
Value-Based Abstraction Functions for Abstraction Sampling

Bobak Pezeshki1 Kalev Kask1 Alexander Ihler1 Rina Dechter1

1University of California, Irvine

Abstract

Monte Carlo methods are powerful tools for solv-
ing problems involving complex probability dis-
tributions. Despite their versatility, these methods
often suffer from inefficiencies, especially when
dealing with rare events. As such, importance sam-
pling emerged as a prominent technique for alle-
viating these challenges. Recently, a new scheme
called Abstraction Sampling was developed that
incorporated stratification to importance sampling
over graphical models. However, existing work
only explored a limited set of abstraction functions
that guide stratification. This study introduces three
new classes of abstraction functions combined with
seven distinct partitioning schemes, resulting in
twenty-one new abstraction functions, each moti-
vated by theory and intuition from both search and
sampling domains. An extensive empirical analysis
on over 400 problems compares these new schemes
highlighting several well-performing candidates.

1 INTRODUCTION

The partition function (Z) is an important quantity in prob-
abilistic graphical model inference and is often estimated
using Monte Carlo methods such as Importance Sampling
(IS) [Rubinstein and Kroese, 2016, Liu et al., 2015, Gogate
and Dechter, 2011]. Inspired by the works of Knuth [1975]
and Chen [1992], a framework called Abstraction Sampling
(AS) [Broka et al., 2018] was introduced extending IS by
enabling samples to represent multiple configurations. AS
uses concepts from Stratified Sampling [Rubinstein and
Kroese, 2016, Rizzo, 2007] and Compact Search [Dechter
and Mateescu, 2007, Marinescu and Dechter, 2009] to build
a sampled subtree called a probe which is then used to com-
pute an estimate. Probes are built level-by-level according
to a variable ordering where, at each level, an abstraction
function groups nodes into abstract states from which rep-
resentative nodes are selected to extend paths in the probe.

Using what are referred to as context-based abstraction func-
tions, Broka et al. [2018] showed competitive performance
of AS against IS, Weighted Mini-Bucket Importance Sam-
pling (wMBIS) [Liu et al., 2015, Ihler et al., 2012], and
IJGP-SampleSearch (IJGP-ss) [Gogate and Dechter, 2011].
Kask et al. [2020] improved Abstraction Sampling scalabil-
ity with the AOAS algorithm that more efficiently applied
AS to AND/OR search spaces. AOAS showed improved per-
formance, additionally comparing to state-of-the-art scheme
Dynamic Importance Sampling (DIS) [Lou et al., 2019].

However, AS development has lacked exploration of diverse
and potentially more effective abstraction functions. While
Hsiao et al. [2023] proposed using graph neural networks to
learn abstraction functions, such methods require learning
on a corpus of similar problems before use.

Contributions. This work provides a detailed study of
new abstraction schemes for AS. We present a new class of
abstractions defined by real-valued functions aimed at cap-
turing relevant similarity features between nodes. Three
classes of this new framework are introduced and aug-
mented by seven partitioning strategies. A purely random-
ized scheme is also introduced. An extensive empirical eval-
uation is performed on over 400 problems, comparing our
novel schemes against: each other, the previous relCB and
randCB abstraction functions [Broka et al., 2018, Kask et al.,
2020], and implicitly against IS, wMBIS, IJGP-ss, and DIS.

Our experiments identify three schemes in particular that
perform significantly better than any previous scheme. Our
results demonstrate a significant improvement for one of
the most competitive sampling schemes, thus also yielding
a substantial computational advance for one of the most
challenging tasks in probabilistic inference.

2 GENERAL BACKGROUND

Graphical Models. A graphical model, such as a
Bayesian or Markov network [Pearl, 1988, Darwiche, 2009,
Dechter, 2013], can be defined by a 3-tupleM=(X,D,F),

mailto:<pezeshkb@uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<kkask@uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<ihler@ics.uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<dechter@ics.uci.edu>?Subject=Abstraction Sampling - UAI 2024

where X is a set of variables, and D is the set of vari-
able domains, and F is a set of functions such that each
function fα ∈ F is defined over a subset of variables
α ⊆X (called the function’s scope) capturing local interac-
tions.M defines a global function, often a factorized prob-
ability distribution on X, P (X) = 1

Z

∏
α fα(Xα), where

Z =
∑

X

∏
α fα(Xα), known as the partition function, is

a normalization factor. A primal graph G=(V,E) ofM
associates each variable with a node (V=X) with edges
e ∈ E connecting nodes whose variables interact locally,
appearing in the scope of the same functions.

Search Spaces of Graphical Models. A graphical model
can be transformed into a compact AND/OR search space
to leverage conditional independence and facilitate efficient
search algorithms [Dechter and Mateescu, 2007].

Given a primal graph G, an AND/OR search space is de-
fined relative to a pseudo tree T =(V,E′), a directed rooted
tree that captures conditional independence encoded in the
model. A pseudo tree T is constructed according to a vari-
able ordering such that every arc of G not in E′ is a back-arc
in T . This construction ensures conditional independence
of any variable and its descendants from variables found in
the other branches of T given assignments to their common
ancestors. The pseudo tree in Figure 1a was constructed
using a variable ordering o = [A,B,C,D]. The dashed line
shows an edge in the primal graph that is missing from T ,
but that would be a back-arc if it were present. From its
structure we see that variables C and D are independent
of B given assignment to A. Here A is referred to as a
branching variable since it branches to multiple children.

Guided by a pseudo tree T , an AND/OR search tree T has
alternating levels of OR nodes corresponding to variables
and AND nodes corresponding to possible assignments to
those variables. Figure 1 shows an AND/OR search tree
and its guiding pseudo tree. Note that in the pseudo tree,
variables B and C extend to different branches from A.
Similarly, in the AND/OR search tree, we see OR nodes B
and C extending to different branches under each possible
assignment of A. An arc into an AND node nX of variable
X has a cost c(nX) equal to the product of functions fα ∈
F such that the path to nX fully instantiates all X ′ ∈ α and
such that X ∈ α [Dechter and Mateescu, 2007].

Notation. Capital letters (X) represent variables and small
letters (x) their values. Boldfaced letters represent a collec-
tion. Boldfaced capital letters (X) denote a collection of
variables, |X| its cardinality, DX their joint domains (all
possible configurations of X), and bolded x a particular
realization in that joint domain (a particular configuration
of X).

In the context of search, n is used generally to represent
nodes in a search tree. For AND/OR search trees, nX is
used to specifically refer to an AND node associated with
variable X , and YnX

the OR node associated with variable

(a)

A

B

0

C

0 1 0 1

B

1

C

0 1 0 1

10 20

1 4 2 5 10 20 5 10

D

0 1

2 3

D

0 1

5 10

D

0 1

10 20

D

0 1

15 5

Ancestor
Branching

Mass of

(b)
Figure 1: A full AND/OR tree representing 16 possible full
configurations of binary variables A,B,C, and D guided by
the pseudo tree shown in subfigure (a) above. The path cost for
the highlighted node nA=0,C=1 at the end of the path→(A=
0)→(C=1) is g(nA=0,C=1) = 10·5. The value of the subtree
under nA=0,C=1 is Z(nA=0,C=1) = 2·1+3·1. Boxed in green
is the ancestor branching subtree for nA=0,C=1 and it has the
value R(nA=0,C=1) = 1 ·1 + 4 ·1. Thus, Q(nA=0,C=1) =
(10·5)·(1·1 + 4·1)·(2·1 + 3·1).

Y that is the child of nX . ch(n) are the children of node
n. path(n) is the configuration of the variables along the
path from the root of a search tree T to node n according to
assignments corresponding to that path. For the highlighted
node n in Figure 1b, path(n) = {A=0, C=1}. varpath(n)
is the set of variables that path(n) provides a configuration
for. In Figure 1b varpath(n) = {A,C}. The cost of the arc
to an AND node nX is

c(nX) =
∏

f∈{fα∈F | α⊆varpath(nX), X∈α}

f(path(nX)). (1)

or 1, vacuously. Letting anc(n) be the AND node an-
cestors of n in the search tree, the cost of path(n) is
g(n) =

∏
n′∈anc(n) c(n

′). In Figure 1b, g(n) = 10 · 5.

We now define some important quantities involved in evalu-
ating AND/OR search spaces.

Z(n). The total cost of the subtree rooted at n. For an
AND node nX with children OR nodes YnX

∈ ch(nX),
Z(nX) satisfies

Z(nX) =
∏

YnX
∈ch(nX)

Z(YnX
) (2)

such that for OR nodes YnX

Z(YnX
) =

∑
nY ∈ch(YnX

)

c(nY) · Z(nY) (3)

with Z(nX) = 1 in the case nX has no children.

Note that given n∅ as the dummy root node of AND/OR
tree T , Z(n∅) = Z of the underlying modelM. We denote
estimation of Z(n) as Ẑ(n). Heuristic estimates of Z(n)
are more specifically denoted as h(n).

R(n). On the path from the root of an AND/OR tree T
to some node nX , there may be an intermediate node nY
associated with branching variable Y in the guiding pseudo
tree T . (In Figure 1b, on the path to the highlighted node
nA=0,C=1, node nA=0 is traversed where A is a branch-
ing variable in T of Figure 1a). When this happens, the
remaining variables of the model are split between differ-
ent branches. Thus, the Z(n) of any node down one of the
branches will necessarily omit the costs from the config-
urations of the variables included in the other branch(es).
R(nX), or the ancestor branching mass, captures these
omitted costs. (In Figure 1b, the green box shows the por-
tion of T corresponding to R(nA=0,C=1)).

More formally, let br(nX) be the set of ancestor nodes nYi

of nX such that each Yi is a branching variable ancestor of
X in T . We then define R(nX) simply as:

R(nX) =
∏

nY ∈br(nX)

∏
WnY

∈ch(nY)

WnY
̸∈path(nX)

Z(WnY
), (4)

(In Figure 1b, br(nA=0,C=1) = {nA=0}, A being the only
branching variable ancestor of C in T , and BnA=0

the only
respective child OR node not not on the path to nA=0,C=1.
Thus, R(nA=0,C=1) = Z(BnA=0

)). We denote approxima-
tions to R(n) as r(n).

Q(n). We can now concisely define a quantity Q(n) as
the contribution to Z from all full configurations consistent
with path(n). In other words, Q(n) is the unnormalized
measure of the configuration path(n), with P (path(n)) =
Q(n)
Z . The quantity Q(n) obeys:

Q(n) = g(n)·R(n)·Z(n). (5)

Example. In Figure 1b, consider the path from the root to
the red node nA=0,C=1. Following nA=0 to our node, we
see OR node BnA=0

branches off of the path. So,

Q(nA=0,C=1) = g(nA=0,C=1) ·R(nA=0,C=1) ·Z(nA=0,C=1)

= g(nA=0,C=1) ·Z(BnA=0) ·Z(nA=0,C=1)

= (10·5) ·(1·1 + 4·1) ·(2·1 + 3·1)

Stratified Importance Sampling. Abstraction Sampling
builds on Stratified Importance Sampling, which in turn
builds on Importance Sampling and Stratified Sampling.
Importance Sampling is a Monte Carlo scheme used for
approximating likelihood queries [Rubinstein and Kroese,
2016, Liu et al., 2015, Gogate and Dechter, 2011]. Stratified

Algorithm 1: AOAS Overview
1. Initialization: Begin with a dummy root node r.

2. Probe Generation: Proceeding in a DFS manner according
to a pseudo tree T ...

(a) Expansion: Generate children nodes n corresponding
to the next variable in the DFS ordering of T . Inherit
w(n) from parents and assign appropriate
g(n), h(n), and r(n) values.

(b) Abstraction:
i. Form Abstract States: Using a(·), partition newly

expanded nodes into abstract states.
ii. Select Representative: Using proposal

p(n) ∝ q(n), stochastically select a representative
from each abstract state and reweigh it such that
w(n)← w(n)

p(n)

(c) Backtrack: After reaching a leaf in T , recursively
backtrack until reaching the node that extends to the
next unexplored branch of T . While backtracking,
update parent node n′’s Ẑ(n′) estimates based on its
children’s w(n), g(n), and Ẑ(n) values.

(d) Repeat: Repeat steps 2a-2c until backtracking to the
root node.

3. Return: Ẑ = w(r) Ẑ(r) for the root node r.

Sampling is a variance reduction technique for sampling a
search space by first dividing it into disjoint strata [Rubin-
stein and Kroese, 2016]. In Stratified Importance Sampling,
the sample space is first divided into k strata, then represen-
tatives from each strata chosen and re-weighted to represent
the omitted members of their respective strata. Rizzo [2007]
shows that to reduce overall variance given strata of equal
mass under the proposal, the sum of the variances within
the strata should be minimized.

3 ABSTRACTION SAMPLING

Abstraction Sampling (AS) [Broka et al., 2018] applies con-
cepts of Stratified Importance Sampling to sampling over
probabilistic graphical models. AS is guided by an abstrac-
tion function a(·) that dictates how nodes are partitioned
into abstract states (abstract states being analogous to strata
in stratified sampling). A search tree is iteratively expanded
along a variable ordering. After each expansion, a(·) is
used to group nodes into abstract states. Then AS uses an
importance-sampling-like process to select a representative
from each abstract state and reweights it using importance
sampling weights to account for the unselected nodes it rep-
resents. The selected nodes are then further expanded and
the process iterates. This process yields a weighted sampled
subtree of the full search tree T as a sample, referred to as a
probe. It is important to note that AS probes can contain mul-
tiple full configurations, whereas samples from importance
sampling are each only a single full configuration.

B

0 1

A C

0 1 0 1

A C

0 1 0 1

D

0 1

D

0 1

D

0 1

D

0 1

(a)

B

A

0

C

0 1

A

1

C

0 1

D

0 1

D

0 1

D

0 1

D

0 1

0 10 1

(b)

B

A

0

C

0 1 0 1

A

1

C

0 1

X

D

0 1

D

0 1

D

0 1

D

0 1

(c)

B

A

0

C

0 1 0 1

D

0 1

D

0 1

(d)

B

A

0

C

0 1 0 1

D

0 1

D

0 1

(e)

B

A

0

C

0 1 0 1

D

1

D

0

(f)

Figure 2: From Kask et al. [2020], a sample trace of AOAS
following ordering B → A→ C → D. Transparent nodes in-
dicate portions of the reachable search space yet to be explored.
Gray boxes indicate nodes considered for abstraction. Nodes
with the same domain values (also indicated by the same color)
are abstracted into the same abstract state. Only one node of
each color is stochastically selected as a representative for its
respective abstract state. Step (c) shows an optional pruning
step. Step (f) shows the final probe capturing four full config-
urations: B=0, A=0, C=0, D=0, B=0, A=1, C=0, D=0,
B=0, A=0, C=1, D=1, B = 0, A = 1, C = 1, D = 1.

AOAS. Taking Abstraction Sampling further, Kask et al.
[2020] introduced algorithm AOAS that more effectively
applied Abstraction Sampling to AND/OR search spaces
and significantly improved its performance. AOAS uses a
proposal function p(n) ∝ w(n)q(n) = w(n)g(n)h(n)r(n)
where a weight w(n) accounts for the nodes previously
abstracted into the path to n, g(n) is the cost of the path
to n, h(n) is a heuristic estimate of Z(n), and r(n) is an
estimate ofR(n) (see Figure 3). Algorithm 1 provides a high
level description of the AOAS procedure. Figure 2 shows
a sample trace of AOAS from Kask et al. [2020]. A more
detailed version of the algorithm and detailed description of
the sample trace can be found in the Supplemental Materials.

n'
n''

nX

h(nX)

w(nX)

nX'

X'' X

r(nX)
g(n)

Figure 3: The unnormalized proposal distribution w(n)q(n)
visualized to show it considering nodes previously abstracted
(via w(n)), the ancestor branching mass (via r(n)), current
path cost (via g(n)), and subtree mass (via h(n)).

4 VALUE-BASED ABSTRACTIONS

The choice of abstraction function is a crucial aspect of Ab-
straction Sampling but has only received limited attention so
far. The main focus of this work is to identify new abstrac-
tion functions that significantly improve AS performance.

Existing State-of-the-Art: Context-Based Abstraction
Functions. Broka et al. [2018] designed abstractions
based on assignments to a variable’s contextC(X) - a subset
of its ancestors in T whose assignments uniquely determine
the AND/OR subtree below it [Dechter and Mateescu, 2007].
However, the number of configurations to a context is expo-
nential in the context’s size. Thus, Broka et al. [2018] and
Kask et al. [2020] used relaxed context-based (RelCB) and
randomized context-based (RandCB) abstractions to control
the number of abstract states. RelCB uses a parameter nCtx
that groups nodes with the same configuration over the most
recent nCtx−1 context variables (the relaxed context) into
the same abstract state. With a domain size of k, this yields
at most knCtx abstract states at each level. RandCB con-
siders the entire context but bounds the number of abstract
states per level based on an nAbs parameter and by using a
randomized hashing scheme to associate each full context
assignment to one of the nAbs abstract states.

Value-Based Abstractions. We now introduce a new way
to form abstractions that we call Value-Based Abstractions.
They are defined by (1) a positive real-valued function
µ : DX → R+, where DX is a set of configurations for
the variables X , and by (2) a partitioning scheme ψµ that
assigns nodes to abstract states based on their µ value and
in an order-consistent manner as defined next.

Definition 4.1 (Value-Ordered Partitioning)
Given nAbs and a function µ : DX → R+, a partition-
ing function ψµ : DX → {A1, A2, ...AnAbs}, is order-
consistent with µ relative to the nAbs abstract states if for
any n1 ∈ Ai and n2 ∈ Aj , i < j ⇔ µ(n1) ≤ µ(n2).

4.1 VALUE-BASED ABSTRACTION CLASSES

We introduce three Value-Based Abstraction classes, each
characterized by a unique value function µ that signifies a
notion of similarity between nodes. We will subsequently
provide partitioning schemes that, together with µ, will yield
a set of full abstraction functions.

1. Heuristic-Based Abstractions. Heuristic-Based (HB)
abstractions use µ(n) = h(n), where h(n) is a heuristic
estimate of Z(n). Unlike partial or hashed contexts as used
by Broka et al. [2018], heuristic estimates of Z(n) can often
provide quantitative insight into potential similarities of
Z(n) values. In particular, this intuition holds when using
heuristics that provide bounds on Z(n) such as those via
Weighted Mini-Bucket Elimination (wMBE) [Dechter and
Rish, 2003, Liu and Ihler, 2011].

2. Heuristic and Ancestral Branching-Based Abstrac-
tions. Recall that r(n) is an estimate of n’s ancestor
branching mass R(n). We can show that:

Theorem 4.1 (AOAS Exact Abstractions)
If an abstraction function a(·) forms abstract states Ai ∈ A

such that ∃ci ∈ R+,∀n ∈ Ai,
h(n)r(n)
Z(n)R(n) = ci whenever

Z(n)R(n) > 0 (or h(n)r(n) = 0 otherwise), then AOAS
is exact with its estimates having zero variance.

This observation suggests to use hr(n) = h(n)r(n)
Z(n)R(n) as a

similarity measure. When nodes having close hr values are
placed in the same abstract state it can lead to a reduction in
variance of the resulting estimate. However, without access
to Z(n) or R(n) we cannot evaluate this ratio directly. In-
stead we use the intuition that grouping based on h(n)r(n)
may result in sets of nodes also with similar Z(n)R(n), and
thus result in similar hr(n). We call such schemes that use
µ(n) = h(n)r(n) HR-Based (HRB) abstractions.

3. Q-Based Abstractions. Another intuition for generat-
ing abstractions comes from statistics theory. In his work
on stratified Importance Sampling, Rizzo [2007] showed
the potential of overall variance reduction by forming strata
(abstract states) having equal mass under the proposal dis-
tribution and that minimizes the variance within each strata.
Thus, since our proposal p is proportional to w(n)q(n), we
use µ(n) = w(n)q(n) = w(n)g(n)h(n)r(n) in what are
called Q-based (QB) abstractions.

4.2 ORDERED PARTITIONING SCHEMES

Next we describe seven partitioning schemes ψ to be used
with µ to partition the nodes n into abstract states. Together,
µ and ψ define a value-based abstraction function.

Running Example. We will use a running example to
illustrate the result of using various partitioning schemes.

Assume we have eight nodes with the following µ(n):
1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100 (6)

Algorithm 2: ΨsimpleVB

1 baseCardinality ← ⌊ |n|
nAbs
⌋

2 extras← |n| mod nAbs
3 n∗ ← SORT (n, µ, low-to-high)
4 jbegin ← 1
5 foreach i← 1, ..., nAbs do
6 if extras > 0 then
7 jend ← jbegin + baseCardinality
8 extras← extras− 1

9 else
10 jend ← jbegin + baseCardinality − 1
11 Ai ← {n∗

jbegin
, ..., n∗

jend
}

12 jbegin ← jend + 1

13 end
14 A← ∪nAbs

i=1 Ai

15 return A

and want to partition the nodes into nAbs = 4 abstract
states. As we describe each partitioning scheme, we also
demonstrate how the scheme would partition these nodes.

1. SimpleVB. The simpleVB (simple value-based) scheme
groups nodes having similar µ(n) into the same state by a
simple 2-step process: 1) nodes are ordered by µ(n) (low to
high), and 2) nodes are partitioned into abstract states with
[approximately] equal cardinality.

Running Example: {1.0, 1.1}, {1.2, 1.3}, {1.4, 1.5}, {10, 100}.

This method leverages speed while still aiming to roughly
group nodes with similar µ(n) together.

2. minVarVB. minVarVB uses Ward’s Minimum Vari-
ance Hierarchical Clustering, also known as Ward’s Method
[Ward, 1963] (Algorithm 3), to cluster nodes into nAbs ab-
stract states. Use of Ward’s method minimizes total within
variance of µ(·) across all abstract states. Ward’s Method
can be combined with Lance-Williams linear distance up-
dates [Lance and Williams, 1967] to increase efficiency.
More details on Ward’s Method and Lance-Williams linear
distance updates are found in the Supplemental Materials.

Running Example: {1.0, 1.1, 1.2}, {1.3, 1.4, 1.5}, {10}, {100}.

In contrast to simpleVB, minVarVB places considerable com-
putational resources into computing abstractions by using
Ward’s Method. Thus minVarVB leads to fewer probes being
generated but provably forms abstractions that minimize the
total within variance of µ(n) among the abstract states.

3. equalDistVB. In attempt to combine the intuition from
minVarVB and the speed of simpleVB, equalDistVB greedily
adds nodes in order of µ (low to high) into an abstract state
Ai until

µ(A1,...,i)=

i∑
j=1

∑
n∈Aj

µ(n) ≥ Qi=
i ·

∑
n′∈n µ(n

′)

nAbs
, (7)

i.e., until the total sum of node values from A1, ...,Ai

reaches or exceeds i
nAbs of the total across all of the nodes

Algorithm 3: Ward’s Method
1. Initialization: Treat each data point as an individual cluster.

Assign each cluster a label.

2. Compute Pairwise Distances: Calculate the pairwise
distances between all clusters. Various distance metrics can
be used, such as Euclidean distance.

3. Cluster Merging Iteration:

(a) Identify the pair of clusters Ci and Cj that, when
merged into a new cluster Cij , results in the smallest
increase in the overall within-cluster variance. This is
determined using the formula:

∆V ar = V ar(Cij)− (V ar(Ci) + V ar(Cj))

where V ar(Cij) is the variance of the merged cluster,
and V ar(Ci) and V ar(Cj) are the variances of
clusters Ci and Cj , respectively.

(b) Update distance measures between the newly merged
cluster and all other clusters.

4. Repeat: Repeat steps 2-3 until the desired number of clusters
is achieved.

being partitioned. When paired with Q-based abstractions,
equalDistVB aims to partition nodes into equal mass states
under the proposal, motivated by Rizzo [2007].

Running Example: {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100},{},{},{}.

Although equalDistVB hopes to strike a balance between
efficiency and low variance of µ(n) within each abstract
state, from the running example we can see it may yield
undesirable partitionings for skewed distributions of µ(·)
values. In the example, all of the nodes need to be placed into
the first of four abstract states before the sum of their values
reaches/exceeds 1

4 of the total of all nodes being partitioned.
Thus, the remaining abstract states end up empty.

4. equalDistVB2. A second version of the equalDist
scheme, equalDistVB2, follows the same general strategy as
equalDistVB but uses a reversed sort ordering in attempt to
mitigate overfilling of abstract states. Modifying the sort or-
der from low-to-high to high-to-low in Line 1 of Algorithm
4 converts equalDistVB to equalDistVB2.

Running Example: {100}, {}, {}, {10, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0}

We see that equalDistVB2 can still over-pack abstract states.
The next two variants aim to mitigate this issue further.

5. equalDistVB3. In order to further lessen over-packing
and ensure abstract states are not left empty, equalDistVB3
modifies equalDistVB2 so that, after processing each ab-
stract state, the next state always has a node added to it
by default before checking the abstract state fill condition.
Modifying the sort order from low-to-high to high-to-low in
Line 1 and Ai ← {} to Ai ← {n∗j}; j ← j + 1; in Line 4
of Algorithm 4 converts equalDistVB to equalDistVB3.

Running Example: {100}, {10}, {1.5}, {1.4, 1.3, 1.2, 1.1, 1.0}.

Algorithm 4: ΨequalDistVB

1 n∗ ← SORT (n, µ, low-to-high)
2 j ← 1
3 foreach i← 1, ..., nAbs do
4 Ai ← {}
5 while µ(A1,...,i) < Qi do
6 Ai ← Ai ∪ {n∗

j}
7 j ← j + 1

8 end
9 end

10 A← ∪nAbs
i=1 Ai

11 return A

While still very efficient, equalDistVB3 ensures that the
provided nAbs granularity is honored, allowing users better
control of the search vs. sampling interpolation possible
with Abstraction Sampling.

6. equalDistVB4. The final equalDist variant, equalD-
istVB4, aims for more even partitioning. Before processing
each abstract state Ai, a new cut-off is determined based
the remaining nodes n∗

rm and remaining abstract states:

Q̂i =

∑
n∈n∗

rm
µ(n)

nAbs− i+ 1
. (8)

Nodes are added to abstract state Ai while µ(Ai) < Q̂i.
Modifying the sort order from low-to-high to high-to-low
in Line 1 and µ(A1,...,i) < Qi to µ(Ai) < Q̂i in Line 5 of
Algorithm 4 converts equalDistVB to equalDistVB4.

Running Example: {100}, {10}, {1.5, 1.4, 1.3}, {1.2, 1.1, 1.0}.

Still computationally efficient, equalDistVB4 spreads nodes
with small values more evenly across abstract states.

7. randVB. It can be beneficial to rely on randomness to
ensure a diverse sampling of abstractions. randVB does this
by sampling nAbs−1 partition points uniformly at random
and without replacement from between nodes sorted accord-
ing to µ(·), and then partitions the nodes accordingly. The
resulting abstract states ensure that nodes are still grouped
according to µ(·), but the sizes of those groups vary.

Algorithm 5: ΨrandVB

1 s ∼ Unif({M ⊆ {1, ..., |n| − 1} | |M | = nAbs− 1})
2 s∗ ← SORT (s)
3 n∗ ← SORT (n, µ, high-to-low)
4 j ← 1
5 foreach i← 1, ..., nAbs−1 do
6 Ai ← {n∗

j , ..., n
∗
s∗i
}

7 j ← s∗i + 1

8 end
9 AnAbs = {n∗

j , ..., n
∗
|n∗|}

10 A← ∪nAbs
i=1 Ai

11 return A

Running Example: ex1: {100, 10}, {1.5}, {1.4, 1.3, 1.2},
{1.1, 1.0}; ex2: {100}, {10, 1.5, 1.4, 1.3}, {1.2, 1.1}, {1.0}; etc.

Complexity. Assuming µ(·) isO(1), each of the proposed
partitioning schemes have time complexity O(|n| log |n|)
and space complexity O(|n|), with the exception of min-
VarVB, which requires O(|n|2) for both. More details can
be found in the Supplemental Materials.

5 RANDOM-ONLY ABSTRACTIONS

Another unexplored approach was to use purely randomized
abstraction schemes. At first glance, one may not expect
such schemes to perform well, but randomization in concert
with an informative heuristic and proposal can be beneficial.

Intuition. First, given an informative heuristic, the
stochastic selection of a representative node within each
abstract state using a good proposal function will typically
opt for nodes that represent greater mass, which is generally
beneficial in importance sampling. Second, the randomness
of node assignments to the abstract states enables nodes
that may otherwise have little chance of being selected to
occasionally have a greater chance of selection, leading to a
more diverse distribution of probes.

The simpleRand Scheme. More concisely referred to as
RAND, the simpleRand scheme partitions nodes via a 2-
step process: 1) nodes first are shuffled to create a uniformly
random permutation, and then 2) the nodes are partitioned
into (approximately) equal cardinality nAbs abstract states.

Algorithm 6: ΨsimpleRand

1 baseCardinality ← ⌊ |n|
nAbs
⌋

2 extras← |n| mod nAbs
3 n∗ ← RANDOM_SHUFFLE(n)
4 jbegin ← 1
5 foreach i← 1, ..., nAbs do
6 if extras > 0 then
7 jend ← jbegin + baseCardinality
8 extras← extras− 1

9 else
10 jend ← jbegin + baseCardinality − 1
11 Ai ← {n∗

jbegin
, ..., n∗

jend
}

12 jbegin ← jend + 1

13 end
14 A← ∪nAbs

i=1 Ai

15 return A

Running Example: {1.4, 1.1}, {1.2, 10}, {1.0, 1.3}, {100, 1.5}.

Complexity. Both time and space are O(|n|).

6 EMPIRICAL EVALUATION

Overview. All combinations of Value-Based Abstraction
Classes: Heuristic-Based (HB), HR-Based (HRB), and Q-
Based (QB); with each of the Ordered Partitioning Schemes:
simpleVB, minVarVB, equalDistVB1-4, and randVB; were

tested, resulting in twenty-one value-based abstraction func-
tions. The formerly evaluated context-based (CTX) abstrac-
tion functions: randCB and relCB were compared against.
In addition, the purely random abstraction function, RAND,
was also included. With the exception of RelCB, each ab-
straction function uses a hyper parameter, nAbs, which
bounds the number of abstract states at any level. RelCB
instead uses an nCtx parameter that limits the number of
context variables used in assigning abstract states. To facili-
tate comparison, we report RelCB’s nCtx parameter instead
as an equivalent nAbs parameter assuming a domain size
of 2. (For example, if RelCB was run using nCtx = 6, we
report it with nAbs = 26). All abstraction functions were
tested using the AOAS algorithm [Kask et al., 2020]. All
algorithms were implemented in C++. All experiments were
run on a 2.66 GHz processor and allotted 8 GB of memory.

Heuristics. To inform the sampling proposal, Weighted
Mini-Bucket Elimination (wMBE) [Dechter and Rish, 2003,
Liu and Ihler, 2011] – which pairs well with AND/OR
search [Mateescu and Dechter, 2005] – is used as a heuristic.
The i-bound (iB) parameter controls the strength of wMBE,
where higher i-bounds generally lead to stronger heuristics,
and thus better proposals, at the expense of more computa-
tion and memory. We standardize our experiments by using
the same i-bound when comparing across algorithms.

Benchmarks. In line with previous work on Abstraction
Sampling, we perform experiments on the same set of over
400 problems from five benchmarks: DBN, Grids, Linkage-
Type4, Pedigree, and Promedas used by Kask et al. [2020].
We refer to problem instances with known Z values as
Exact. Larger problems without exact solutions are called
LARGE. For LARGE problems, estimates from 10hr of
AOAS using the RAND - RAND being well performing
- are used as the reference Z value. When experimenting

Table 1: Exact Benchmark Statistics. Average statistics for
Exact problems. N: number of instances, |X|: average number
of variables, k: average of problems’ largest domain sizes, w*:
average induced tree-width, d: average T depth.

Benchmark N |X| k w* d

DBN 66 67 2 29 30
Grids 8 250 2 22 49
Pedigree 25 690 5 25 89
Promedas 65 612 2 21 62

Table 2: LARGE Benchmark Statistics. Average statistics
for LARGE problems. N: number of instances, |X|: average
number of variables, k: average of problems’ largest domain
sizes, w*: average induced tree-width, d: average T depth.

Benchmark N |X| k w* d

DBN 48 216 2 78 78
Grids 19 3432 2 117 220
Linkage-Type4 82 6550 5 45 761
Promedas 173 1194 2 72 114

on Exact problems, algorithms use a small i-bound of 5
(weakening the heuristic estimates) and were given a limited
time of 300sec to increase difficulty. For LARGE problems,
an i-bound of 10 and time limit of 1200sec are used.

Performance Measure. To evaluate performance, we de-
fine error as: Error = | log10 Ẑ − log10 Z

∗|, where Ẑ is
the estimate obtained from AS and Z∗ is the reference Z
value. For Exact problems, Z∗ = Z.

6.1 RESULTS

Summary Comparison. To examine potential of the dif-
ferent methods, we tested each algorithm with a range
of nAbs∈ {1, 4, 16, 64, 256, 512, 1024, 2048}. For each nAbs
and benchmark, we calculated the average error across prob-
lems of the benchmark and identified the nAbs that resulted
in the lowest average error. Table 3a focuses on Exact prob-
lems and shows this lowest average error and corresponding
nAbs for each algorithm. Table 3b shows the corresponding
results for LARGE problems on the better performing QB
and RAND classes, and the CTX class for comparison. If an
algorithm was unable to produce a positive Monte Carlo Z
estimate for a problem (denoted "Fail"), the wMBE heuris-
tic bound was used as its Z estimate and error computed
accordingly. We highlight the best performing schemes.

Comparison using 100 Samples. To assess the quality of
abstraction functions in an implementation-agnostic manner
and irrespective of resulting probe-sizes or speed, we con-
ducted experiments using a one-hundred sample limit (m-
100). Table 4 shows these results on Exact problems for the
better performing QB and Rand classes using nAbs = 256.
nAbs = 256 was chosen as (1) it is an intermediate granular-
ity and (2) all schemes produced 100 samples in a reasonable
time. We highlight the best performing schemes.

Varying nAbs. Table 5 shows average error for nAbs∈
{4, 64, 1024} on Exact problems of each benchmark. We
focus on the better performing variants of QB: min-
VarQB, equalDistQB3, equalDistQB4; the purely random-
ized scheme RAND; and the context-based schemes (CTX)
for comparison. In Figure 4 and Figure 5, we also show
average error across a wider array of nAbs for minVarQB
and equalDistQB4, respectively, the latter also acting as a
representative for the profile of equalDistQB3 and RAND.

Time Series Plot. Figure 6 and Figure 7 show time-series
results for the better performing QB algorithms, RAND, and
CTX schemes on a representative Grids and Promedas prob-
lem. Each algorithm was plotted with the nAbs that resulted
in the lowest average error for the respective benchmark.

6.2 ANALYSIS

Comparison with Context-Based Schemes. Table 3a
shows that there is always a partitioning scheme for HB and
HRB that can outperform the best CTX scheme on Exact

Figure 4: Varying nAbs for minVarQB. Average error on
Exact problems using iB-5 and time limit 300 sec for each
benchmark at various abstraction granularities (in log2).

Figure 5: Varying nAbs for equalDistQB4. Average error
on Exact problems using iB-5 and time limit 300 sec for each
benchmark at various abstraction granularities (in log2).

problems. For HB, the simple and rand partitioning schemes
perform best, whereas for the HRB class it is more bench-
mark dependent. QB with minVar, equalDist3, and equalD-
ist4 partitioning outperform the CTX schemes across all
benchmarks. RAND also consistently outperforms the CTX
schemes. Results from Table 3b on LARGE problems agree,
with the exception of QB with minVar and RAND, which
fall slightly shy of randCB’s performance on Promedas.

Comparison with Purely Randomized Abstractions.
Table 3 shows RAND is a particularly well performing
scheme across all benchmarks. However, the QB class us-
ing the equalDist3 and equalDist4 strategies is consistently
comparable or better than the purely randomized scheme.
No other scheme does as well.

Comparison with Non Abstraction Sampling Schemes.
In prior work by Broka et al. [2018] and Kask et al. [2020],
Abstraction Sampling using CTX based abstractions was
shown as competitive against several powerful schemes
such as Importance Sampling (IS), Weighted Mini-Bucket
Importance Sampling (wMBIS) [Liu et al., 2015], IJGP-

Class Scheme nAbs Fail nAbs Fail nAbs Fail nAbs Fail
simple 2048 0 0.440 1024 0 2.202 2048 0 0.150 1024 0 0.575
minVar 1 0 1.361 16 0 3.251 64 0 0.422 16 2 2.509

equalDist 1 0 1.365 2048 0 10.854 1024 0 0.303 1024 0 2.332
equalDist2 1 0 1.570 512 0 8.050 1024 0 0.315 64 0 2.123
equalDist3 1 0 1.489 2048 0 2.764 1024 0 0.279 256 0 2.196
equalDist4 1024 0 2.819 64 0 6.029 512 0 0.214 2048 0 1.355

rand 256 0 0.496 2048 0 2.248 2048 0 0.185 2048 0 0.752
simple 2048 0 0.491 4 0 9.667 256 0 0.225 2048 0 0.705
minVar 1 0 1.500 64 0 2.319 256 0 0.309 16 1 2.801

equalDist 1 0 1.305 256 0 10.635 1024 0 0.638 16 4 4.055
equalDist2 1 0 1.549 2048 0 6.790 16 0 0.457 16 2 3.445
equalDist3 1 0 1.405 1024 0 2.292 16 0 0.537 16 2 2.656
equalDist4 1 0 1.511 512 0 1.829 64 0 0.483 2048 0 2.024

rand 2048 0 0.451 4 0 6.122 64 0 0.666 1024 1 2.165
simple 1 0 1.469 16 0 10.076 256 0 0.297 256 1 3.164
minVar 2048 0 0.050 1024 0 1.566 64 0 0.210 64 1 1.062

equalDist 4 0 1.174 2048 0 8.134 2048 0 0.144 2048 0 0.583
equalDist2 2048 0 0.736 2048 0 4.405 1024 0 0.145 2048 0 0.539

equalDist3 2048 0 0.042 2048 0 1.771 512 0 0.148 2048 0 0.412
equalDist4 2048 0 0.130 512 0 1.754 512 0 0.134 512 0 0.437

rand 1 0 1.295 256 0 6.048 16 0 0.740 16 2 5.988
rand 4 0 1.381 4 0 5.030 16 0 0.540 1024 1 2.442
rel 1 0 1.472 64 0 4.021 64 0 0.424 64 6 4.349

RAND rand 2048 0 0.104 1024 0 1.501 1024 0 0.143 1024 0 0.513

HRB

QB

CTX

Avg. Error

HB

DBN GridsiB-5, t-300sec, Exact Promedas
Avg. Error

Pedigree
Avg. ErrorAvg. Error

(a)

Class Scheme nAbs Fail nAbs Fail nAbs Fail nAbs Fail
simple 1 0 6.540 16 0 197.931 2048 13 48.681 4 34 11.919
minVar 2048 0 1.837 1024 0 28.423 256 31 93.058 16 13 5.403

equalDist 512 0 5.423 2048 0 118.547 2048 22 46.196 512 15 5.960
equalDist2 2048 0 3.813 2048 0 91.994 1024 21 40.310 2048 12 4.982

equalDist3 2048 0 1.645 2048 0 19.277 1024 20 37.490 256 5 2.560
equalDist4 2048 0 1.643 2048 0 18.866 2048 16 30.512 512 5 2.476

rand 4 0 6.292 16 0 163.973 256 17 156.992 4 28 11.532
rand 64 0 5.710 512 0 111.104 2048 53 194.741 256 0 3.222
rel 1 0 6.267 1024 0 80.633 1024 37 129.189 16 34 11.247

RAND rand 2048 0 2.123 2048 0 19.053 1024 19 33.804 1024 10 3.936

QB

CTX

iB-10, t-1200sec, LARGE DBN Grids Linkage-Type4 Promedas
Avg. Error Avg. Error Avg. Error Avg. Error

(b)
Table 3: Summary Comparison. Each table shows the Abstraction Class (Class), Partitioning Scheme (Scheme), bound on the
number of abstract states per level (nAbs), number of problems for which a positive solution could not be estimated (Fail), and
average log10 Z error (Avg. Error) across Exact problems (subtable (a)) and LARGE problems (subtable (b)) in each benchmark.
Color bars visualize error magnitudes. We hightliht the best performing algorithms: those for which: (1) difference in total average
error (summed across the benchmarks) with respect to the best such total was less than 15% of the best, and (2) within each
individual benchmark, the difference in average error with respect to the best average error was less than 35% of the best. (An
exception to the latter criterion was granted to Exact DBN, on which the best average error from equalDistQB3 was unusually low).

Class Scheme nAbs Fail Fail Fail Fail

simpleQB 256 0 5.350 0 17.406 0 1.059 14 9.659

minVarQB 256 0 0.111 0 1.911 0 0.223 1 1.634
equalDist 256 0 5.619 0 15.533 1 0.858 13 5.420

equalDist2 256 0 2.319 0 11.220 0 0.563 6 3.479

equalDist3 256 0 0.173 0 3.615 0 0.206 1 1.473

equalDist4 256 0 0.277 0 2.305 0 0.180 1 1.373

randQB 256 0 4.982 0 12.653 0 3.211 13 19.441

rand 256 0 3.587 0 9.568 2 4.695 3 14.386

rel 256 0 5.265 0 8.013 0 1.097 36 10.845

RAND rand 256 0 0.288 0 2.464 0 0.325 3 2.570

CTX

Promedas
Avg. Error Avg. Error Avg. Error Avg. Error

QB

iB-5, m-100, Exact DBN Grids Pedigree

Table 4: 100-Sample Comparison. For abstraction granularity
of nAbs = 256, aggregated statistics (as described in Table
3) for Exact problems of each benchmark with each algorithm
allotted 100 samples.

SampleSearch (IJGP-ss) [Gogate and Dechter, 2011], and
Dynamic Importance Sampling [Lou et al., 2019]. Thus,
superior performance against CTX schemes implicitly indi-
cates competitiveness against the these other methods.

Abstraction Quality of the QB Schemes. When drawing
an equal number of samples with the same abstraction gran-

Class Scheme nAbs Fail Fail Fail Fail
4 0 1.684 0 3.622 0 1.434 2 2.518

64 0 0.180 0 1.897 0 0.210 1 1.062
1024 0 0.060 0 1.566 0 0.479 2 1.837

4 0 1.594 0 5.861 0 1.668 1 1.804
64 0 0.236 0 2.570 0 0.221 0 0.570

1024 0 0.051 0 1.844 0 0.155 0 0.462
4 0 1.371 0 5.988 0 1.648 1 1.678

64 0 0.215 0 2.438 0 0.231 0 0.596
1024 0 0.150 0 1.891 0 0.150 0 0.455

4 0 1.381 0 5.030 0 1.852 7 4.643
64 0 1.763 0 5.950 0 0.598 1 2.659

1024 0 2.007 0 5.513 0 1.114 1 2.442
4 0 1.850 0 5.933 0 1.332 10 5.729

64 0 3.510 0 4.021 0 0.424 6 4.349
1024 0 5.086 0 5.136 0 1.041 15 6.688

4 0 1.018 0 4.329 0 1.705 2 2.947
64 0 0.418 0 2.094 0 0.212 0 0.757

1024 0 0.120 0 1.501 0 0.143 0 0.513
RAND rand

DBN
Avg. Error

QB

minVar

equalDist3

equalDist4

Grids
Avg. Error Avg. Error Avg. Error

Pedigree PromedasiB-5, t-300sec, Exact

CTX

rand

rel

Table 5: Varying nAbs. Average error when using nAbs ∈
{4, 64, 1024} for minVarQB, equalDistQB3, equalDistQB4,
the CTX based algorithms, and RAND, each with iB-5 and
time limit of 300 sec.

ularity of nAbs = 256 (Table 4), QB with equalDist3 and
equalDist4 and RAND are well performing as seen when

Figure 6: Z estimates from various algorithms versus time on
Exact Grids problem grid20x20.f15 using iB = 5. The dashed
black line shows the true Z value.

Figure 7: Z estimates from various algorithms versus time on
Exact Promedas problem or_chain_209.fg using iB = 5. The
dashed black line shows the true Z value.

using a time limit (Table 3). A key difference is that QB
with minVar, which had showed slightly worse performance
under a time limit, is now best. This in part explains the suc-
cess of QB equalDist3 and equalDist4, which try to emulate
QB minVar while using faster greedy strategies.

Anytime Behavior. Figure 6 and Figure 7 show that Ab-
straction Sampling estimates continue to improve as time
progresses. We also notice that estimates are often underes-
timates that increase over time, a common phenomenon of
importance sampling due to the proposal distribution’s tails.

Choice of Abstraction Granularity. From Table 5 we
see that for the well performing QB equalDist3 and equalD-
ist4 schemes and for the RAND scheme there is a trend
that greater nAbs improves performance. Figure 5 further
supports this for QB with equalDist4, for which plots of
QB equalDist3 and RAND have similar profiles (omitted
for brevity). However in Figure 4 and Table 5 we see that
for minVar error begins to increase when nAbs becomes
too high. This can be explained by the higher computational
cost of forming minVar abstractions (which is more time

HB HRB QB
simple 2.75 1.12 0.72
minVar 1.05 1.13 2.95

equalDist 0.75 0.59 1.16
equalDist2 0.84 0.75 1.82
equalDist3 1.20 1.01 4.05
equalDist4 0.87 1.14 3.90

rand 2.41 0.93 0.60

Figure 8: Performance Matrix. Relative average performance
of value-based schemes vs. existing context-based abstractions.
Values > 1.00 indicate superior performance.

consuming), leaving less time for probe generation.

Summary of Results. Experiments show the QB scheme
with equalDist3 or equalDistQB4 and RAND performing
the best of the newly proposed abstraction functions, signifi-
cantly outperforming the former state-of-the-art (Figure 8).
These schemes tend to improve as the abstraction granularity
nAbs increases up to a point, past which we see little dif-
ference in performance. Thus, our study suggests that these
three abstraction schemes should be the first choice when
using AOAS, and be used with the largest nAbs feasible.

7 CONCLUSION

This exploration of abstraction functions for use with
AND/OR Abstraction Sampling (AS) featured a new value-
based abstraction framework, introducing three abstraction
classes: HB, QB, and HRB each defined by real-valued
functions that aim to capture informative elements from
search and sampling to guide abstractions and improve AS
performance. Each class was tested with each of seven node
partitioning schemes to form twenty-one new abstraction
functions. Additionally, a new purely randomized abstrac-
tion scheme, RAND, was presented that places nodes into
equal cardinality abstract states completely at random.

Results from an extensive empirical evaluation on over 400
benchmark problems show two of the QB based schemes
(equalDistQB3, and equalDistQB4) and the RAND scheme
having superior performance consistently and throughout
all benchmarks. In particular, performance was significantly
improved relative to former state-of-the-art context-based
abstractions, and thus also implicitly against Importance
Sampling, Weighted Mini-Bucket Importance Sampling,
IJGP-SampleSearch, and Dynamic Importance Sampling.

Based on this study and earlier findings, we believe that
AOAS is one of the best schemes for estimating the partition
function to date. Future work will explore adjusting the
abstraction schemes to problem instances through learning
and also the potential for applying adaptive sampling.

Acknowledgements
Thank you to the reviewers for their valuable comments and
suggestions. This work was supported in part by NSF grants
IIS-2008516 and CNS-2321786.

References

Filjor Broka, Rina Dechter, Alexander. Ihler, and Kalev
Kask. Abstraction sampling in graphical models. In
Proceedings of the Thirty-Fourth Conference on Un-
certainty in Artificial Intelligence, UAI 2018, Mon-
terey, California, USA, August 6-10, 2018, pages 632–
641, 2018. URL http://auai.org/uai2018/
proceedings/papers/234.pdf.

P.-C. Chen. Heuristic sampling: A method for predicting the
performance of tree searching programs. SIAM Journal
on Computing, 21:295–315, 1992.

A. Darwiche. Modeling and Reasoning with Bayesian Net-
works. Cambridge University Press, 2009.

Rina Dechter. Reasoning with Probabilistic and De-
terministic Graphical Models: Exact Algorithms.
Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning. Morgan & Claypool Publishers, 2013.
doi: 10.2200/S00529ED1V01Y201308AIM023.
URL http://dx.doi.org/10.2200/
S00529ED1V01Y201308AIM023.

Rina Dechter and Robert Mateescu. AND/OR search spaces
for graphical models. Artificial Intelligence, 171(2-3):
73–106, 2007.

Rina Dechter and Irina Rish. Mini-buckets: A general
scheme for bounded inference. J. ACM, 50(2):107–
153, 2003. doi: 10.1145/636865.636866. URL http:
//doi.acm.org/10.1145/636865.636866.

Vibhav Gogate and Rina Dechter. Samplesearch: Im-
portance sampling in presence of determinism. Ar-
tif. Intell., 175(2):694–729, 2011. doi: 10.1016/j.artint.
2010.10.009. URL https://doi.org/10.1016/
j.artint.2010.10.009.

Vincent Hsiao, Dana Nau, and Rina Dechter. Graph neural
networks for dynamic abstraction sampling. In AAAI
Workshop on Graphs and More Complex Structures for
Learning and Reasoning (GCLR), 2023.

Alexander Ihler, Natalia Flerova, Rina Dechter, and
Lars Otten. Join-graph based cost-shifting schemes.
In Nando de Freitas and Kevin P. Murphy, editors,
Proceedings of the Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence, Catalina Island,
CA, USA, August 14-18, 2012, pages 397–406. AUAI
Press, 2012. URL https://dslpitt.org/
uai/displayArticleDetails.jsp?mmnu=1&
smnu=2&article_id=2302&proceeding_id=
28.

Kalev Kask, Bobak Pezeshki, Filjor Broka, Alexander Ihler,
and Rina Dechter. Scaling up and/or abstraction sam-
pling. In Christian Bessiere, editor, Proceedings of the

Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pages 4266–4274. International
Joint Conferences on Artificial Intelligence Organization,
7 2020. doi: 10.24963/ijcai.2020/589. URL https:
//doi.org/10.24963/ijcai.2020/589. Main
track.

D.E. Knuth. Estimating the efficiency of backtracking algo-
rithms. Math. Comput., 29:1121–136, 1975.

G. N. Lance and W. T. Williams. A General Theory of
Classificatory Sorting Strategies: 1. Hierarchical Systems.
The Computer Journal, 9(4):373–380, 02 1967. ISSN
0010-4620. doi: 10.1093/comjnl/9.4.373. URL https:
//doi.org/10.1093/comjnl/9.4.373.

Qiang Liu and Alexander. Ihler. Bounding the partition
function using holder’s inequality. In Proceedings of
the 28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July 2,
2011, pages 849–856, 2011.

Qiang Liu, John W Fisher III, and Alexander Ihler. Prob-
abilistic variational bounds for graphical models. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 1432–1440. Curran Asso-
ciates, Inc., 2015.

Qi Lou, Rina Dechter, and Alexander Ihler. Interleave varia-
tional optimization with monte carlo sampling: A tale of
two approximate inference paradigms. 2019.

R. Marinescu and Rina Dechter. Memory intensive
AND/OR search for combinatorial optimization in graph-
ical models. Artificial Intelligence, 173(16-17):1492–
1524, 2009.

Robert Mateescu and Rina Dechter. The relationship be-
tween and/or search and variable elimination. pages 380–
387, 01 2005.

J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, 1988.

Maria L. Rizzo. Statistical computing with R. Chapman &
Hall/CRC, 2007.

Reuven Y. Rubinstein and Dirk P. Kroese. Simulation and
the Monte Carlo Method. Wiley Publishing, 3rd edition,
2016. ISBN 1118632168.

Joe H. Ward. Hierarchical grouping to optimize an objective
function. Journal of the American Statistical Association,
58(301):236–244, 1963. ISSN 01621459. URL http:
//www.jstor.org/stable/2282967.

http://auai.org/uai2018/proceedings/papers/234.pdf
http://auai.org/uai2018/proceedings/papers/234.pdf
http://dx.doi.org/10.2200/S00529ED1V01Y201308AIM023
http://dx.doi.org/10.2200/S00529ED1V01Y201308AIM023
http://doi.acm.org/10.1145/636865.636866
http://doi.acm.org/10.1145/636865.636866
https://doi.org/10.1016/j.artint.2010.10.009
https://doi.org/10.1016/j.artint.2010.10.009
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2302&proceeding_id=28
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2302&proceeding_id=28
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2302&proceeding_id=28
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2302&proceeding_id=28
https://doi.org/10.24963/ijcai.2020/589
https://doi.org/10.24963/ijcai.2020/589
https://doi.org/10.1093/comjnl/9.4.373
https://doi.org/10.1093/comjnl/9.4.373
http://www.jstor.org/stable/2282967
http://www.jstor.org/stable/2282967

	Introduction
	General Background
	Abstraction Sampling
	Value-Based Abstractions
	Value-Based Abstraction Classes
	Ordered Partitioning Schemes

	Random-Only Abstractions
	Empirical Evaluation
	Results
	Analysis

	Conclusion

