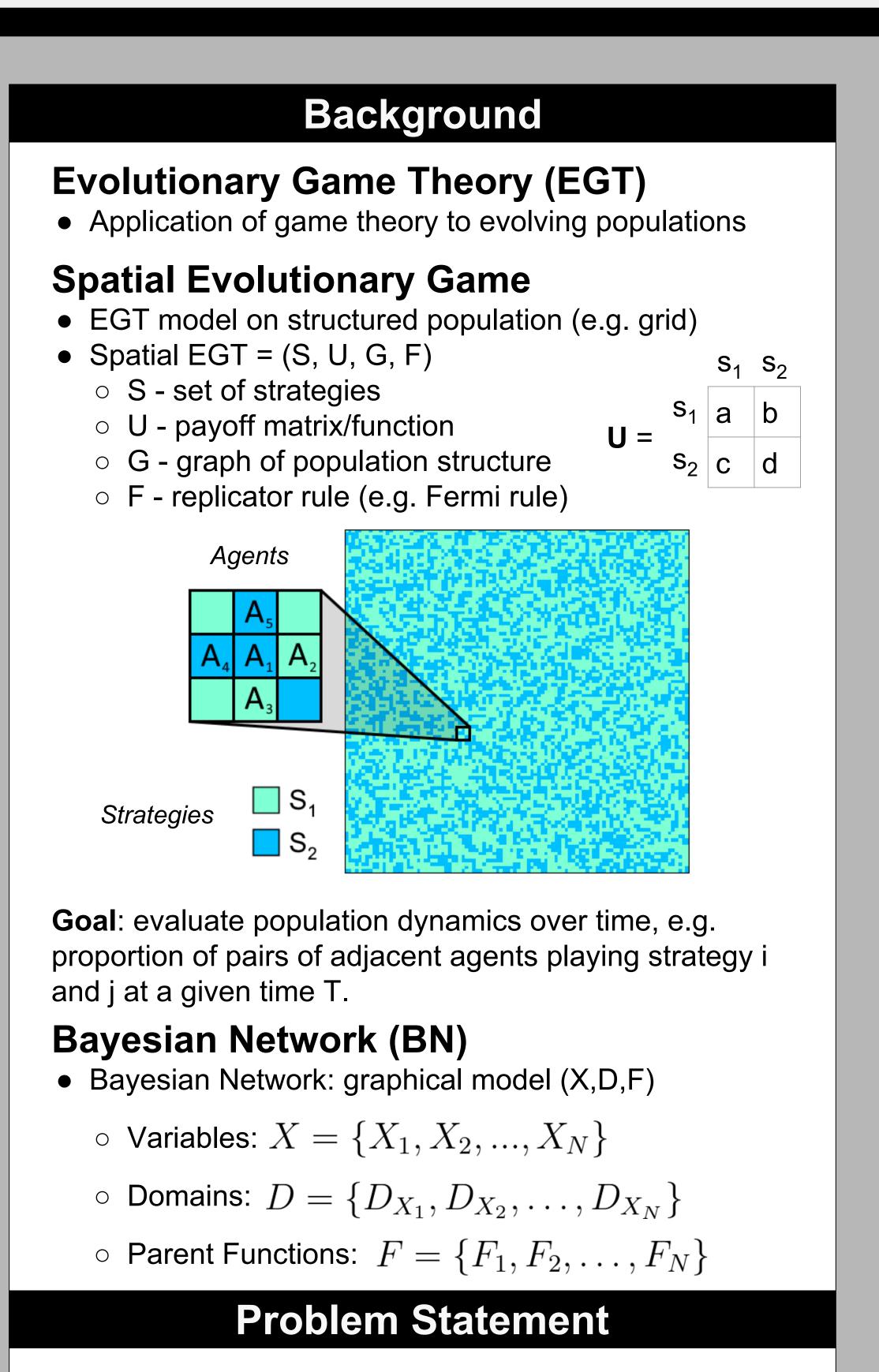


DEPARTMENT OF COMPUTER SCIENCE

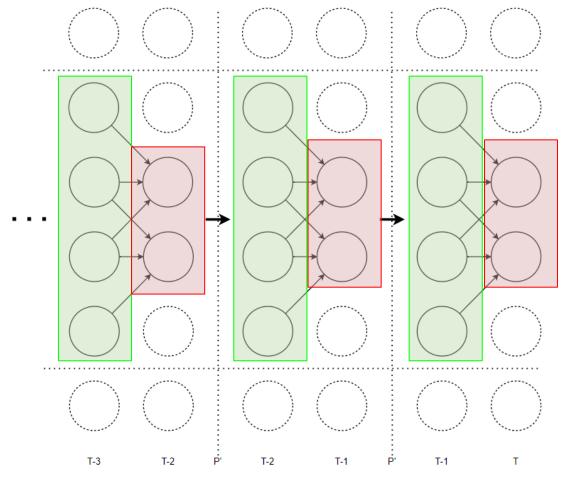


Current Approach

 Use Symmetric Dynamic Bayesian Network Approximation (SD-BNA) to model spatial EGT dynamics

 SD-BNA's have input (green) and output (red) sections at each iteration

 \circ Larger input \rightarrow more accurate approximation



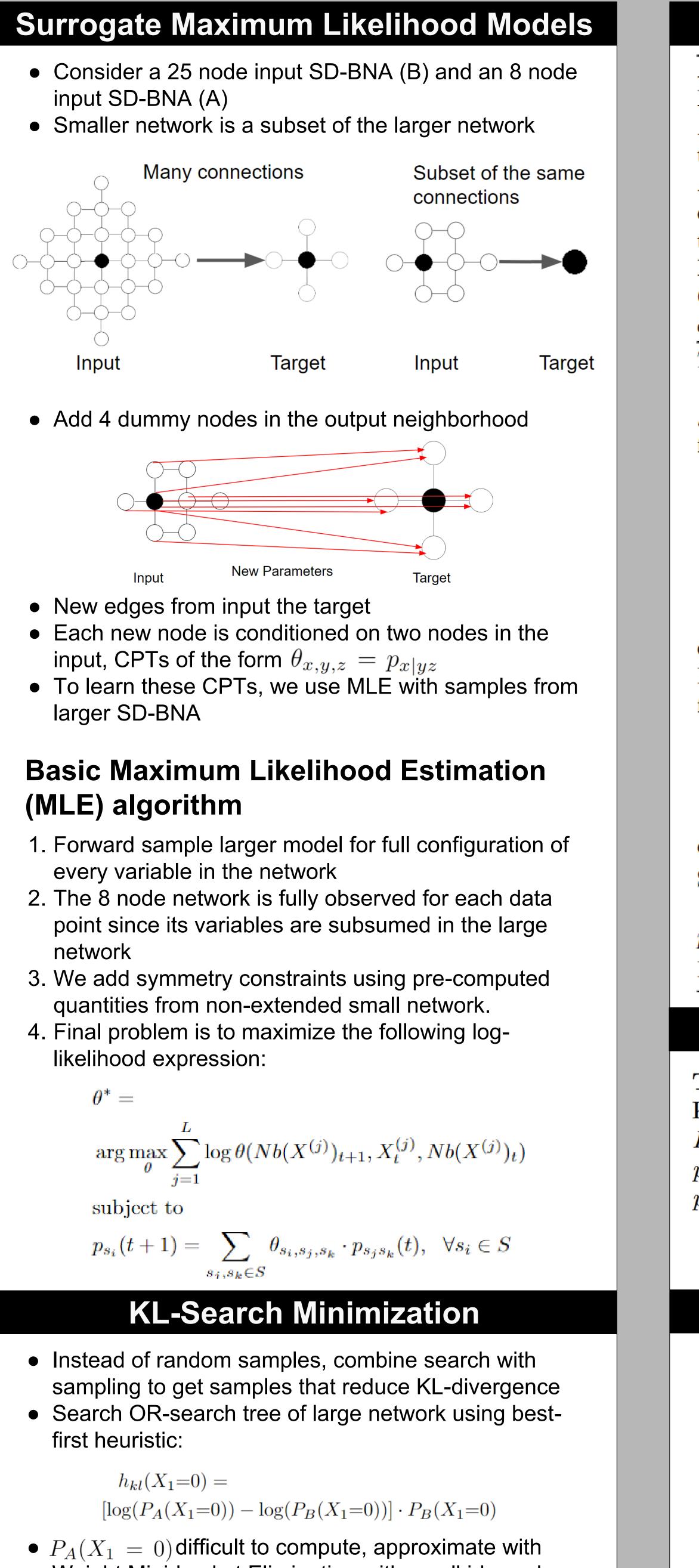
• But larger input can be computationally expensive

Proposed Approach

- Approximate inference on large SD-BNA, using a smaller surrogate SD-BNA
- Extend smaller SD-BNA with new parameters learned using samples from the large SD-BNA

Surrogate Bayesian Networks for Approximating Evolutionary Games Vincent Hsiao¹, Dana Nau¹, Rina Dechter²

University of Maryland, College Park¹, University of California, Irvine²



Weight Mini-bucket Elimination with small i-bound (KL-Search) or single sample Monte Carlo estimate (Fast KL-Search)

KL-Search

Algorithm 1: KL-Search Minimization	
Input: Two Bayesian networks: a large network	0.00
A, a smaller network B , and a parameterized ex-	0.00 0.00 ک
tended network B_{θ} such that all nodes in B are in	0.00
A $(B \subset A)$, a variable ordering o over A, initial	0.00 <u>Pi</u> 00.0 <u>Pi</u>
distribution $p_{yz}(t)$, and pre-computed output dis-	⊥ ⊐ 0.00
tribution $p_x(t+1)$	0.00
Parameters: Number of samples L	
Output: θ , estimated parameters that minimize	0
difference between A and B_{θ}	8
$T \leftarrow \text{the OR-search tree on } A \text{ using ordering } o;$	(1)
$OPEN \leftarrow \{\langle root(T), 0 \rangle\};$	
<pre>// frontier nodes are ordered by the 2nd value</pre>	
for $i = 1 \rightarrow L$ do	
$v \leftarrow OPEN.dequeue(); // remove the node$	
of highest priority	(
for $u \in children(v)$ do	
$h_{kl}(u) \leftarrow \left[\log(P_A(u)) - \log(P_B(u))\right] \cdot P_B(u);$	
Append $\langle u, h_{kl}(u) \rangle$ to <i>OPEN</i> ;	
end	
end	
Let X be an empty list;	
for $v \in OPEN$ do // leaf nodes	,
Forward sample x , a full configuration of A	(
conditioned on the partial configuration	
represented by v ;	
Append x to X ;	
end	
Solve $\theta^* = \arg \max_{\theta} \sum_{j=1}^{L} \log P_{B_{\theta}}(\mathbf{x}^j) \cdot P_A(\mathbf{x}^j),$	
subject to	(1)
$p_{s_i}(t+1) = \sum_{s_j, s_k \in S} \theta_{s_i, s_j, s_k} \cdot p_{s_j s_k}(t), \forall s_i \in S;$	
Return θ^* ;	(2)
	1
Convergence of KL-Search	
	(3)

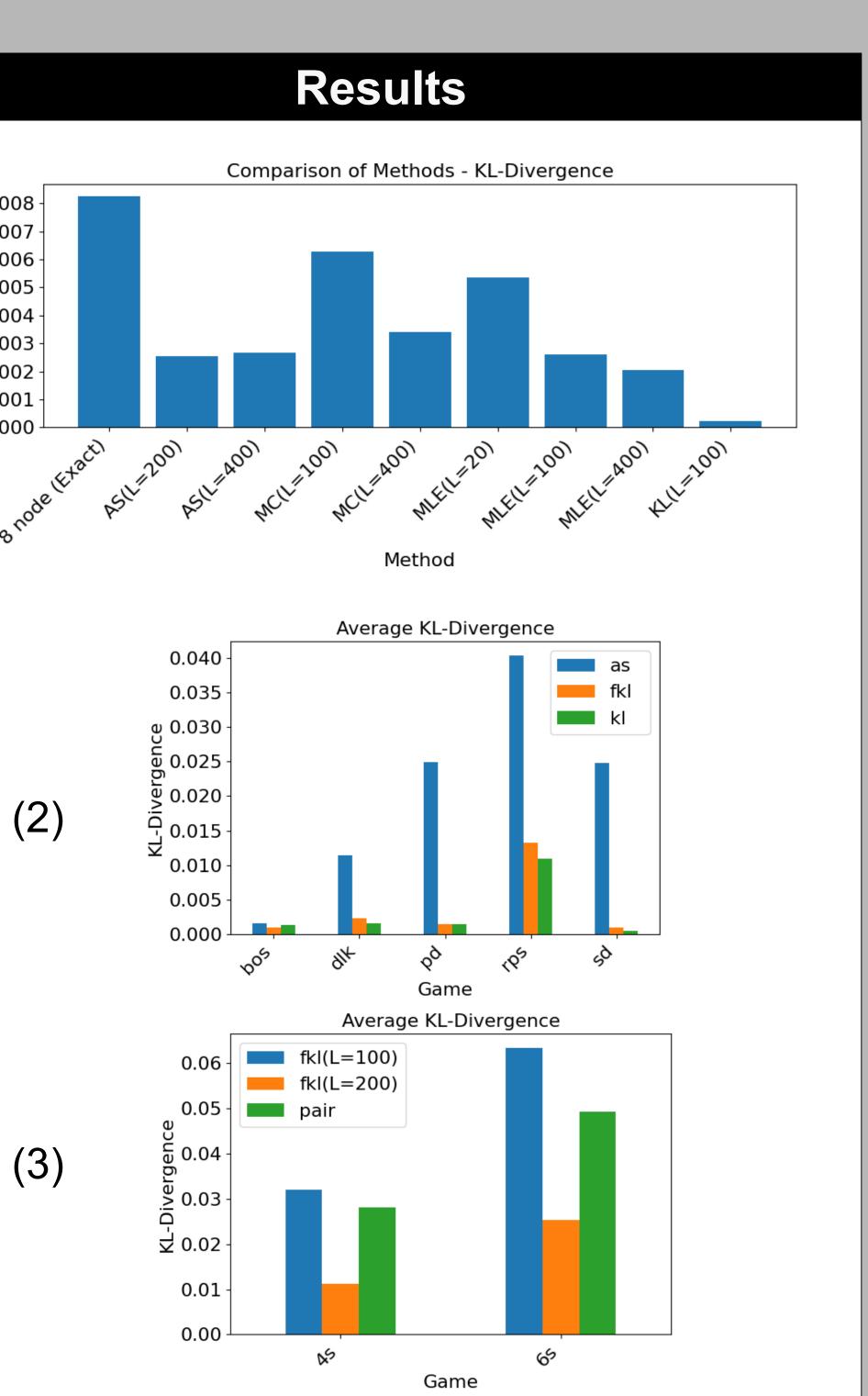
Theorem 6.0.1 (Asymptotic Convergence of KL-Search Minimization). Let θ_L be the result of KL-Search Minimization [Algorithm 1] given L samples. Then given a family of extended networks B_{θ} parameterized by θ :

 $\lim_{L \to \infty} \theta_L = \arg\min_{\theta} D_{KL}(P_A || P_{B_{\theta}})$

Experimental Setup

- Compare with existing approaches such as Pair Approximation and Abstraction Sampling (AS)
- Task: estimate joint probability distribution of nodes in output distribution (e.g. nodes in red area at each iteration)
- Use KL-divergence between estimate generated by simulation (ground truth) and estimate from methods begin compared.

 $D_{KL}(P_{sim}(X_1|Nb(X)_1)||P_{method}(X_1|Nb(X)_1))$



)KL-Search outperforms other methods by a considerable amount on the Deadlock game)KL-Search and Fast KL-Search outperform Abstraction Sampling in several 2 and 3 strategy evolutionary games

)Fast KL-Search outperforms pair approximation on games with more than 4 strategies when given more than 100 samples

Time per sample/probe

S	AS	KL-Search	Fast KL-Search
2	0.1175	0.01419	0.01624
3	0.2203	0.03063	0.03725
4	-	-	0.1630
6	-	-	0.7299

Fast KL-Search can be applied to high strategy games since it does not need to compute WMBE.

Future Research

• Apply to domains with high degree of symmetry beyond spatial evolutionary games

Acknowledgements

This work supported in part by NSF grant IIS-2008516 and AFOSR grant 1010GWA357.