentially many configurations, suggesting 35

they may require a significant amount of data to estimate 36

accurately. Moreover, the required marginalizations are also 37

over high-dimensional spaces, potentially also making them 38

computationally intractable. These issues make it difficult to 39

apply statistically sophisticated or machine learning-based 40

estimators Jung et al. [2020a,b, 2021a,b] in such settings. 41

Alternatively, we can often maintain tractability by using the 42

simple plug-in estimator, in which each term is estimated 43

only on the configurations seen in the observed data. This 44

reduces computation, since each term is non-zero on only a 45

subset of configurations. However, this approach also limits 46

the quality of our estimates. These issues motivate us to 47

explore the effectiveness of a model completion approach. 48

3 LEARNING-BASED CAUSAL

INFERENCE

The approach we propose for the causal-effect task is to 49

first learn a full CBN B = hG,Pi given the causal diagram 50

G = hV [U , Ei and samples from the observational dis- 51

tribution P (V). Then, we can answer causal-effect queries 52

based on the truncated formula Eq. (1) using probabilistic 53

inference over the learned CBN. However, there could be 54

many parameterizations P that are consistent with the same 55

observational distribution P (V). Luckily, the identifiability 56

property ensures that the problem remains well-posed: as 57

long as the query is identifiable, any of these alternative 58

parameterizations P will generate the same answer: 59

V0 V1 V2 V3 V4 V5 V6

Figure 1: Causal diagram of a chain model. Dashed bidirected
edges represent latent variables.

Figure 2: Comparing the accuracy of EM4CI and Plug-In. While both methods improve with more samples (solid to dashed lines), the
error (mad) of EM4CI is smaller, even when compared to Plug-In with more samples.

Algorithm 1: EM4CI
input : A causal diagram G = hU[V , Ei, U latent and

V observables; D samples from P (V);
output :Estimated P (Y | do(X = x))

// k= latent domain size, BICB = BIC score of B, D,
// LLB is the log-likelihood of B, D
1. Initialize: BICB inf ,
2. If ¬ identifiable(G, Q), terminate.
3. for k = 2, ..., to upper bound, do

4. (B0, LLB0) max
LL

{EM(G,D, k)|for i = 1 to 10}
5. Calculate BICB0 from LLB0

6. if BICB0 BICB,
7. B B0, BICB BICB0

8. else, break.
9. endfor

10: BX=x generate truncated CBN from B.
11: return evaluate PBX=x(Y)

Complexity of EM4CI The complexity of our approach60

is dominated by the time to learn the model. For T iterations61

of EM we find that the complexity is O(T · |D| · n · lw),62

where n = |V [U | is the number of variables, sample63

size |D|, l bounds the variable domain sizes, and w is the64

treewidth. Note that the cost of the EM learning process can65

be amortized over multiple queries.66

4 EMPIRICAL EVALUATION

Benchmarks We use two sources for our benchmarks:67

synthetically generated models, and real domains from the68

academic literature of various fields. We examine three scal-69

able classes of graphs whose treewidths vary but can be70

controlled: chain networks (treewidth 3), diamond networks71

(treewidth 5), and cone-cloud networks (treewidth O(
p
n).72

The parameters of each CPT were generated by sampling73

from a Dirichlet distribution Darwiche [2009]. We also test74

on networks created for real-world domains. The “A” net-75

work, from the UAI literature, is synthetic but known to be76

daunting to exact algorithms Kozlov and Singh [1996];77

Measures of performance. We report the results of78

EM4CI along the two phases of the algorithm. For the learn-79

ing process, we report the selected latent domain sizes and80

the total time at termination. For the inference phase we 81

report the time and mean absolute deviation (mad) between 82

the true answer and the estimated answer. The measure 83

mad for a query P (Y | do(X)) is computed by averag- 84

ing the absolute error over all single-value queries over 85

all instantiations of the intervened and queried variables, 86

P (Y = y | do(X = x)) for x,y 2 D(X)⇥D(Y). 87

Results on large synthetic models. Figure 2 shows the 88

accuracy trends for each class as a function of model sizes, 89

for 1,000 and 10,000 samples. We can see that generally, 90

EM4CI using only 1,000 samples is even more accurate 91

than Plug-In with 10,000 samples. However, the increase in 92

accuracy comes at the cost of longer learning times. 93

We expect this improvement is due to the variance reduction 94

of the estimation process. Model completion exploits more 95

information from the causal graph than is apparent in the 96

estimand expression. We can also include simple complex- 97

ity control, with the latent domain sizes, to further reduce 98

variance. In contrast, it is difficult to impose meaningful 99

regularity or variance reduction on the plug-in estimates. 100

Thus our results suggest that whenever the causal graph’s 101

treewidth is bounded and the estimand expression has large 102

scope functions, we should prefer using model completion. 103

Results on A model. Evaluation for multiple queries for 104

EM4CI and Plug-In are given in Table 1 for the A net- 105

work. Learning time grows with sample size. Accuracy 106

results are excellent and improve with increased sample 107

sizes as well. We highlight how learning time of EM4CI can 108

be amortized effectively over multiple queries. In contrast, 109

the Plug-In method requires estimation of each new query 110

from scratch, even if on the same model. Thus, for multiple 111

queries, EM4CI may take far less time per query, while 112

providing superior quality estimates.

Table 1: Plug-In & EM4CI results on the A Network

|V | = 46; |U | = 8; d = 2; k = 2 treewidth ⇡ 16

Plug-In EM4CI
1,000 Samples 10,000 Samples 1,000 Samples 10,000 Samples

Query mad time(s) mad time(s) mad time(s) mad time(s)

P (V51|do(V10)) 0.0584 8.0 0.0114 55.7 0.0139 0.0012 0.0083 0.0012
P (V51|do(V14)) 0.0319 8.3 0.0056 51.3 0.0143 0.0047 0.0086 0.0046
P (V51|do(V41)) 0.0255 13.9 0.0092 48.3 0.0147 0.0042 0.0079 0.0041
P (V51|do(V45)) 0.0496 9.8 0.0206 49.1 0.0140 0.0031 0.0082 0.0030

EM4CI Learning time=71(s), klrn = 4 (1,000 Samples) and time=541(s), klrn = 4 (10,000 Samples)

References113

Adnan Darwiche. Modeling and Reasoning with Bayesian114

Networks. Cambridge University Press, 2009.115

Yonghan Jung, Jin Tian, and Elias Bareinboim. Estimating116

causal effects using weighting-based estimators. In The117

Thirty-Fourth AAAI Conference on Artificial Intelligence,118

AAAI 2020, pages 10186–10193, 2020a.119

Yonghan Jung, Jin Tian, and Elias Bareinboim. Learning120

causal effects via weighted empirical risk minimization.121

In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Had-122

sell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,123

Advances in Neural Information Processing Systems 33,124

2020b.125

Yonghan Jung, Jin Tian, and Elias Bareinboim. Estimat-126

ing identifiable causal effects through double machine127

learning. In Thirty-Fifth AAAI Conference on Artificial128

Intelligence, AAAI 2021, pages 12113–12122, 2021a.129

Yonghan Jung, Jin Tian, and Elias Bareinboim. Estimating130

identifiable causal effects on markov equivalence class131

through double machine learning. In Marina Meila and132

Tong Zhang, editors, Proceedings of the 38th Interna-133

tional Conference on Machine Learning, ICML 2021,134

2021b.135

Alexander V. Kozlov and Jaswinder Pal Singh. Parallel im-136

plementations of probabilistic inference. IEEE Computer,137

pages 33–40, 1996.138

Judea Pearl. Causality: Models, Reasoning, and Inference.139

Cambridge University Press, 2nd edition, 2009.140

Ilya Shpitser and Judea Pearl. Identification of joint interven-141

tional distributions in recursive semi-Markovian causal142

models. In Proceedings of the 21st AAAI Conference on143

Artificial Intelligence, page 1219, 2006.144

Jin Tian. Studies in Causal reasoning and Learning. PhD145

thesis, University of California, Los Angeles, 2002.146

Estimating Causal Effects from Learned Causal Networks (Supplementary

Material)

W

R

X Y

(a) Model 1

. . .

W

ZX Y

(b) Model 3

. . .

W

R

YZX

(c) Model 8

Figure 3: A subset of the small causal diagrams for models used
in our experiments. Blue variables are intervened on and red
variables are the outcome variables corresponding to the query
P (Y | do(X)).

A ADDITIONAL RESULTS

Results on small synthetic models. Results on small mod-148

els (Figure 3) are presented in Table 2. In all tables d and k149

represent the cardinality of the domains for observed and150

latent variables, respectively. Since these models are quite151

small we report the total time (learning plus inference) for152

EM4CI. We compare against the Plug-In method, which is153

guaranteed to converge to the exact answer. Therefore, we154

expect Plug-In to produce fairly accurate results on these155

small models if given enough samples. We observe that the156

accuracy of both methods are similar at both 100 and 1,000157

samples, with EM4CI being more accurate on some cases,158

and Plug-In on others. EM4CI had better time performance159

for 100 samples, but for 1,000 samples the Plug-In was160

faster since learning time of EM4CI was longer.161

WERM comparison. The results for Models 1, 8, and 3’162

1 comparing WERM Jung et al. [2020b] to EM4CI are given163

in Table 3. We use domain size d = 2, and 1,000 and 10,000164

samples. Again, EM4CI produced more accurate results in165

several instances, though the disparities are smaller than166

with the Plug-In method. EM4CI was faster than WERM167

Table 2: Results of EM4CI & Plug-In on P (Y |do(X)) (d, k) =
(2, 10)

100 Samples 1,000 Samples

EM4CI Plug-In EM4CI Plug-In
Model klrn mad time(s) mad time(s) klrn mad time(s) mad times(s)

1 2 0.0037 0.4759 0.0104 1.9 2 0.0032 3.1 0.0025 2.3
2 2 0.1832 1.8643 0.1436 2.3 2 0.0490 8.4 0.0867 2.0
3 2 0.1288 0.9288 0.0569 1.1 2 0.0040 3.6 0.0039 0.7
4 2 0.1819 1.8169 0.1469 2.3 2 0.1438 12.0 0.0704 2.1
5 2 0.4910 1.6539 0.5000 2.0 2 0.0044 17.3 0.0058 2.2
6 2 0.2663 0.3004 0.3930 2.0 2 0.1263 0.5 0.1319 2.1
7 2 0.2520 0.7757 0.2509 1.9 2 0.0891 7.1 0.0238 2.0
8 2 0.1372 0.6348 0.1579 2.0 2 0.2340 4.7 0.1303 1.9

1model 3’ is the same as Model 3 in Figure 3, but with edge
Y ! Z reversed to match the hard-coded model in WERM.

Table 3: Results of absolute error on Query P (Y = 1|do(X = 1))
on Models 1, 8, & 3’ by WERM and EM4CI. klrn is the learned
domain sizes of latent variables.

1,000 Samples 10,000 Samples

WERM EM4CI WERM EM4CI
Model error time(s) error time(s) klrn error time(s) error time(s) klrn

1 0.0071 18.7 0.0059 8.8 2 0.0031 32.6 0.0046 63.5 2
8 0.1082 25.8 0.1566 7.6 2 0.11 47.7 0.0001 81.4 2
3’ 0.027 27.2 0.0004 3.5 2 0.001 44.1 0.0009 53.1 2

Table 4: Results for EM4CI & Plug-In on P (Y |do(X))
(d, k) = (4, 10) CH-Chain, CC-Cone-Cloud, D-Diamond network

(a) 1,000 samples

EM4CI Plug-In
Model Query klrn mad Learn-time(s) inf-time(s) mad time(s)

5-CH P (V4|do(V0)) 4 0.0902 3.5 0.0001 0.1509 2.3
9-CH P (V8|do(V0)) 4 0.1204 11.5 0.0002 0.1516 2.4

25-CH P (V24|do(V0)) 2 0.0070 77.7 0.0003 0.0959 6.1
49-CH P (V48|do(V0)) 4 0.0005 161.2 0.0007 0.0319 17.8
99-CH P (V98|do(V0)) 6 0.0093 413.4 0.0023 0.0611 88.1

9-D P (V8|do(V0)) 2 0.0719 24.6 0.0002 0.1832 3.4
17-D P (V16|do(V0)) 6 0.0542 202.3 0.0006 0.0700 4.5
65-D P (V64|do(V0)) 4 0.0074 432.4 0.0012 0.1716 232.5
6-CC P (V0|do(V5)) 4 0.0088 23.5 0.0001 0.0156 2.3

15-CC P (V0|do(V14)) 4 0.0147 60.8 0.0001 0.0659 4.5
45-CC P (V0|do(V14, V36, V44)) 6 0.0097 199.2 2.7429 0.1509 18.6

(b) 10,000 samples

EM4CI Plug-In
Model Query klrn mad Learn-time(s) inf-time(s) mad time(s)

5-CH P (V4|do(V0)) 4 0.0508 17.3 0.0001 0.0537 2.5
9-CH P (V8|do(V0)) 4 0.0236 150.0 0.0002 0.1074 3.1

25-CH P (V24|do(V0)) 6 0.0068 697.1 0.0005 0.0714 26.4
49-CH P (V48|do(V0)) 10 0.0017 2412.6 0.0036 0.0160 133.7
99-CH P (V98|do(V0)) 6 0.0028 3887.9 0.0022 0.0433 850.6

9-D P (V8|do(V0)) 4 0.0611 390.7 0.0002 0.1481 3.0
17-D P (V16|do(V0)) 6 0.0360 1849.6 0.0007 0.0582 8.4
65-D P (V64|do(V0)) 4 0.0022 4787.2 0.0013 0.1376 2258.5
6-CC P (V0|do(V5)) 6 0.0138 116.9 0.0003 0.0136 2.7

15-CC P (V0|do(V14)) 4 0.0022 489.5 0.0043 0.0321 10.9
45-CC P (V0|do(V14, V36, V44)) 6 0.0026 1833.7 2.757 0.1561 105.8

with 1,000 samples but slower with 10,000 samples. 168

Unfortunately, the code for WERM is specific to these mod- 169

els, so we were unable to compare against it more generally. 170

This also highlights a general lack of available estimand- 171

based implementations applicable to general settings. 172

Results on large synthetic models. In Tables 4 we show 173

results on larger models of chains, diamonds, and cone- 174

cloud graphs. The first two tables compare EM4CI to the 175

plug-in method for a single query over all the models. Specif- 176

ically, Table 4a presents time and accuracy results for 1,000 177

samples. We see that EM4CI was consistently more accu- 178

rate, and in many cases significantly better (e.g., in 45-cone- 179

cloud). We see the same trend for 10,000 samples in Table 180

4b. Focusing on time, we see that the time of EM4CI is 181

significantly more costly than Plug-In, with EM learning be- 182

Table 5: EM4CI on large synthetic models

(a) 99 chain:
|V | = 99; |U | = 49; d = 4; k = 10. treewidth=3

1,000 Samples 10,000 Samples

Learning time(s) klrn time(s) klrn

413.4 6 3887.9 6
Inference

Query mad time(s) mad time(s)

P (V98|do(V0)) 0.0093 0.0023 0.0028 0.0022
P (V49|do(V0)) 0.0113 0.0011 0.0041 0.0011
P (V98|do(V49)) 0.0093 0.0011 0.0028 0.0011
P (V98|do(V90)) 0.0152 0.0004 0.0063 0.0004

(b) 65 diamond:

|V | = 65; |U | = 32; d = 4; k = 10. treewidth=5

1,000 Samples 10,000 Samples

Learning time(s) klrn time(s) klrn

432.3 4 4787.2 4
Inference

Query mad time(s) mad time(s)

P (V64|do(V0)) 0.0074 0.0012 0.0022 0.0013
P (V32|do(V16)) 0.0193 0.0004 0.0046 0.0005
P (V16|do(V0)) 0.0283 0.0004 0.0150 0.0005
P (V48|do(V32)) 0.0086 0.0004 0.0093 0.0004

ing the most time consuming part. Interestingly, while time183

grows with model size for both schemes, the inference time184

component remains efficient, likely due to the low treewidth185

of some of the models (e.g., the chains and the diamonds). In186

the 45-cone case, inference time is impacted more by model187

size, since its treewidth increases with the square root of the188

number of variables. Generally, for a single query, we find189

Plug-In has better time performance, and its time increases190

at a slower pace. In both methods, time also increases with191

sample size, e.g., when moving from 1,000 samples table to192

10,000 samples.193

In table 5a and 5b, we see the results of EM4CI on the194

99-chain and 65-diamond on multiple queries. We see the195

same trend discussed in the paper, where learning time is196

longer than inference time, and grows with sample size.197

Again, the learned domain sizes are the same for both sam-198

ple sizes, and close to the true domain size of the latent199

variables. We also see that inference is very fast and there-200

fore we can amortize the learning time over multiple queries201

if desired. Finally, we see that EM4CI is very accurate.202

Results on real networks. In 6 we see results on the203

Plug-In method and EM4CI on the Alarm network. Again,204

we see that EM4CI is more accurate than the Plug-In, but205

the learning time is longer. However, for multiple queries,206

EM4CI may take less time per query, while providing supe-207

rior quality estimates.208

Lastly in 7 the results for EM4CI on the Barley network and209

the Win95 are displayed in the context of multiple queries,210

illustrating a similar pattern. For the Barley network (Table211

7a), the learned domain sizes are large (klrn = 14) and 10212

Table 6: Plug-In & EM4CI results on the Alarm Network

|V | = 32; |U | = 5; 2 d 4; 2 k 3. treewidth⇡ 3
(a) Plug-In

1,000 Samples 10,000 Samples

Query mad time(s) mad time(s)

P (HRBP |do(Shunt)) 0.0190 2.9 0.0075 5.7
P (HRBP |do(VentAlv)) 0.0433 3.5 0.0212 5.7
P (HR|do(VentAlv)) 0.04706 4 0.0184 5.53
P (HR|do(Shunt)) 0.0229 3.0 0.00296 6.4

(b) EM4CI

1,000 Samples 10,000 Samples

Learning time(s) klrn time(s) klrn

16 2 181 4
Inference

Query mad time(s) mad time(s)

P (HRBP |do(Shunt)) 0.0076 0.0002 0.0043 0.0002
P (HRBP |do(VentAlv)) 0.0146 0.0003 0.0033 0.0003
P (HR|do(VentAlv)) 0.0106 0.0002 0.0020 0.0003
P (HR|do(Shunt)) 0.0101 0.0002 0.0027 0.0002

for both sample sizes, and accordingly learning time is also 213

large for both settings. However, inference time remains 214

very low. 215

Summary. Our experiments illustrate the strength of the 216

direct-learning approach as a viable alternative for answer- 217

ing causal effect queries. We saw that model-completion by 218

learning implemented in our EM4CI yields highly accurate 219

estimates of causal effect queries on a variety of bench- 220

marks, both synthetic networks and real life networks, on 221

both small and large models. Moreover EM4CI shows clear 222

superiority to the Plug-In estimands approach. In terms of 223

time efficiency however, EM4CI was consistently slower 224

due to learning time overhead. Yet, when answering multi- 225

ple queries is desired the time overhead can be amortized 226

over multiple queries. 227

Table 7: EM4CI results on the Real Networks

(a) "Barley":
|V | = 42; |U | = 6; 2 d 67; 2 k 9. treewidth⇡ 7

1,000 Samples 10,000 Samples

Learning time(s) klrn time(s) klrn

199 14 820 10
Inference

Query mad time(s) mad time(s)

P (Protein|do(expYield)) 0.0066 0.9038 0.0031 0.8882
P (FieldCap|do(protein)) 0.0108 0.0004 0.0032 0.0004

P (expYield|do(precipitation)) 0.0284 0.0002 0.0064 0.0002
P (weight|do(precipitation)) 0.0107 0.0002 0.0023 0.0002

(b) "Win95":
|V | = 59; |U | = 17; d = 2; k = 2 treewidth⇡ 8

1,000 Samples 10,000 Samples

Learning time(s) klrn time(s) klrn

109 2 1081 4
Inference

Query mad time(s) mad time(s)

P (Ouput|do(NnPsGrphic)) 0.0113 0.0002 0.0008 0.0002
P (PrintData|do(localOK)) 0.0768 0.0002 0.0049 0.0002
P (PCtoPRT|do(netOK)) 0.0167 0.0001 0.0141 0.0002
P (PrintData|do(lnetOK)) 0.0116 0.0002 0.0016 0.0002

	Introduction
	Background
	Learning-Based Causal Inference
	Empirical Evaluation
	Additional Results

