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Bayesian Network (BN)
● Bayesian Network: graphical model (X,D,F)

○ Variables:

○ Domains: 

○ Parent Functions: 

Current Approach
● Use Symmetric Dynamic Bayesian Network 

Approximation (SD-BNA) to model spatial EGT 

dynamics

○ SD-BNA’s have input (green) and output (red) 

sections at each iteration

○ Larger input → more accurate approximation

● But larger input can be computationally expensive

Proposed Approach
● Approximate inference on large SD-BNA, using a 

smaller surrogate SD-BNA

● Extend smaller SD-BNA with new parameters learned 

using samples from the large SD-BNA
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Background

Problem Statement

Surrogate Maximum Likelihood Models KL-Search Results

(1)KL-Search outperforms other methods by a 

considerable amount on the Deadlock game

(2)KL-Search and Fast KL-Search outperform 

Abstraction Sampling in several 2 and 3 strategy 

evolutionary games

(3)Fast KL-Search outperforms pair approximation on 

games with more than 4 strategieswhen given more 

than 100 samples

Time per sample/probe

Fast KL-Search can be applied to high strategy games 

since it does not need to compute WMBE.

● Consider a 25 node input SD-BNA (B) and an 8 node 

input SD-BNA (A)

● Smaller network is a subset of the larger network

● Add 4 dummy nodes in the output neighborhood

● New edges from input the target 

● Each new node is conditioned on two nodes in the 

input, CPTs of the form

● To learn these CPTs, we use MLE with samples from 

larger SD-BNA

Basic Maximum Likelihood Estimation 

(MLE) algorithm

1. Forward sample larger model for full configuration of 

every variable in the network

2. The 8 node network is fully observed for each data 

point since its variables are subsumed in the large 

network

3. We add symmetry constraints using pre-computed 

quantities from non-extended small network.

4. Final problem is to maximize the following log-

likelihood expression:

KL-Search Minimization
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Future Research

● Apply to domains with high degree of symmetry 

beyond spatial evolutionary games

Experimental Setup

● Compare with existing approaches such as Pair 

Approximation and Abstraction Sampling (AS)

● Task: estimate joint probability distribution of nodes in 

output distribution (e.g. nodes in red area at each 

iteration)

● Use KL-divergence between estimate generated by 

simulation (ground truth) and estimate from methods 

begin compared.
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Evolutionary Game Theory (EGT)
● Application of game theory to evolving populations

Spatial Evolutionary Game
● EGT model on structured population (e.g. grid)

● Spatial EGT = (S, U, G, F)

○ S - set of strategies

○ U - payoff matrix/function

○ G - graph of population structure

○ F - replicator rule (e.g. Fermi rule)

Goal: evaluate population dynamics over time, e.g. 

proportion of pairs of adjacent agents playing strategy i 

and j at a given time T.
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Convergence of KL-Search

● Instead of random samples, combine search with 

sampling to get samples that reduce KL-divergence 

● Search OR-search tree of large network using best-

first heuristic:

● difficult to compute, approximate with 

Weight Mini-bucket Elimination with small i-bound 

(KL-Search) or single sample Monte Carlo estimate 

(Fast KL-Search)


	Slide 1

