
Supporting the End Users’ Views
David F. Redmiles

Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA

+1 949 824 3823

redmiles@ics.uci.edu

ABSTRACT
End users of software have the right to systems that are both
useful and usable, a property termed usability in the software and
human-computer interaction communities. Unfortunately, it is
not obvious what methods or techniques developers of software
should adopt in order to achieve good usability in a product.
There are a confounding number of questions. How can different
points of view among end users be incorporated into a software
development process? What does it mean to treat software
developers as end users, namely of software tools? How do the
limitations of software practice, such as minimizing time to
release, affect what information can be collected and used to
make usability decisions? This paper presents a variety of
possibilities for supporting all the end users’ views in a software
development activity. Both tools and methods are suggested,
roughly organized according to the different activities in software
development. Moreover, end users are defined to be a variety of
stakeholders in a software development project, including at the
very least the end users of a product but also developers who are
end users of software tools.

Categories and Subject Descriptors
D.2.2 [Software]: Design Tools and Techniques – evolutionary
prototyping, user interfaces.

General Terms
Human Factors, Design, Management

Keywords
Software Engineering, Usability Engineering, Human-Computer
Interaction, Knowledge-Based Systems, Cognitive Theory, Social
Theory, Design, Design Environments, Event Monitoring,
Organizational Memory, Activity Theory

1. INTRODUCTION
The creation of software systems is more challenging today than
ever before. This statement seems paradoxical in light of decades
of research into computer systems. However, these decades of
research are intertwined with decades in which software
technologies have been applied to new and increasingly complex

problem situations. The increased complexity comes from many
factors including a change in the nature of software from static to
interactive, an expanded scope for systems including the shift
from single to multiple end users, radically new problem
domains such as office and other workplace settings, an
increasingly sophisticated population such as a generation of end
users who grew up with personal computers and computer
games, and, finally, new deployment mechanisms such as the
Internet. Simply stated, the creation of software is more
challenging today because it is applied to increasingly complex
problem situations.

As we realize from the trends mentioned above, the term
complexity takes on a new meaning compared to its traditional
usage in computer science. Previously, “complexity” referred to a
measure of a system’s computations from an algorithmic
perspective. However, today, when factors such as human end
users and diverse deployment environments are involved, a new
kind of complexity emerges, one that is measured in terms of end
users and workplace settings.

A duality emerges around this notion of complexity. First, in
order to create software systems suitable for interactive
applications in diverse settings and for diverse collections of end
users, it is necessary to have a diverse software development
team. People with knowledge of software engineering are
required of course. However, people with knowledge of human-
computer interaction, group interaction, organizational issues,
and possibly knowledge-based user interfaces are required as
well. Thus, the first part of the duality is the need for a diverse
software development team to tackle the new breed of complex
software. The second part of the duality is ironic. The kinds of
problem domains that require a diverse team would never have
been tackled were it not for the early work of a few inter-
disciplinary pioneers. To be clear, the problems were there and
thwarting software development projects. They were simply
never clearly elucidated until new disciplines turned their
interest to the kinds of artifacts software engineers were
developing.

Recently, success cases of interdisciplinary design have begun to
be documented. One recent book documents contributions of the
field of human-computer interaction to design [48]. One
particular case study documented how a cognitive analysis of a
proposed re-design for a workstation would lead to less efficient
completion of tasks by the end users compared to the existing
workstation [3]. Another recent book documents the
contributions of a variety of cognitive and social theories to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AVI 2002, May 22-24, 2002, Trento, Italy.
Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00.

design of systems [35]. For example, one study illustrates how a
situated action perspective in field studies led to deep
understanding of the requirements for building a document-based
tool to support lawyers [54]. As a final example, an upcoming
special issue of a journal documents how a social and
psychological theory of activity contributes to design of software
[38]. One study in that issue documents problems with process-
centered software development environments with respect to the
activity theory framework [4].

Taking an interdisciplinary view of the general problem of
developing complex software systems leads to a variety of
possibilities. Software engineering provides insight into the
kinds of artifacts that must be engineered and ways of
engineering (developing) them. Usability engineering provides
insight into the kinds of data that can inform design and ways of
collecting that data. Human-computer interaction provides
insights into the cognitive needs of individuals. Knowledge-
based systems (intelligent user interfaces) provides some unique
techniques for implementation. Computer-supported cooperative
work provides information about short and long-term inter-
personal communication. Ethnographic methods and social and
psychological theories, such as activity theory, provide an
understanding of the workplace, a greater degree of realism.

The above list could continue. However, there are a few simple
points. The increasing interaction among researchers from many
disciplines is revealing the complexity of the new “software
crisis” and new aspects to coping. Innovative combinations of
many research disciplines are essential.

The remainder of this paper illustrates how all of the above-
mentioned disciplines can weave together to create software tools
and methods that support all of the end users, both end users of
an intended product as well as end users of tools used to create
products. These tools and methods were created out of a multi-
disciplinary approach with an principal goal to make the
development of complex, interactive systems a success. They fall
under the rubric of a human-centered rather than an artifact-
centered approach.

2. A Roadmap to Human-Centered Software
Development
Software engineering has favored process views of software
development and the software lifecycle for many years. Figure 1
shows an adapted lifecycle. The figure only loosely represents a
process or lifecycle. More precisely, it represents a set of
activities with loose connectivity. The activities all support a
human-centered software development perspective. The activities
include observation, design, use, and review. These activities
support one another although the figure illustrates only some of
the more typical connections and reasons for the connections.
The figure resembles other iterative design methods (e.g., [21]),
scenario-based design (e.g., [8] [41] [47]), and some approaches
to design by software reuse (e.g., [17]). It is also inspired by
early work on user-centered system design (e.g., [39]), cognitive
studies of end users (e.g., [7]), and participatory design (e.g.,
[23]). The common elements are that the views of all
stakeholders in the software development project are considered

and that a software product evolves through data-driven
feedback.

When possible, software developers should observe actual end
users of proposed software products and their organizational
context. They may need to interview various stakeholders, people
affected by the proposed software. Observations lead to design of
a software product based, presumably, on more complete
requirements. The product may be deployed with software agents
to monitor its use. Automated and manual usability information
may be stored for review. Re-design and re-development of a
software product leads to better fit with the end users and their
workplace setting.

Design

Use

Observe

Knowledge Depot EDEM

expectation agents’ reports
and other information

prototype & expectation agents

deploy prototype with
expectation agents

EDEM
Argo

Activity Theory

perform other design reviews,
including email discussions

incorporate
reviews into
design

deposit observations
prototype with expectation agents

perform direct observations,
interviews, and other manual
usability methods

Review

Figure 1: Activities in Human-Centered Software Development

The activity represented by this figure is human-centered in two
ways. First, the emphasis on prototypes and evaluation of usage
maintains a focus on the requirements of end users and other
stakeholders in the project. Second, there is an underlying
assumption that the software developers need cognitive support
for managing the complexity of usability information and
incorporating that data and other information into design. Thus,
the applications being developed are engineered to meet the
human cognitive needs of the end users and the software tools
used to develop those applications are engineered to the human
cognitive needs of the software developers.

The figure serves as a roadmap to the remainder of this paper
and, to a degree, human-centered software development in
general. The activities are labeled with names of methods and
research tools that were used to explore the different activities
and, where appropriate, automation. Observations about end
users and other stakeholders, as well as information about the
organization in which they will use software, may be analyzed
according to activities (activity theory). A software design
environment (Argo) provides software developers with
knowledge about what constitutes a good design and supports the
design of prototype applications. A software substrate (EDEM)
provides support for collecting data about actual system usage.
Data about the actual usage as well as other information related

to the design of a system can be recorded and elaborated upon by
a group memory tool (Knowledge Depot).

3. Observing End Users and their Workplace
There is a great deal of work in the requirements engineering and
software engineering communities on better articulating
requirements. Some of the approaches emphasize multiple
stakeholders and negotiation (e.g., [5] and [20]), others
emphasize a formal analysis basis (e.g., [29]) or modeling basis
(e.g., [40]). However, the communities of ethnographic
researchers (e.g., [37]), researchers in computer-supported
cooperative work (e.g., [1]), and researchers in cognitive
psychology (e.g., [28]) have taken a more general approach. They
have begun to look at how people interact with artifacts in their
environment including the organizational issues.

Ethnography and software development come together when a
project requires an understanding of the organizational and
workplace context in which the proposed software will be
deployed. Too often projects fail because these contexts were not
considered early enough in a project. Ethnography encompasses a
large number of methods for making observations “in the field.”
In general, it is a practice of interviewing and observing people
on their jobs and in their workplaces. One approach to applying
ethnography to the practice of design is activity theory [37].

SUBJECT

RULES
COMMUNITY

DIVISION
OF LABOR

OBJECT

MEDIATING ARTIFACTS

OUTCOME
SUBJECT

RULES
COMMUNITY

DIVISION
OF LABOR

OBJECT

MEDIATING ARTIFACTS

OUTCOME

Figure 2: Engeström’s Activity System Model [14]

Figure 2 is a classic illustration of the components of activity
theory as set down by Engeström [14]. Subjects are people within
a community that work with objects to obtain an outcome. Rules
within the community determine the behavior of subjects and
their access and their interaction with objects. The division of
labor also determines at a higher level who performs what
actions in a community. Mediating artifacts (sometimes called
mediating means, instruments and by some, tools) help subjects
manipulate objects. They have a history within a community such
as a traditional set of tools.

In one study of a software support organization, the activity was
customer support, the subjects were customer support engineers,
and the common object was a problem resolution document.
These documents had specific rules for completing them (see [9]

for details). The larger community consisted of the authors of the
problem resolution documents, consumers including managers
and other software engineers, and customers who under certain
conditions had access to the documents. Job descriptions and
customer contracts determined the assignment of roles within
this community. In this application of activity theory, the field
study consisted of interviews with 32 people. The interviews
provided information about the use of software tools to support
the customer support activity and in particular information
pertinent to the redesign of software tools for supporting this
activity. As the information was analyzed with the activity theory
model, it became apparent that there were contradictions in the
organizational goals. For instance, the rules and division of labor
were designed for customer support engineers to produce
problem resolution forms. But, another set of rules and division
of labor required the same individuals to provide prompt
response and additional care to certain customers. Identifying the
conflict enabled managers to realize more clearly how the
software system was failing and could not solve the problem of
getting all problem resolution reports fully documented and filed
on time. For other results, the reader is referred to [9] and in
general the special issue of the journal in which it appears [38].

Designing software for real use places a burden on the designers
to understand not just their end users, but the workplace and
organizational context in which software will be deployed.
Ethnographic methods including activity theory can support
software developers in their search for these points of views
corresponding to the many stakeholders.

4. Supporting Design with Knowledge-Based
Users Interfaces
In medium and large-scale software development projects, good
design is critical to efficiency of the system but more importantly
to correctness and future maintenance. However, a quandary in
software engineering, as Brooks states it, has been that only
“great designers create great designs” and there are a small
minority of great designers in the world [6]. Hence for many
years, some software researchers have sought to augment typical
designers with tools that could supply information they needed to
create good designs [13]. Some of the earliest work researched
plan-based representations of software developers’ knowledge
(e.g. [52]) and applying representations of plans when software
developers needed it (e.g., [44] and [15]). Some of these
environments provided quite elaborate support for different
aspects of a person’s working style providing a catalog of
examples to refer to, access to explanations, the ability to add
new “knowledge,” and critics ([18] and [16]).

On-going work in this general area led to a re-examination of the
cognitive basis for software design and resulted in the Argo
design environment illustrated in Figure 3 (see [45] and [46] for
details on Argo). This interface presents several features tied to
specific results from the cognitive studies of design. From one
perspective, designers use Argo/UML much like they would use
other object-oriented design tools: they place class, state, and use
case icons in diagrams and draw relationships between them
(upper right of Figure 3). However, while designers work, design
critics analyze the design and provide helpful advice. The “to do”

list (lower left) presents and organizes advice about pending
design changes.

Intuitively, feedback and checklists are useful devices in our
everyday lives. Previous work in applying rule-based
technologies to design analysis illustrated how knowledge-based
technology could be useful (see e.g., [36], [15], and [19]).
However, the goal of finding the best way to provide these kinds
of devices and the goal of discovering what other devices could
support software designers led to a re-examination of the
cognitive theories that existed about design in various domains.

In the domain of architectural design, Donald Schön had
proposed the theory of reflection-in action, that designers do not
conceive of designs fully formed but instead postulate one
solution, evaluate it, reflect on its failures, and revise it,
repeating the reflective activity when there is another breakdown
or failure [49] [50]. Although superficially, this theory resembles
a simple notion of feedback, the details address issues of when
and how designers are best served by feedback. Specifically,
designers should receive feedback while they are in the context
of design, while they are making decisions about the design.
Traditionally, software analysis tools provide feedback only after
a design is submitted for review. In this case, feedback comes
separately from design time. Moreover, most analysis tools
require a complete design in order to operate. Again, Schön’s
theory provides a distinction in that designers reflect on partial
designs. The notion of critics used in Argo, and other critiquing
systems support feedback to designers in the context in which
they are making design decisions and based on partial designs.

Another subtle example of applying cognitive theory to develop
features for the Argo system derived from studying opportunistic
design [24] [55]. This theory explains that although designers
plan and describe their work in an ordered, hierarchical fashion,
in actuality, they choose successive tasks based on the criteria of

cognitive cost. Simply stated, designers do not follow even their
own plans in order, but choose steps that are cognitively the least
cost among alternatives. The cognitive cost of a task depends on
the background knowledge of designers, accessibility of pertinent
information, and complexity of the task. Thus, although it is
customary to think of solutions to design problems in terms of a
hierarchical plan since hierarchical decomposition is a common
strategy to cope with complex design situations, in practice,
designers have been observed to perform tasks in an
opportunistic order. Design environments can allow the benefits
of both an opportunistic and a prescribed design process. They
should allow, and where possible augment, human designers’
abilities to choose the next design task to be performed. They can
also provide information to lower the cost of following the
prescribed process and avoid context switches that deviate from
it. Without examining this theory, it might have been more
compatible with other software research to provide a prescriptive
process representation of the tasks to be completed as opposed to
the less restrictive checklist.

Descriptions of how theories from comprehension and problem
solving (e.g., [31]) and design visualization (e.g., [22]) may be
found elsewhere [45] [46]. In general, the approach espoused
here is that cognitive theories of design and problem solving can
be applied to software systems to support the human cognitive
aspects of end users, including designers as end users of software
tools.

5. Supporting Observations About Software
Use
Even with good field methods, the end users’ needs for software
fluctuate during the lifetime of a project [10]. Part of the
fluctuation occurs because not all stakeholders communicate in
the same terms or mean the same concepts by the same terms. A
process of mutual education among all stakeholders increases the

Figure 3: The Argo/UML Domain Oriented Design Environment

chances that software will fit with its delivery environment [23].
Furthermore, once software is deployed in an environment, the
environment, including the end users, adapt [51]. Thus, end users
may have different needs for software after it has been in place
for a time. Finally knowledge about requirements is inherently
tacit [53] [42]. Human end users may be able to perform their
work, but be unable verbally to recount “how” during a standard
interview. Prototyping and scenario-based design is increasingly
popular for addressing this problem [8] [41] [47]. Certainly on-
going field studies can collect data about how systems are used
and evolve. However, these are costly to perform in terms of time
and placing observers on-site.

The Internet provides one avenue for collecting observations
about the use of software in the field at minimal cost.
Specifically, data about applications’ use can be extracted from
events reflecting end users’ interaction with software. Extraction
of usability data based on events is newly possible because of the
distributed nature of most applications and current programming
platforms for implementing interactive software. Moreover, the
Internet allows packaged data to be delivered to those seeking to
analyze it. There are a variety of methods and tools that provide
the ability to extract usability data from events (see [26]).

One particular method for collecting usability information
remotely is EDEMExpectation-Driven Event Monitoring (see
Figure 4) [25] [27]. EDEM allows software developers to
articulate expectations of end users’ behavior using agents.
These expectation agents are downloaded when an application is
initiated. They monitor events as a user interacts with the
applications (Figure 4a). Expectation agents may take a variety
of actions as they collect information. Specifically, they may
collect information unobtrusively and report it back to a
developer or deposit it into a data store. They may warn the end
user of an application that he or she has done something
unexpected (Figure 4b). In this case, the end user has the option
of exploring the rationale behind the objection and responding

(Figure 4c). When necessary, privacy can be maintained by using
a proxy server to make the source of the data anonymous.

Thus, expectation agents are based on the concept that many
usability problems occur because of developers making false
assumptions about the end users or their use situation. The
mismatch between assumptions and actual behavior may occur
for any number of the reasons articulated above. In general, false
assumptions reflect some kind of problem in communication.
What EDEM supports is increased communication between
developers and end users, both implicit through observation and
explicit through optional comments. It supports this
communication during the context of the breakdown. It supports
directed observation about the use of software. It supports a
direct link between developers and end users. In short it has
some of the advantages of direct observation but at reduced cost.
There are many advantages and disadvantages to this kind of
automated collection of usability data. The reader is referred
elsewhere for detailed discussion of these issues [26] [27].

In sum, observations in the field before design and good feedback
on the system’s perspective of design are only part of the needs
in software design. Software requirements evolve after
deployment. Software and its specification must co-evolve [17].
However, the method for gathering information after deployment
must be consistent with the practice of software developers and
limitations on resources.

6. Awareness and Review of Project
Information using a Group Knowledge Depot
Reviews are a common part of any software development project.
They are essential to reviewing fluctuating and misunderstood
requirements, as noted above. They are also key to understanding
the state of a software project: who is working on what problems,
whether the project is close to completion, etc. Much of this
information is on-line today because of the increased geographic
distribution among software teams. However, even if a software

(a) Expectation agents monitor system usage.

(b) Agents may post messages.

(c) Users may provide optional feedback.

Figure 4: Expectation-Driven Event Monitoring

development project is taking place in-house, many stakeholders
are separated from one another either by organizational division
or sufficiently removed that communication does not take place
frequently enough to maintain an awareness of project activities.

To maintain greater mutual awareness of the activities among
members of a group, project, or community, researchers have
created a variety of tools such as software Portholes that allow
end users to view camera views (e.g., [11] [12]) and other gauges
of physical activity (e.g., [32] [33]) in their colleagues’ offices.
Others have experimented with awareness based on sound and
audio (e.g., [2]).

Another approach is to monitor email and classify it according to
categories. Figure 5 illustrates one such system called the
Knowledge Depot [43] [30]. Versions of the Knowledge Depot
have been experimented with by different researchers for several
years (see [30] [34] [43]). In this approach, emails about a topic
are collected and classified in a topic hierarchy. Objects are
classified (and are retrieveable) according to every topic that
applies.

This email-based approach has the advantage for software
development that greater information content can be provided
than other kinds of awareness. Stakeholders in a project can
subscribe to categories of information. When email (or a project
document) is associated with a category, a subscriber may
receive a notification. Notifications can vary in frequency and
detail. For instance, summaries of category activity with only
message headers might be sent once a week. This frequency and
detail may be sufficient for a manager involved in a project. A
programmer working on one feature of some software might want
to be aware as soon as more information is available about that
feature. Information collected automatically by usability
monitoring can be inserted directly into appropriate categories.

Thus, the Knowledge Depot illustrates one way that information
from many sources pertinent to many stakeholders may be
collected in one location and provide awareness of that
information to those who need it. It provides organization of
information through a category hierarchy; supports category
operations for interaction including maintenance, interaction,
query, and subscription; and maintains a persistent data store. It
supports the needs of many end users. One can imagine that
selective end users involved in a software development project
would be given access to at least subscriptions to topics relating
to evolving software requirements.

Although it is a goal to support the needs of all stakeholders in a
software development project, the reality is that different
stakeholders (including intended end users) have different needs
for information and require different perspectives. The
Knowledge Depot illustrates one way that the information needs
of multiple stakeholders may be supported and in turn support
the need for information review in an on-going software
development project.

7. Conclusion
Although it is a stated goal of many software development
projects that the end users’ views should be represented and
incorporated into the design, the field of knowledge about how to
best achieve this goal is distributed across many disciplines.
Moreover the best way to incorporate some of the methods and
tools from other disciplines into software development is still an
open area of research.

In the preceding sections, descriptions of some methods and tools
were presented. All of these have been applied to the problem of
developing software systems in a way that captures as many
points of view as possible and yet make the captured information
available to software developers in a way that is compatible with
their practice.

Figure 5: Annotated, End Users’ View of the Knowledge Depot

The descriptions above indicate that the goal of software
development for today’s world is more complex than ever. It
involves many stakeholders representing many points of view. It
involves engineering for interactive and collaborative
applications that must function in a cohesive fashion with the
workplace environments in which they are deployed. The
definition of “end users” can even be confusing. It can refer to
the people who will interact with a software application that is
deployed, but it can also refer to those who are otherwise
affected by the deployment, such as colleagues of the end users,
their managers, and customers who might be served by those
applying the software. Moreover, software developers are also
end users, namely of software tools. They have cognitive needs
that if met can lead to better designs.

Many researchers have pioneered the way for this present
understanding of software. To the degree possible in this
conference paper, they have been acknowledged above. The work
of theirs highlighted above will provide the reader with more
inspiration about the diversity needed in developing software that
fits end users’ many views. Much more work remains. It is hoped
that this present paper indicates some of the possibilities for
augmenting software developers’ abilities to be aware of and to
incorporate the views of all of the end users, by employing
software tools and methods based on current cognitive and social
theories. Moreover, it is the intention that on-going work in this
direction maintain a focus on tools and methods that are
accessible and pragmatic.

8. ACKNOWLEDGMENTS
This paper has resulted from several years of effort by the author
and his former and present graduate students: David M. Hilbert
(EDEM), Jason E. Robbins (Argo), Michael Kantor (Knowledge
Depot), Shilpa V. Shukla (Activity Theory), Cleidson R. B. De
Souza (critics and event notification), and Santoshi D.
Basaveswara (event notification). Parts of this effort were
sponsored by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force
Materiel Command, USAF, under agreement number F30602-
00-2-0599 and by the National Science Foundation (NSF) under
grants CCR-0205724 and 9624846. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency (DARPA), the
Air Force Laboratory, or the U.S. Government.

9. REFERENCES
[1] Ackerman, M., Halverson, C. Considering an

Organization's Memory, The 1998 ACM Conference on
Computer Supported Cooperative Work (Seattle, WA),
ACM Press, New York, NY, November 14-18 1998, pp.39-
48.

[2] Ackerman, M., Starr, B., Hindus, D., Mainwaring, S.
Hanging on the Wire: a field study of an audio-only media
space, ACM Transactions on Computer-Human Interface,
Vol. 4, No. 1, 1997, pp. 39-66.

[3] Atwood, M., Gray, W., John, B. Project Ernestine: Analytic
and Empirical Methods Applied to a Real-World CHI
Problem, in Rudisill, M., Lewis, C., Polson, P., McKay, T.,
Eds. Human-Computer Interface Design: Success Stories,
Emerging Methods, and Real-World Context, Morgan
Kaufmann Publishers, Inc., San Francisco, 1996, pp. 101-
121.

[4] Barthelmess, P., Anderson, K. A View of Software
Development Environments Based on Activity Theory,
Computer-supported Cooperative Work, Special Issue on
Activity Theory and the Practice of Design, forthcoming,
2002.

[5] Boehm, B., Bose, P. A collaborative spiral software process
model based on Theory W, Third International Conference
on the Software Process, (Reston, VA), IEEE Computer
Society Press, Los Alamitos, CA, October 10-11, 1994,
pp.59-68.

[6] Brooks, F. No Silver Bullet: essence and accidents of
software engineering, Computer, Vol. 20, No. 4, April 1987,
pp. 10-19.

[7] Card, S., Newell, A., Moran, T. The Psychology of Human-
Computer Interaction, Lawrence Erlbaum Associates,
Hillsdale, N.J., 1983.

[8] Carroll, J. Scenario-based Design: envisioning work and
technology in system development, Wiley, New York, NY,
1995.

[9] Collins, P., Shukla, S., Redmiles, D. Activity Theory and
System Design: A View from the Trenches, Computer-
supported Cooperative Work, Special Issue on Activity
Theory and the Practice of Design, forthcoming, 2002.

[10] Curtis, B., Krasner, H., Iscoe, N. A Field Study of the
Software Design Process for Large Systems,
Communications of the ACM, Vol. 31, No. 11, November
1988, pp. 1268-1287.

[11] Dourish, P., Bly, S. Portholes: Supporting Awareness in a
Distributed Work Group, The ACM Conference on Human
Factors in Computing Systems (CHI’92, Monterey, CA),
May 3-7, 1992, 541-547.

[12] Dourish, P. and Bellotti, V. Awareness and Coordination in
Shared Workspaces, The ACM Conference on Computer-
Supported Cooperative Work (CSCW’92, Toronto, Ontario),
November 1-4, 1992, pp. 107-114.

[13] Engelbart, D. A Conceptual Framework for the
Augmentation of Man’s Intellect, in Greif, I., Ed.,
Computer-Supported Cooperative Work: a book of readings,
Morgan Kaufmann, San Mateo, CA, 1998, pp. 35-66, Ch. 2.

[14] Engeström, Y. Learning, Working and Imagining: twelve
studies in activity theory, Orienta-Konsultit, Helsiniki,
Finland, 1990.

[15] Fischer, G. A Critic for LISP, The Tenth International Joint
Conference on Artificial Intelligence (Milan, Italy), Morgan
Kaufmann Publishers, Los Altos, CA, August 1987, pp.
177-184.

[16] Fischer, G. Domain-Oriented Design Environments,
Automated Software Engineering, 1994, pp. 177-203.

[17] Fischer, G., Henninger, S., Redmiles, D. Cognitive Tools
for Locating and Comprehending Software Objects for
Reuse, Thirteenth International Conference on Software
Engineering (Austin, TX), IEEE Computer Society Press,
ACM, IEEE, Los Alamitos, CA, May 1991, pp. 318-328.

[18] Fischer, G., Girgensohn, A., Nakakoji, K., Redmiles, D.
Supporting Software Designers with Integrated, Domain-
Oriented Design Environments, IEEE Transactions on
Software Engineering, Special Issue on Knowledge
Representation and Reasoning in Software Engineering,
Vol. 18, No. 6, 1992, pp. 511-522.

[19] Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., Sumner, T.
Embedding Critics in Design Environments, Knowledge
Engineering Review, Vol. 8, No.4, December 1993, pp.285-
307.

[20] Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L.,
Goedicke, M., Viewpoints: a framework for integrating
multiple perspectives in system development, International
Journal of Software Engineering and Knowledge
Engineering, Vol. 2, No. 1, 1992, pp. 31-57.

[21] Gould, J., Boies, S., Lewis, C. Designing for Usability: Key
Principles and What Designers Think, Communications of
the ACM, Vol. 34, No. 1, 1991, pp. 75-85.

[22] Green, T., Petre, M. Usability Analysis of Visual
Programming Environments: a ‘cognitive dimensions’
framework, Journal of Visual Languages and Computing,
Vol. 7, 1996, pp. 131-174.

[23] Greenbaum, J., Kyng, M., Eds. Design at Work:
Cooperative Design of Computer Systems, Lawrence
Erlbaum Associates, Hillsdale, NJ, 1991.

[24] Guindon, R., Krasner, H., Curtis, B. Breakdown and
Processes During Early Activities of Software Design by
Professionals, in Olson, G., Sheppard, S., Soloway, E.,
Eds., Empirical Studies of Programmers: Second Workshop,
Ablex Publishing Corporation, Lawrence Erlbaum
Associates, Norwood, NJ, 1987, 65-82.

[25] Hilbert, D., Redmiles, D. An Approach to Large-Scale
Collection of Application Usage Data Over the Internet,
The Twentieth International Conference on Software
Engineering (ICSE ‘98, Kyoto, Japan), IEEE Computer
Society Press, April 19-25, 1998, pp. 136-145.

[26] Hilbert, D., Redmiles, D. Extracting Usability Information
from User Interface Events, ACM Computing Surveys, Vol.
32, No. 4, December 2000, pp. 384-421.

[27] Hilbert, D., Redmiles, D. Large-Scale Collection of Usage
Data to Inform Design, Eight IFIP TC 13 Conference on
Human-Computer Interaction (INTERACT 2001, Tokyo,
Japan), July 2001, pp. 569-576.

[28] Hutchins, E. Cognition in the Wild, MIT Press, Cambridge,
MA, 1995.

[29] Jackson, D., Rinard, M. The Future of Software Analysis, in
Finkelstein, A., Kramer, J., Eds., FOSE 00: The Future of
Software Engineering (Limerick, Ireland), ACM Press, New
York, NY, June 4-11, 2000.

[30] Kantor, M., Zimmermann, B., Redmiles, D. From Group
Memory to Project Awareness Through Use of the
Knowledge Depot, The 1997 California Software
Symposium (Irvine, CA), UCI Irvine Research Unit in
Software, Irvine, CA, November 7, 1997, pp. 19-26.

[31] Kintsch, W., Greeno, J.G. Understanding and Solving Word
Arithmetic Problems, Psychological Review, Vol. 92, No.
1985, pp. 109-129.

[32] Lee, A., Girgensohn, A., Schlueter, K. Sensing Activity in
Video Images, The ACM Conference on Human Factors in
Computing Systems (CHI’97), Extended Abstracts (Atlanta,
GA), March 1997, pp. 319-320.

[33] Lee, A., Girgensohn, A., Schlueter, K. NYNEX Portholes:
Initial User Reactions and Redesign Implications, The
International ACM SIGGROUP Conference on Supporting
Group Work (Phoenix, AZ), November 1997, pp. 385-394.

[34] Lindstaedt, S., Schneider, K. Bridging the Gap Between
Face-to-Face Communication and Long-Term
Collaboration, The International ACM SIGGROUP
Conference on Supporting Group Work (Phoenix, AZ),
November 16-19, 1997, pp. 331-340.

[35] Luff, P., Hindmarsh, J. Heath, C. Eds. Workplace Studies:
recovering work practice and informing system design,
Cambridge University Press, Cambridge, UK, 2000.

[36] McDermott, J. R1: the formative years, AI Magazine, Vol.
2, No. 2, 1981, pp. 21-29.

[37] Nardi, B., Ed. Context and Consciousness: activity theory
and human-computer interaction, MIT Press, Cambridge,
MA, 1996.

[38] Nardi, B., Redmiles, D., Eds. Journal of Computer-
supported Cooperative Work, Special Issue on Activity
Theory and the Practice of Design, forthcoming, 2002.

[39] Norman, D., Draper, S. User Centered System Design: new
perspectives on human-computer interaction, Lawrence
Erlbaum Associates, Hillsdale, N.J., 1986.

[40] Nuseibeh, B., Easterbrook, S. Requirements Engineering, in
Finkelstein, A., Kramer, J., Eds., FOSE 00: The Future of
Software Engineering (Limerick, Ireland), ACM Press, New
York, NY, June 4-11, 2000.

[41] Potts, C., Takahashi, K., Anton, A. Inquiry-Based
Requirements Analysis, IEEE Software, Vol. 11, No. 2,
March 1994, pp. 21-32.

[42] Polanyi, M. Tacit Dimension, Peter Smith Publishers, 1983.

[43] Redmiles, D. Software Requirements for Supporting
Collaboration through Categories, Workshop on
Classification Schemes in Cooperative Work, ACM
Conference on Computer Supported Cooperative Work
(CSCW 2000—Philadelphia, PA), December 2000,
published online at http://bscw.gmd.de/bscw/bscw.cgi.

[44] Rich, C., Waters, R. The Programmer’s Apprentice, ACM
Press, New York, NY, 1990.

[45] Robbins, J., Hilbert, D., Redmiles, D. Extending Design
Environments to Software Architecture Design, Automated
Software Engineering, Vol. 5, No. 3, July 1998, pp. 261-290

[46] Robbins, J., Redmiles, D. Cognitive Support, UML
Adherence, and XMI Interchange in Argo/UML, Information
and Software Technology, Vol. 42, No.2, January 2000,
pp.79-89.

[47] Rosson, M., Carroll, J. Usability Engineering: scenario-
based development of human-computer interaction, Morgan
Kaufmann, San Fancisco, CA, 2002.

[48] Rudisill, M., Lewis, C., Polson, P., McKay, T., Eds.
Human-Computer Interface Design: success stories,
emerging methods, and real-world context, Morgan
Kaufmann Publishers, Inc., San Francisco, 1996.

[49] Schön, D. The Reflective Practitioner: how professionals
think in action, Basic Books, New York, NY, 1983.

[50] Schön, D. Designing as Reflective Conversation with the
Materials of a Design Situation, Knowledge-Based
Systems, Vol. 5, No. 1, 1992, pp. 3-14.

[51] Simon, H. The Sciences of the Artificial, The MIT Press,
Cambridge, MA, 1981.

[52] Soloway, E., Ehrlich, K. Empirical Studies of Programming
Knowledge, IEEE Transactions on Software Engineering,
Vol. SE-10, No. 5, 1984, pp. 595-609.

[53] Suchman, L. Plans and Situated Actions, Cambridge
University Press, Cambridge, UK, 1987

[54] Suchman, L. Making a case: ‘knowledge’ and ‘routine’
work in document production, in Luff, P., Hindmarsh, J.
Heath, C. Eds. Workplace Studies: Recovering Work
Practice and Informing System Design, Cambridge
University Press, Cambridge, UK, 2000, pp. 29-45.

[55] Visser, W. More or Less Following a Plan During Design:
opportunistic deviations in specification, International
Journal of Man-Machine Studies, Vol. 33, No. 1990, pp.
247-278.

