Surrogate Bayesian Networks for Approximating Evolutionary Games
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Surrogate Maximum Likelihood Models

Background

Evolutionary Game Theory (EGT)

Spatial Evolutionary Game

e EGT model on structured population (e.g. grid)
e Spatial EGT = (S, U, G, F)

Agents

A,

Strategies

Goal: evaluate population dynamics over time, e.q.

and | at a given time T.

Bayesian Network (BN)
e Bayesian Network: graphical model (X,D,F)

o Variables: X = { X1, X5, ..., Xn}
o Domains: D = {Dx,,Dx,,...,Dx,}
o Parent Functions: F' = {[', Iy, ..., Fx}

Problem Statement

Current Approach

e Use Symmetric Dynamic Bayesian Network
Approximation (SD-BNA) to model spatial EGT
dynamics

sections at each iteration
o Larger input — more accurate approximation
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Proposed Approach

smaller surrogate SD-BNA

using samples from the large SD-BNA

e Application of game theory to evolving populations

o SD-BNA's have input (green) and output (red)

e But larger input can be computationally expensive

e Approximate inference on large SD-BNA, using a

S1 S
o S - set of strategies S
o U - payoff matrix/function u= | ° D
o G - graph of population structure S ¢ d
o F - replicator rule (e.g. Fermi rule)

proportion of pairs of adjacent agents playing strategy |

e Extend smaller SD-BNA with new parameters learned

e Consider a 25 node input SD-BNA (B) and an 8 node
input SD-BNA (A)
e Smaller network is a subset of the larger network
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e Add 4 dummy nodes in the output neighborhood

New Parameters

Target

Input

e New edges from input the target

e Each new node is conditioned on two nodes in the
input, CPTs of the form 0.y . = py|y-

e To learn these CPTs, we use MLE with samples from
larger SD-BNA

Basic Maximum Likelihood Estimation
(MLE) algorithm

1. Forward sample larger model for full configuration of
every variable in the network

2. The 8 node network is fully observed for each data
point since its variables are subsumed in the large
network

3. We add symmetry constraints using pre-computed
quantities from non-extended small network.

4. Final problem is to maximize the following log-
likelihood expression:

0"

Jr.l'

BIE max Zl log O(Nb(X)), 41, Xf{”" ! NB(X)),)
j

subject to

Pt +1) = Y Oss)0, - Pays, (1), Vsi €S

KL-Search Minimization

e Instead of random samples, combine search with
sampling to get samples that reduce KL-divergence

e Search OR-search tree of large network using best-
first heuristic:

IF.I};:(«.:!,_(JY]_ :0) —
log(Pa(X1=0)) — log(Pp(X1=0))| - Pp(X1=0)

e P,(X, = 0)difficult to compute, approximate with
Weight Mini-bucket Elimination with small i-bound
(KL-Search) or single sample Monte Carlo estimate
(Fast KL-Search)

KL-Search

Algorithm 1: KL-Search Minimization

Input: Two Bayesian networks: a large network
A, a smaller network B, and a parameceterized ex-
tended network By such that all nodes in B are
A (B C A), a variable ordering o over A, initial
distribution p,.(¢), and pre-computed output dis-
tribution p..(f + 1)

Parameters: Number of samples L

Output: , cstimated paramcters that minimize
difference between A and By

1" +— the OR-scarch tree on A using ordering o;

OPEN < {{root(T),0)}:

// frontier nodes are ordered by the 2nd value

for 1 =1 — L do

v < OPEN.dequeue() ;
of highest priority

for u € children(v) do

// remove the node

hpi(uw) < [log(Pa(u)) —log(Pp(u))|- Pg(u);
Append < u, hyg(u) = to OPEN;
end

end

Let X be an empty list;

for v € OPEN do // leaf nodes

Forward sample x, a full configuration of A
conditioned on the partial configuration
represented by v;

Append x to X;

end

Solve 0F
subject to

ps.(t+ 1)

Return 07;
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Convergence of KL-Search

Theorem 6.0.1 (Asymptotic Convergence of
KL-Search Minimization). Let 0 be the result of
KL-Search Minimization [Algorithm 1] given L sam-
ples. Then given a family of extended networks Bg
parameterized by 0:

lim 9}; — argminDKL(PAHPBe)
L— o0 0

Experimental Setup

e Compare with existing approaches such as Pair
Approximation and Abstraction Sampling (AS)

e Task: estimate joint probability distribution of nodes in
output distribution (e.g. nodes in red area at each
iteration)

e Use KL-divergence between estimate generated by
simulation (ground truth) and estimate from methods
begin compared.
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Game

(1)KL-Search outperforms other methods by a
considerable amount on the Deadlock game

(2)KL-Search and Fast KL-Search outperform
Abstraction Sampling in several 2 and 3 strategy
evolutionary games

(3)Fast KL-Search outperforms pair approximation on
games with more than 4 strategieswhen given more
than 100 samples

Time per sample/probe

S| AS KL-Search  Fast KL-Search
2 0.1175  0.01419 0.01624

3 0.2203  0.03063 0.03725

4 - - 0.1630

9 - - 0.7299

Fast KL-Search can be applied to high strategy games
since it does not need to compute WMBE.

Future Research

e Apply to domains with high degree of symmetry
beyond spatial evolutionary games
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