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Abstract of the Dissertation

Open Architecture Software:
A Flexible Approach to
Decentralized Software Evolution

by

Peyman Oreizy

Doctor of Philosophy in Information and Computer Science
University of California, Irvine, 2000

Professor Richard N. Taylor, Chair

Customizing an existing off-the-shelf software package is an effective alternative to building
one anew. Unfortunately, most software packages either lack provisions for customization by
independent third-parties or support a predetermined class of customizations.

This dissertation advances the state-of-the-art in two areas. First, it presents a
framework for understanding, evaluating, and comparing software customization techniques.
Second, it proposes a new software customization technique, called opern architecture software,

that offers greater degrees of adaptability and consistency than previous techniques.

xvil



The comparison framework provides a practical and general-purpose technique for
measuring the adaptability of decentralized software evolution techniques and 1s based on the
concept of software open points, which, intuitively, represent the design decisions within a
software package’s implementation that third-parties can change. The framework 1s used to
compare six popular techniques: application programming interfaces (APIs), software plug-
ins, scripting languages, component architectures, event-architectures, and open-source
software development.

Open-architecture software permits independent third-parties to change a software
system by changing its architecture, i.e., the assemblage of its functional parts and their
interrelationships. The essence of this technique lies in exposing this internal architecture,
either in part or in full, as an explicit and malleable part of the package deployed to users. The
architectural model doubles as a storehouse of semantic information that analysis tools can
use to verify application invariants, and thereby offer certain assurances over third-party
changes.

The claims of this dissertation are validated in two ways. First, a conceptual evaluation
demonstrates that open architectures permit unprecedented changes in comparison to
previous software customization techniques. Second, three case studies describe our
experience using the open architecture approach. One case study uses the Mozilla Web
browser, a large open-source software system comprising over 1.2 million source lines of
code. Our experience demonstrates that a large, monolithic legacy system can be retrofitted
with an open architecture, permitting third-parties to evolve the system in interesting and

practical ways.

xviil



CHAPTER 1 Iﬂt]f O dU,CtiOﬂ

The best way to attack the essence of building software
is not to build it at all.
— Fredrick Brooks, Mythical Man
Month, Anniversary ed. 1995
Customizing an existing off-the-shelf software package is an effective alternative to building
one anew. Unfortunately, most software packages either lack provisions for customization by
independent third-parties or support a predetermined class of customizations.

This dissertation advances the state-of-the-art in two areas. First, it presents a
framework for understanding, evaluating, and comparing software customization techniques.
Second, it proposes a new software customization technique, called opern architecture software,
that offers greater degrees of adaptability and consistency than previous techniques.

The rest of this chapter serves as a broad overview of the dissertation. It begins by
motivating the general problem of software customization, and then reviews and evaluates
previous approaches to the problem. Next, it sketches the open-architecture approach and

summarizes the case studies used to evaluate it. The chapter concludes by summarizing the

contributions of the dissertation.



1.1 Perspective

After four decades of practical experience and research, software development remains an
expensive, time-consuming, and error-prone activity. In a February 1999 report, the
President's Information Technology Advisory Committee concluded that, “The demand for
software has grown far faster than our ability to produce it. Furthermore, the Nation needs
software that is far more usable, reliable, and powerful than what is being produced today”
(PITAC Report 1999). To make matters more desperate, Fredrick Brooks convincingly
argued and predicted in 1987 that no single advance in software development would result in
“even one order of magnitude improvement in productivity, in reliability, in simplicity”
(Brooks 1987). Twelve years later, Brooks’ prediction continues to hold true, for in the years
since, no single advance has convincingly challenged it.

In sharp contrast to software technology, microprocessor technology has maintained
the astonishing rate of improvement predicted by Gordon Moore over twenty-five years ago:
a doubling of circuit density every eighteen months! (Moore 1965). This has lead to
dramatically smaller, faster, and cheaper hardware systems. As a result, there exists an ever
widening productivity gap between hardware and software development.

One way to close the software productivity gap, as many including Brooks have
observed, 1s to avoid building software systems altogether and instead (re)use available off-the-
shelf packages. Reuse magnifies the productivity of software developers by amortizing a
software application’s production costs across every use of that application. Readily available
off-the-shelf packages, such as word processors, spreadsheets, financial accounting packages

and the like, routinely eliminate the need for custom-built applications. In many cases, these

1. Moore’s initial prediction was a doubling every twenty-four months. He later revised it to eighteen.



off-the-shelf packages provide capabilities that exceed the needs of users. The viability and
beneficial consequences of application reuse are evidenced by today’s flourishing shrink-
wrapped commercial software marketplace and the high consumer demand for its products.

At times, a user’s needs exceed that of available off-the-shelf packages, making as-is
application reuse infeasible. In such cases, three remedies are often considered. One, the user
can learn to cope with an existing package either by working around the deficiency or by
revising their needs to correspond with the capabilities of an available package. Two, if certain
capabilities are vital and non-negotiable, the user can procure a custom-solution, which often
incurs considerable expense, delay, and risk. Three, an existing package can be modified to
satisfy the user’s crucial requirements.

This dissertation concerns the last strategy, in which an existing off-the-shelf package
1s modified, 1.e., evolved or customized, to suit the needs of particular users. We refer to this
form of software evolution, i.e., evolution by independent third-parties, as decentralized software
evolution. Software customization combines some of the virtues of “reusing off-the-shelf
packages” with “building custom packages.” Under ideal conditions, customization benefits
the three key parties involved, 1.e., the original developers of the package, the users of the
package, and the third-party developer who customize the package. The package’s original
developers sells more product since customization is a form of use. The users receive a
tailored product in less time and at lower cost as compared to having a system fashioned
anew. The third-party developers deliver a product in less time, at lower cost, of richer

function, and that 1s better tested and documented as compared to a custom-built package.



Too often, an off-the-shelf package does not permit third-parties to make the
necessary changes or—and just as important—the change undermines confidence in the
software’s integrity. Consider the problem from the user’s perspective:

“An off-the-shelf package meets 90% of our requirements, but the missing 10% is vital.”

Reality 1 Reality 2
“Unfortunately, the application cannot be “We can modify the application to provide
modified to satisfy the missing 10%. We the missing 10%. Unfortunately, the effort
have no choice but to build a custom we must expend to regain confidence in the
application from scratch.” modified application is prohibitively high.

We have no choice but to build a custom
application from scratch.”

Either way, the opportunity for reusing an off-the-shelf package is curtailed, causing a
potentially small change in functionality to necessitate a disproportionately large amount of

effort.

1.2 Previous Approaches

A large variety of software customization techniques have been developed to date. They can
be roughly categorized into three classes: behaviorally closed, behaviorally open, and source-
code based.

Behaviorally closed techniques permit third-parties to customize an application by
selecting among and combining its buz/f-in functionality, usually in a restricted fashion.
Popular techniques include keyboard macros and application preferences. Keyboard macros,
for example, record a sequence of user actions for later playback. This permits a new
command to be defined in terms of a sequence of built-in commands. Application
preferences and user-configurable options often enable, disable, or parameterize built-in

application behaviors. For example, application preferences can allow users to change the



application’s user interface color scheme or the default file format used to store documents.
Used effectively, these techniques can provide a rich source of customizations. They are
advantageous in that they commonly do not require programming expertise to use, which
makes them accessible to a broad class of users. As a result, a user can se/f-failor their
application to best meet their individual needs. The shortcoming of these techniques is that
they can only express customizations in terms of the application’s built-in behaviors—
through selection, combination, and parameterization. Due to this limitation, we collectively
refer to these customization techniques as bebaviorally closed.

Behaviorally open techniques permit third-parties to customize an application by
augmenting its build-in behaviors with novel behaviors. This permits a richer class of
customizations than behaviorally closed techniques since new behaviors are not restricted to
being compositions of built-in application behaviors. Popular techniques of this category
include application programming interfaces (or APIs), software plug-ins, scripting languages,
component architectures, and event architectures. These techniques differ with respect to the
types of change supported. For example, APIs, plug-ins, scripting languages, and event
architectures permit third-parties to augment or extend built-in application behaviors but
prevent (or severely restrict) removal and replacement of built-in behaviors. This is referred
to as the restricted scope problems. Component architectures expose an application’s internal
structure to third-parties and can permit replacement and removal of built-in application
behaviors, though change is shackled by the tight coupling among functional parts. This is
referred to as the restricted change problem.

The third class of techniques, 1.e., source-code based techniques, provide third-parties

with the application’s source code and permit them to modify it directly, as they see fit. Open



source software (Raymond 1999) 1s an example of this technique. Theoretically, these
techniques permit third-parties to change all aspects of application behavior. The trade-off is
that third-parties must thoroughly understanding (enough of) the application’s source code to
reason about the proper ways to change it. Often, this places a considerable burden on third-
parties. This is referred to as the change analysis problem. Once a change has been made, the
application must be thoroughly retested to verify that the change does not interfere with the
proper functioning of built-in application behaviors. This is necessary to regain confidence in
the modified application. This is referred to as the change fragility problem since errors are often
difficult to detect. A related problem concerns merging changes from multiple, independent
third-parties in the same application. Since third-parties work independently of one another,
their mutual changes may interfere with one another when combined. This is referred to as
the change composition problem.

Considered broadly, the behaviorally closed and behaviorally open techniques avoid
the change analysis and fragility problems that plague source code techniques by restricting
the scope and types of changes, i.e., by sacrificing the degree of adaptability available to third-
parties. Conversely, source code techniques avoid the restricted scope and change problems
that plague other techniques by divulging the application’s source code, and consequently,
cannot offer strict guarantees over consistency.

In general, the benefits and shortcomings of available techniques are poorly
understood. This makes it difficult for practitioners to select techniques that are suitable for
their needs. Chapter 2 places software customization into the broader context of software

evolution, discusses these techniques in more detail, and considers the opportunities and risks



they introduce. Chapter 3 surveys behaviorally open techniques and presents a comparison

framework highlighting their capabilities and shortcomings.

1.3 A New Perspective and Approach

Can we devise software customization techniques that circumvent or reduce these problems?
The thesis of this research is that there exists a middle ground between available techniques
wherein application developers can make a more balanced trade-off between adaptability and
consistency.

This dissertation describes a novel software customization technique that strikes this
balance. The technique, called open-architecture software, permits independent third-parties to
change a software system by changing its architecture, i.e., the assemblage of its functional
parts and their interrelationships. The essence of this technique lies in exposing this internal
architecture, either 1n part or in full, as an explicit and malleable part of the package deployed
to users. This allows third-party developers to use the application’s architectural model as the
basis for customization, enabling them to introduce new modules, replace or remove existing
modules, or alter module bindings. The architectural model doubles as a storehouse of
semantic information that analysis tools can use to verify application invariants, and thereby
offer certain assurances over third-party changes.

The novel aspects of this technique are:

o system-model based change — an abstract model of the software system is deployed as an
integral part of the system’s implementation and serves as the basis for third-party
change, 1.e., third-parties change the system’s implementation by changing its system

model.



* governed change — third-party changes to the system model are relayed to an agent
called the architecture evolution manager, which validates each change before making a
corresponding change to the system’s implementation. The model guides these tasks.

o multiple, reconfigurable connectors — a system’s functional parts interact with one another
through discrete elements called connectors, which can be reconfigured as necessary to
support third-party changes. Furthermore, each connector can implement a different
composition policy, thereby allowing these policies to change to suit the specific
context of reuse.

The benefits of this technique over previous techniques include intellectual leverage over
change, diversity of change, and new opportunities for governing change.

Open-architecture represents a behaviorally open technique that reduces the
problems of restricted scope and change by exposing the application’s architecture to third-
parties and allowing them to change it in a flexible manner. Although open-architectures
cannot match the adaptability offered by source code techniques, they ameliorate the
problems of change analysis, fragility, and composition. As a result, open architectures offer a
better balance between adaptability (what changes are possible) and consistency (what

assurances over change are provided).

1.4 Evaluation

The claims of this dissertation are validated in two ways. First, a conceptual evaluation
demonstrates that open architectures permit unprecedented changes by (a) enumerating the
types of change supported by previous techniques, (b) demonstrating that open architectures
support these changes, and (c) identifying types of change that are supported by open

architectures but not by the others.



Second, our experience using open architectures in three applications is summarized
and evaluated. Two of the applications, each under 10,000 source lines of code and built in-
house, were implemented entirely in a component- and event-based architectural style. The
open-architecture approach was then used to expose their architectures and several third-
party changes were made to each system. The changes demonstrate a wide variety of change
types and the role constraints play in governing changes. The third application, a large
commercial software system comprising over 1.2 million source lines of code, was modified
to expose a small subset of its architecture using the open-architecture approach. Several new
features were then added to the system by changing its architecture. The changes demonstrate
that a large, monolithic legacy system can be retrofitted with an open architecture, permitting

third-parties to evolve the system in interesting and practical ways.

1.5 Research Contributions

The contributions of this dissertation include:

1. A measure for evaluating and comparing the flexibility of decentralized software evolution
techniques (Section 3.2).

2. A practical, system model-based agpproach to decentralized software evolution, called open-
architecture software, that engenders novel types of adaptability and consistency. The
approach complements existing techniques and can be used on a subset of a legacy soft-
ware system, 1.e., in an incremental manner (Chapter 5).

3. A conceptual architecture for implementing system model-based approaches to decentralized
software evolution, such as open-architectures (Chapter 5).

4. A policy neutral mechanzsm for governing third-party changes to a software system using

system-models (Chapter 06).



5. A more effective characterization of the relationships between system models, the types of

third-party changes they support, and the assurances they provide (Chapter 4).

1.6 Organization of this Dissertation

Chapter 2 provides a broad introduction to software customization and defines many of
terms used throughout the dissertation. Readers familiar with software customization can
skip this material, but should review the definitions in Section 2.4. Chapter 3 surveys
behaviorally open software customization techniques and presents a framework for
characterizing and comparing them. Informed by this framework, Chapter 4 identifies the
shortcomings of previous techniques. Chapter 5 presents the open-architecture approach.
Chapter 6 and 7 then present case studies that report on the use of open-architectures in
three applications: two small applications developed in-house and one large independently-
built commercial software system. Chapter 8 evaluates the open architecture technique,
including its risks, and Chapter 9 summarizes the contributions of this research and suggests

areas for future study.
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CHAPTER 2 S O f tware
Customization

Software customization broadly refers to the activity of modifying a software system to better
suit the needs of a particular task. This chapter reviews the fundamental concepts and
techniques of software customization. The material covered here spans a wide range of
topics, not all of which is required to understand the remainder of this dissertation. Readers
familiar with this topic should review the definitions in Section 2.4 before skipping ahead to
Chapter 3.

The chapter begins by placing software customization in the context of software
evolution and highlighting its unique characteristics. Next, the key stakeholders in the
software customization process are identified and each of their concerns and needs identified.
Next, essential terms and concepts are defined. Then, the breadth of software customization

techniques is reviewed. The chapter concludes by examining relate work.
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2.1 Software Evolution

Software evolution broadly concerns the activities of changes to a software system (Ghezzi et
al. 1991) and has been the subject of much research (Lehman and Belady 1985, Parnas 1972,
Lientz and Swanson 1980, Gamma et al. 1995, IWPSE 98, IWPSE 99). Table 2-1 places
decentralized software evolution in the broader context of software evolution by partitioning
commonly used software evolution techniques based on when they can be applied and by
whom. Software systems can either be modified by a centralized authority, such as a single
vendor (top row), or by a decentralized group, such as multiple independent vendors (bottom
row). Software systems may also be modified during the design and implementation phase
(left column) or after it has been deployed to users (right column). Given a context for
software evolution—a when and by whom—the table helps determine which techniques are

best suited for the task.

When
Design-time

(or pre-deployment) Post-deployment

. evolution
evolution
Design notations, methods,
; Release management
Central authority and tools; process systems; . .
. L systems; binary patch files;
(e.g., single group communication and . oy
. configurable distributed
vendor) collaboration tools;
) . systems
configuration management
Who . .
) Same as above, with special .
Decentralized : APIs, software plug-ins,
. support for loose coordina- i |
ou . . scr anguages, open
group . tion among geographically pling fanguages, op
(e.g., multiple o source, component
. distributed team members .
independent . . architectures, and
(multiple sites or cross-orga-
software vendors) . event-based systems
nizational); open source

Table 2-1: This 2x2 matrix categorizes different techniques used to support software
evolution based on w/o can evolve the system and wher evolution can take place.
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Centralized, design-time evolution: A team of closely collaborating team members,
working on a single system, with common goals, and shared access to design and
implementation artifacts characterizes this category of evolution. Most software evolution
techniques and tools support this category. For example, design notations and methods, such
as the Unified Modeling Language (UML) (Booch et al. 1998), provide guidelines for system
design and graphical notations for design capture. Group communication and collaboration
tools, such as e-mail, revision control tools, and configuration management systems, help
team members coordinate and manage software changes. The great majority of software

development projects fall into this category of evolution.

Decentralized, design-time evolution: A collection of loosely coordinated teams, working
on different systems with a shared infrastructure differentiates this category from its
centralized counterpart. Examples of this category include the various versions of Linux and
the Apache Web, the different version of which have been tailored to a particular application
domain by different organizations. Also falling into this category are large, possibly
geographically distributed, teams of a single organization as coordination and synchronization
of project artifacts, people, and development processes becomes a significant impediment to
development (e.g., see Herbsleb and Grinter 1999, Perry et al. 1998). Perry and Kaiser (1991)
have studied the impact of large development teams on software engineering environments.
They observe that as a team grows above approximately 20 members, the number and
complexity of interactions increases substantially. As a consequence, additional rules and
mechanisms are necessary to aid cooperation among team members. Fielding and

Kaiser (1997) report on the processes and tools used by the Apache Group, a globally

distributed software development team that develops the popular open-source Apache Web
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server. They i1dentify the importance of e-mail communication, archival of e-mail
communication (as a means to support group memory), a shared information space accessible
by all project members, coordination tools that support loose collaboration, and at least one
shared goal among participants in fostering a successful project. Cutkosky et al. (1996) report

similar experiences in the manufacturing domain.

Centralized, post-deployment evolution: Once a system is deployed to users, the original
application developers use software updates or “patches” to evolve the system. These updates
can incorporate bug fixes or additional features. Since a single authority—the original
developer—creates updates, change conflicts do not arise. As a result, most of the
technologies in this category are concerned with the efficient distribution and mstallation of
updates. Since most user environments lack a proper software development environment,
software updates are rarely deployed in source code form. Instead, developers create binary
patch files, which encode byte-level changes between the original and updated versions of the
application binary. Developers distribute these to users, who apply the patch to update their
installed systems. More sophisticated tools, such as Tivoli’s TME /10 (1998) and Software
Dock (Hall et al. 1999), use software module dependency information and intelligent agents,

respectively, to guide system updates.

Decentralized, post-deployment evolution: Multiple software developers independently
evolving a system differentiates this category from its centralized counterpart. This category
of software evolution 1s commonly referred to as soffware customization. Popular applications
that use this type of evolution include Adobe Photoshop, GNU Emacs, and Netscape
Communicator. Each offers a wide assortment of third-party add-ons that augment or

“evolve” the application’s capabilities. The original application developers implement and
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document various extension mechanisms to enable third-party developers to build add-ons.
Commonly used techniques include application programming interfaces (APIs), scripting
languages, and software plug-ins.

There are far reaching consequences inherent in supporting this last category of
software evolution. For example, consider an application in which multiple add-ons may be
used simultaneously. Since binary patch files from two independent parties cannot be merged,
an alternative add-on packaging and installation mechanism becomes necessary. Furthermore,
combining independently developed add-ons may lead to unforeseen interactions among the
add-ons and the host application. Consequently, approaches for avoiding and/or detecting

and resolving inconsistencies must be used.

Research to date has primarily focused on design-time techniques. Recent work has also
begun to investigate centralized, post-deployment evolution, such as in the areas of software
deployment and intelligent updates (e.g,, Hall et al. 1999), runtime software evolution (e.g.,
see Oreizy et al. 1998, Oreizy and Taylor 1998, Kramer and Magee 1985), and reconfiguration
of distributed systems (e.g., see ICCDS 1992-1998).

Meanwhile, the software industry’s interest in providing third-party customizable
systems has increased. This is evidenced by the growing trend toward customizable packages
and the trend toward “applications-as-platform”. The remainder of this chapter and this

dissertation concern decentralized, post-deployment evolution.

2.2 Motivation

Software customization represents a middle ground between buying an off-the-shelf application

and building an application anew—one buys an off-the-shelf application and modifes it to suit their
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needs. As such, customization can exhibit many of the virtues of each, while at the same time,
minimizing each of their shortcomings.

Many have proclaimed the potential benefits of software customization as an
alternative to today’s mega-sized, one-size-fits-all applications. Wirth (1995) and others have
expressed the disadvantages of building monolithic applications that attempt to suit
everyone’s needs: everyone gets stuck paying for features they do not need or use, which
complicate the product unnecessarily and wastes computing resources. Wirth sees software
customization as a means of remedying the situation, whereby “ideally, only a basic system
with essential facilities would be offered, a system that would lend itself to various extensions.
Every customer could then select the extensions genuinely required for a given task.” Don
Norman (Rheinfrank 1995) and others have long advanced the idea that applications
customized for a particular task, 1.e., fask-orzented software, can improve usability and help
overcome the complexity of today’s general-purpose, feature-rich, difficult to use software
systems. The essence of the argument is that, by focusing on a particular end-user task,
software developers can (a) eliminate features that do not pertain to the given task and
(b) tailor necessary features to better suit the given task, such as by selecting more appropriate
application defaults or by using task-specific vocabulary and graphical elements in the
application’s user interface. Alvin Toffler (Ewell 1998) argues that mass customization, or
“demassification”, 1s a modern societal trend that has begun to influence business products
and practices. He notes that although consumers enjoy the low prices engendered by mass
produced, one-size-fits-all products, they prefer products that are customized and tailored to
their particular needs. In the context of business information systems, Fayad and Cline (1996)

argue that to stay competitive in today’s rapidly changing business environment, businesses
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must leverage adaptable software systems that can be incrementally altered as business needs
change.

The success of numerous customizable software applications, such as Adobe
Photoshop, GNU Emacs, Visio, Microsoft Office, Linux, Netscape Communicator, and the
Apache Web server and the third-party add-on marketplaces each has created, demonstrate
the benefits of this approach. The use of software customization techniques can enable
“decentralized mnovation,” wherein third-parties can provide innovative new capabilities
independent of the original application vendor.

Although users generally prefer an application that has been customized to suit their
particular needs, Catalano (1997) warns that they do not want to assemble and test products
themselves. As evidence, Catalano points to failures of commercial third-party add-ons for
popular applications, such as Microsoft Office. Although Catalano provides little evidence for
the reasons behind the failures—i.e., does it stem from bad marketing or technical
difficulties—he does reveal that software customizable is not without tisk.

Too often, an off-the-shelf package does not permit third-parties to make the
necessary changes or—and just as important—the change undermines confidence in the
software’s integrity. Often, these problems are not revealed until a significant investment has
been made in attempting to customize a package.

Another important factor to consider is the relative cost of reuse, 1.e., the ratio between
the cost of actually reusing an asset and that of developing it from scratch. Selby (1998)
examined data from nearly 3,000 NASA software modules, and observed that modules reused
without modification had a relative cost of reuse as low as 0.03 to 0.04. In contrast, modules

reused with less than 25% of its code modified had relative cost of reuse as high as 0.55—
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more than a ten fold increase. Unfortunately, the study did not account for the relative
complexity of source code—some programs are easier to understand and modify than
others—simply the proportion of it that was examined and modified. Similar studies should
be performed for customization techniques that do not rely on understanding and modifying
the host application’s source code, but on learning and using other customization
mechanisms, such as an application’s programming interface (API). We discuss many of the
other risks of software customization in Section 2.5.

Finally, it should be noted that software customization is not a panacea. Evolvability
1s an intrinsic property of a software package’s design and implementation. Software
customization techniques can, at best, revea/ this evolvability to third-party developers; they
cannot engender novel kinds of evolvability. Thus, a package’s design and implementation
places a fundamental limitation on the potential benefits of customization techniques. Stated
another way, customization techniques can at best make a particular change as easy for third-

parties as it would be for the original software developers.

2.3 Customization Process and its Key Stakeholders

Developing software systems that support decentralized evolution introduces unique issues
mnto the software development process. A holistic understanding of the issues must recognize
its stakeholders and their individual concerns and needs. Figure 2-1 depicts an idealized high-
level process 1dentifying the four key stakeholders and their interrelationships. Each role is
described in more detail below. Each spiral represents the process carried out by a participant
using Boehm’s Spiral process model (Boehm 1988). The quadrants of each spiral partition the

stakeholder’s key concerns and tasks as they proceed from initial product concept, to product
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Figure 2-1. A canonical high-level software customization process depicting the four key participants—the
host application developer, the add-on developer, the systems integrator, and the end-user—and the

artifacts that flow between them.

delivery, and then to product maintenance. Each process spirals outward through multiple

releases. The quadrants represent: identifying objectives, alternatives, and constraints (uppet-

right); evaluating alternatives, identifying and resolving risks (lower-right); development and

verification of the next iteration product (lower-left); and planning the next phase (upper-

left). It should be noted that each participant is an independent entity and that it there is no

explicit assumption of synchronization between their individual processes.

* The host application developer creates an application that others can customize. In

addition to the traditional activities of software development, host application

developers must evaluate the costs and benefits inherent to allowing third-parties to

customize their application. To do this effectively, they must determine the allowable

types of third-party customizations, the particular mechanisms that they would

implement to enable third-parties to customize their application (upper-left), and the

impact that third-party customization would have on other aspects of software
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development, including verification and testing, backward compatibulity,
documentation, and technical support (lower-right). Then, the application developers
would implement the application plus the necessary mechanisms to support
customization, verify, and deploy the application to others.

The third-party add-on developers customize a particular host application to better suit the
needs of an end-user community or application domain by creating software add-ons.
The add-on developer identifies add-on requirements by either consulting with
systems integrators and end-users or by trying to predict the needs of the market
(upper-right). Add-on developers then evaluate alternative strategies for developing
the add-on, which mvolves determining whether or not the add-on could be built
using the customization mechanisms provided by the host application, and, if
multiple customization mechanisms could be used, weighing the pluses and minuses
of each in order to select the most appropriate one (lower-right). Once appropriate
OTS applications and customization mechanisms are evaluated, the add-on
developers would implement, test, and deploy the add-on (lower-left). Subsequent
revisions and maintenance would then be considered and planned as necessary
(upper-left). The particular techniques an add-on developer uses depends largely on
the customization mechanisms provided by the host application, but it generally
requires programming expertise.

The system integrators, sometimes called “solution providers”, build systems by
assembling OTS applications and add-ons to suit the particular needs of an end-user
community or application domain. The role of the system integrator is not to create

applications or add-ons, but to assemble and integrate software systems for end-users
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from existing parts. System integrators work with end-users to determine
requirements and to identify suitable candidate OIS applications (upper-right). If
there is a gap between the end-user’s requirements and the capabilities of candidate
OTS applications, system integrators collaborate with the host application developers
and multiple, independent third-party add-on developers to determine if the gap can
be reduced by customizing the OTS applications with add-ons (lower-right). Systems
integrators then acquire candidate OTS applications and add-ons, install and
configure them into candidate systems, and verify the degree to which they meet the
end-users requirements. The assembled system is then deployed to the end-users
(lower-left). The systems integrator then assumes the role of system maintenance
(upper-left).

* The end-users acquire and use applications to support their objectives. The end-user
process mnvolves determining requirements, identifying alternative software systems
(north-east), working with a system integrator to evaluate the alternative software
systems and determine the degree to which they satisfy the requirements (south-east),
acquiring, installing, and deploying the software system (south-west), and planning
subsequent software needs (north-west).

Although we have presented these roles separately, they are often combined in practice. In
the shrink-wrapped software industry, for example, consumers often take on the role of
system integrator and end-user. Consumers purchase applications and add-ons from various
vendors and assemble it themselves. In corporate markets, the MIS organization plays the

role of third-party developer and system integrator.
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Others have used a variety of names to describe similar stakeholder roles. Boehm and
Scherlis (1992) use the term “megaprogramming” to describe the practice of building and
evolving software by piecing together software components. Megaprogramming represents a
combination of the task performed by third-party developers and system integrators, though
we do not assume that software systems are evolved at the level of software components.
Brooks (1995 p286) distinguishes between three types of megaprogrammers: (1) single-
application/specialization megaprogrammer, who wtite code to customize a single
application, (2) multiple-application/new domain megaprogrammers, who wtite code to
integrate multiple applications, and (3) a function programmer, who writes new code available
for megaprogrammers. In relation to our model, roles (1) and (2) are specializations of our
system integrators, while role (3) combines our host application developer and third-party
add-on developer. We distinguish between these two roles because while both can make
changes to the application, the host application developer has complete access to the
application’s source, whereas third-parties can only change the application through the

customization mechanisms made available to them by the host application developers.

2.4 Definitions

This section defines several key terms used throughout this dissertation and distinguishes

them from related terms.

General-purpose or flexible. A softwate system is consider general-putpose and/or
flexible if it can be used in a wide variety of situations without requiring any changes to its

source code.
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Evolvable. A software system is consider evolvable if it can be easily modified to satisfy new
requirements. This conventional definition does not designate who can make changes, but

the host application developer 1s assumed. Synonyms include adaptable and modifiable software.

Customizable. A software system is considered customizable if it allows third-parties to
modify its behavior, usually without having access to its source code. Third-parties can add
new behaviors, or replace and remove built-in application behaviors. More restricted forms of

change are assumed by extensible and configurable software.

Extensible. A software system is considered extensible if it allows third-parties to add new
behaviors to it, usually without having access to its source code (Pountain and
Szyperski 1994). Extensibility is a limited form of customizability since it generally precludes

the replacement and removal of built-in application behavior.

Behaviorally closed customization technique. A software customization technique 1s
behaviorally closed if the range of customizations it offers to third-parties is exclusively
through the selection and combination of built-in application behaviors.? Host application
developers that use a behaviorally closed technique must, in essence, provide a rich collection

of “atomic” behaviors that third-parties can select and combine to define new behaviors.

Behaviorally open customization technique. A software customization technique is

behaviorally open if third-parties can add novel behaviors to the host application, 1.e., define

2. For our purposes, a program is a specification written in a language with well defined, formal
semantics that is executable on some machine (i.e., an executable specification language (Wing
1990) and is distinct from the inputs it operates upon. Altering this executable specification—Dby
removing or replacing a portion of it, by augmenting it with another executable specification, or by
changing its functional composition (i.e., from f(g(x)) to g(f(x)))—constitutes a “behavioral
change.” Although programs may treat inputs as data or program, such distinctions are immaterial
for the purpose of defining behavioral change. Also, the particular representation of the executable
specification that is modified is inconsequential—it may be programming language source code,
module bindings, or compiled machine language instructions.
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new “atomic” behaviors. This permits a richer class of customizations than behaviorally
closed techniques since new behaviors are not restricted to being compositions of built-in

application behaviors.

Decentralized change and composition. A software customization technique supports
decentralized change and composition if it allows independently developed third-party add-
ons to be combined in the same host application and if it attempts to either (a) avoid

composition inconsistency or (b) detect and resolve composition inconsistencies.

2.5 Key Concerns and Issues

The process diagram in Figure 2-1 on page 19 reveals the interrelationships between software
customization’s four key stakeholders. The decisions of one stakeholder often impact another.
By considering how one participant’s changing decision impacts the other participants, we can

identify several pertinent issues that impact software customization. These are:

Adaptability: The host application developer must decide which aspects of the host
application third-parties can change and under what conditions. Such decisions circumscribe
the types of changes third-parties can make and, ultimately, the types of systems that system
integrators can assemble for end-users. For example, third-party plug-ins for Netscape
Communicator can support new data types (such as an MPEG-2 video stream), but cannot
replace the browser’s bookmark facility (Netscape Corporation Inc., 1998). Therefore, it 1s
imperative to understand the types of third-party changes enabled by different customization

mechanisms.

Consistency: Third-party developers, as a consequence of working independently of one

another, may change the host application in inconsistent or incompatible ways. For example, a
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pootly written module for the Apache Web server may compromise the security of a Web site,
or less ominous, two Netscape Communicator plug-ins may try to register for the same media
type. Therefore, host application developers should either devise strategies that prevent
inconsistencies from occurring or use mechanisms that detect and resolve inconsistencies 1f

they occur.

Backward compatibility and support effort: Once host application developers adopt
customization techniques, they are pressured to maintain backward compatibility such that
add-ons developed for the current release will continue to work with future releases. If
backward compatibility is not maintained, third-party developers must modify their add-ons,
and system integrators must reassess system assemblies with every host application release.
The degree to which backward compatibility can be maintained largely depends on the
resiliency of the abstractions exposed to third-party change. For example, although the
Microsoft Windows operating system and its API have evolved significantly over the last
decade, a large majority of the application programs that rely on its API have continued to
operate without change. This is because the abstractions exposed through the API have been
relentlessly maintained by its implementors. In contrast, the changing abstractions exposed to
Windows device drivers has required that they be replaced with practically every operating

system release.

Degree of integration: The customization mechanism used by the host application
developer impacts the degree to which third-party add-on developers and system integrators
can “seamlessly” integrate add-ons with the host application. Thomas and Nejmeh’s (1992)
four dimensions for evaluating tool integration in software development environments—

presentation (i.e., user interface), data, control, and process—seem equally well suited for
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evaluating the degree of integration between host applications and their add-ons. We
mntroduce a fifth dimension, documentation integration, which concerns the degree to which
the help facilities of the host application and its add-ons are integrated. For example, in
Emacs (Stallman 1984), end-users use the same mechanisms for retrieving documentation

regarding built-in editing modes and commands as they do for ones provided by add-ons.

Adoption effort. Using a customization technique incurs cost and effort on the part of the
host application developer, third-party developers, and system integrators. Adoption effort is
an important discriminant of customization techniques, especially for third-party developers
and system integrators where the effect is multiplicative. On one hand, exposing the host
application’s source code 1s easy for its developers—they can distribute the source code, build
scripts, and on-hand documentation—but onerous for third-party developers, each of whom
must understand and customize the host application at the source-code level, and the system
integrators, each of whom must integrate, test, and resolve add-on inconsistencies at the
source-code level. On the other hand, a component technique places more of the burden on
the host application developers by requiring that they program according to strict,
documented component interfaces, and reduces the burden on third-party developers since
they can understand and change the host application at a higher level of abstraction than

source code.

End-user effort. Third-party developers and system integrators usually insulate end-users
from the complexities of implementing, integrating, and testing add-ons. In some cases, end-
users assume these roles. In such situations, the level of end-user expertise and effort required

to use a customization technique is an important consideration. For example, highly domain-
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specific scripting languages, like spreadsheet formula languages, accommodate end-user

development better than general-purpose programming languages.

Implementation issues. Customization techniques can impose constraints on the
implementation of add-ons. For example, a customization mechanism that uses a scripting
language, such as Microsoft Office’s Visual Basic for Applications, requires that all add-ons
use a single implementation language. Other constraints may restrict the use of multiple
threads of control, disallow the run-time addition and removal of add-ons, mandate a

granularity for change, or sacrifice runtime performance.

Document portability. In some situations, end-users expect documents to be portable
independent of the add-ons installed for the host application. For example, users of Adobe
Photoshop can share images with one another irrespective of the plug-ins each uses since
Photoshop uses a standardized, add-on-independent file format. Document portability is not
a direct consequence of using any particular customization technique, but it 1s an important
end-user issue that host application developers, third-party developers, and system integrators

must consider.

Security and trust. In a traditional software marketplace, end-users trust a single entity—the
software vendor—to guarantee certain measures of system reliability, stability, performance,
etc. When systems are assembled from multiple, independently developed add-ons, end-users
implicitly trust all the parties who contributed to the system: the host application developer,
third-party developers, and the system integrator. If end-users assemble the system
themselves, they become partially responsible as well. customization techniques are generally
neutral with regard to such issues. Nevertheless, all the stakeholders must consider the

security and trust implications of using software customization techniques.
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Social and economic issues. In addition to the technical issues raised above, numerous
social and economic issues impact software customization. For example, host application
developers must provide incentives for third-party developers, foster collaboration and

coordination among developers and system integrators, and determine licensing and software

redistribution rights (Whitehead et al. 1995, Mackay 1990).

2.6 Related Areas of Study

Software research has, by and large, not directly nvestigated the topic of software
customization. This is peculiar given the extensive research that has been done in tangential
topics. For example, research has investigated numerous aspects of software reuse, from low-
level code and component-based reuse to high-level design reuse and domain-specific
software architectures (Krueger 1992). Yet, reuse at the granularity of software applications is
largely ignored. Research on component-based software development has focused on
components that range in size from hundreds to tens of thousands of lines of code, but has
not generally regarded a software application as a single software component. Research on
software evolution has primarily focused on techniques for designing and evolving software
systems from an application developers point of view, not by independent third-parties.
Configurable distributed systems and research in runtime software evolution (Magee and
Kramer 1996, Purtilo 1994, Oreizy et al. 1998) have explored techniques for changing fielded
software systems during runtime, i.e., centralized, post-deployment software evolution, but
not its decentralized counterpart.

Design strategies, approaches, and methodologies, such as information hiding (Parnas
1972), object-oriented design (Booch 1994), mediator-based design (Sullivan and

Notkin 1992), adaptive object-oriented design (Lieberherr 1996), design patterns (Gamma et
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al. 1995), aspect-oriented design (Kiczales et al. 1997a), etc., help design evolvable software
systems, but lack any mechanisms for supporting software customization. Good design is a
necessary but insufficient criteria for customization.

Application generators and 4th generation languages generate executable
specifications from a high-level specification language that is suited for a particular
application domain. Although useful, these tools do not necessarily lead to customizable
software systems.

Tool integration technologies, such as Field (Reiss 1990) and Softbench (Gerety
1990), strive to address some of the same concerns as software customization, but with
different assumptions. In tool integration, independently developed programs (i.e., tools) are
mntegrated into a new whole (i.e., an environment). In decentralized software evolution, a
program (le., a host application) is customized by independently developed programs
specifically design for it (i.e., add-ons). Ultimately, tools with better software customization
techniques give environment builders more leeway for integrating them into an environment.

End-user customization concerns software customization performed directly by its
users, and has been studied extensively in the literature (see (Cypher et al. 1993, Morch 1998)).
In this domain, providing task-specific semantic primitives, simple control structures, and
good visualizations of program state are critical in supporting users that lack programming

expertise (Zarmer et al. 1992).

2.7 Conclusions

Software customization continues to have a significant impact on software development and

the software marketplace. Numerous off-the-shelf packages provide software customization
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techniques. Yet, there are no clear characterizations of the unique issues that developers face

when using these techniques or of their relative merits and shortcomings.
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CHAPTER 3 D ccentr a]iZ ed
Software Evolution

This chapter evaluates and compares several techniques for decentralized software evolution
(DSE) with regard to adaptability and consistency. In doing so, we establish a framework for
understanding, comparing, and evaluating DSE techniques. Others can extend the framework
with other DSE techniques. We use the evaluation criteria established here in subsequent
chapters of the dissertation to identify the limitations of existing techniques (Chapter 4), to
motivate our proposed technique (Chapter 5), and to evaluate its merits (Chapter 8).

Since countless systems, past and present, utilize some form of DSE, performing an
exhaustive survey is infeasible. We instead examined a variety of techniques used by popular
software systems of the day and those described in the research literature. Based on this
examination, we identified six characteristic DSE techniques: application programming
mterfaces (or APIs), software plug-ins, scripting languages, component architectures, event
architectures, and source code techniques. In general, other techniques can be derived by

constraining or combining these six techniques.
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Section 3.1 briefly describes the six characteristic techniques. Section 3.2 and 3.3
evaluate these techniques with regard to adaptability and consistency, respectively. Section 3.4
relates the comparison framework produced here with that of other work in the area.

Section 3.5 discusses our findings.

3.1 Characteristic Techniques

Six popular behaviorally open DSE techniques are:

Application programming interfaces (APIs). With this technique, the host application
exposes an interface—a collection of functions, types, and variables—to third-party
developers. Third-party add-ons use and invoke interface elements to alter the host
application’s behavior. APIs are used by many operating systems and commercial
applications.

Operating systems were perhaps the first “host applications” to offer APIs for DSE.
In our context, the operating system represents the host application and third-party
applications represent add-ons. The Microsoft Windows 95 API, for example, exports over
one thousand functions and data types (Petzold 1996). Application programs invoke API
functions that operate on files, manipulate graphical user interface elements, communicate
with hardware devices, etc. McLellan et al. (1998) and Ran and Xu (1996) have described
various techniques for organizing APIs to facilitate comprehension by third-party developers.

An API can also expose a meta-interface (Kiczales et al. 1991)—a collection of
functions used to alter the behavior of the API itself. For example, Unix’s ioctl() API
function modifies parameters associated with a particular input/output device, affecting the
behavior of other API functions such as read() and write(). Open implementation (Kiczales et

al. 1997b) uses meta-interfaces as a means of allowing clients of the API to provide hints
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about how they will use the API. The implementation of the API uses these hints to

“optimize” its behavior to the context of use.

Scripting languages. With this technique, the host application provides its own
programming language and run-time environment to third-party developers. Third-parties
use this language to implement add-ons. Add-ons, when executed by an interpreter, alter the
behavior of the host application. Scripting languages commonly provide domain-specific
language constructs and built-in functions that facilitate the implementation of add-ons,
especially for end-users who lack programming expertise. Examples in AppleScript (Apple
Computer, Inc. 1996), Visual Basic for Applications (Microsoft VBA 1997), elisp (Stallman
1984), and Tcl/Tk (Oustethout 1994).

Spreadsheet formula languages, macro systems, and programming-by-demonstration
systems are essentially scripting languages specialized for domain-specific needs. Spreadsheet
formulas are expressed as mathematical formulae and stored in individual spreadsheet cells.
The execution semantics are governed by the spreadsheet’s recalculation engine, which
determines the dependencies between spreadsheet cells and reevaluates expressions as
needed. Macro systems confine the language to user-interface operations, and typically only
allow them to be created indirectly, by observing and recording the end-user’s actions.
Execution occurs when the recorded macro is played back. End-user programming systems
are similar to macro recorders, though they attempt to abstract and generalize the actions

performed by the end-user so that they can be applied in broader contexts.

Plug-ins. With this technique, the host application pre-defines an interface that third-party

add-ons or plug-ins implement. The host application uses and invokes the plug-in’s interface,
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thereby altering its own behavior. A plug-in is akin to a behavioral place holder in the host
application.

API callback mechanisms, such as those used by Open Implementation (Kiczales et
al. 1997b) and function hooks (Nermark 19906), are effectively software plug-ins in-the-small.
For example, Emacs (Stallman 1984) and Interlisp (Teitelman and Masinter 1981) use hooks

to inform third-party add-ons when certain operations, such as reading a file, are mnvoked.

Component architectures. With this technique, the host application exposes its internal
component structure to third-party developers. Other techniques, in contrast, view the host
application as a monolithic entity whose internal structure 1s opaque and immutable. Each
component exposes an interface and may use the interfaces exposed by other components.
Add-ons alter the behavior of the host application by adding new components that interact
with existing components or by replacing an existing component with one that exposes a
compatible interface. Examples of component architectures include Microsoft’s Media

Player (Microsoft DirectShow 1998) and Unix’s filters.

Event architectures. With this technique, the host application exposes two distinct
interfaces to third-party developers: an incoming event interface, which specifies the set of
messages it can receive and act on; and an outgoing event interface, which specifies the set of
messages it generates. Events are exchanged between the host application and add-ons by
passing messages through an event mechanism. Add-ons alter the behavior of the host
application by sending messages to it or by acting on the messages they receive from it. Event
mechanisms commonly provide a message broadcast facility, which sends a message to every
add-on attached to the event mechanism. Event architectures are unique in that the event

mechanism mediates the communication between the host application and add-ons. As an
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intermediate, the event mechanism encapsulates and localizes program binding and
communication decisions. As a result, these decisions can be altered independently of the
host or add-on programs. This 1s in sharp contrast to the other techniques, in which programs
directly reference, bind to, and use each others interfaces.

Implicit invocation (Garlan et al. 1992), in which events are broadcast anonymously,
1s a subclass of event architectures. Implicit invocation has been formalized (Garlan and

Notkin 1991), and several techniques for incorporating it into programming languages have

been explored (Garlan and Scott 1993, Notkin et al. 1993).

Source code-based. With this technique, the host application exposes its source code to
third-party developers. Third-parties alter the host application’s behavior by changing its
source code, and redistributing their modified version. Mozilla (www.mozilla.org),

Linux (www.linux.org), and Apache (www.apache.org), all of which use the open-source

software development model, are popular examples of this technique.

Host applications developers can combine these techniques. For example, operating systems
typically use the API technique for third-party application developers and the plug-in
technique for third-party device driver developers. Emacs (Stallman 1984) effectively
combines several techniques. It provides a scripting language called elisp, source code for
Emacs itself implemented in elisp and C, a plug-in mechanism based on Lisp-style function

hooks, and an extensible documentation mechanism.
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3.2 Adaptability

How do DSE techniques differ in terms of adaptability? What aspects of the host application
can a third-party change and how? In this section, we propose a technique for answering
these questions.

Our general strategy for evaluating the adaptability of a DSE technique relies on

enumerating the #ypes of open points that it supports ar a particular level of abstraction.

Open points. Open points are documented, behavioral parameters of programs. The
concept of open points was introduced by Kurt Nermark (1996), who coined the phrase
when devising a more flexible version of Lisp’s function hook mechanism. Here, we
generalize the concept by considering any behavioral change as an open point (i.e., not just
function hooks), and use it to evaluate the adaptability of DSE techniques. For example,
Netscape Communicator’s plug-in mechanism provides a behavioral placeholder that third-
party program modules can fill. The third-party module acts as a behavioral parameter of the

host application, and the third-party’s ability to add modules constitutes a type of open point.

Level of abstraction. Adaptability can be measured at various levels of abstraction. For
example, we could imagine techniques that let third-parties change a program’s machine
language instructions, its source code, or its module bindings. Each level of abstraction
facilitates some types of change and confounds others. A fair comparison of the types of
change DSE techniques provide must evaluate their open points at a particular level of
abstraction.

Here, we compare techniques at the module-level of abstraction even though the
concepts we describe can be applied at any level of software description. We do this so that

we may present concepts in concrete terms using specific examples instead of abstract
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intangibles. Although this choice helps make the presentation accessible, it runs the risk of
alienating readers interested in software customization at a different level of abstraction. We
attempt to remedy this dilemma, in part, by discussing how the fundamental concepts
presented here apply at the level of programming language functions and event systems in
Appendix A. Unfortunately, restrictions prevent a comprehensive treatment across a broad
range of levels.

We have chosen the module level because preliminary evidence from research
indicates that components—modules that encapsulate units of functionality and data with
minimal coupling to other components—represent a highly leveraged basis for

understanding, reasoning about, implementing, reusing, and evolving software systems (Perry

and Wolf 1992, Shaw and Garlan 1996, ISAW 1995-2000, IWCSE, ICOP].

Open points at the module level. At the module-level, an application consists of a

collection of modules and bindings (see Figure 3-1). Modules encapsulate black box units of
functionality and are depicted as rectangles. Each module exposes an interface—a collection
of functions, types, and variables—that other modules can use and is depicted as a filled circle

on the left border of a module. A module referencing another module’s interface element is

interface
binding host host
application application
program module module
module ® 4
host
application
module

host host
application application
module module
/. — @
exposed

interface

Figure 3-1. A module-level depiction of a program.
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called a binding, Bindings represent one-way dependencies and are depicted as directed lines
from dependent (source) modules to referenced (target) modules.

At the module-level, we define six types of open points: (1) adding a new module that
exposes an interface usable by others and binds to the mterfaces of any existing modules;

(2) replacing one module with another; (3) removing a module, including all the bindings to
and from it; (4) adding a new binding between two existing modules; (5) redirecting an
existing binding by specifying a new target module; and (6) removing an existing binding.
Since modules are black boxes, we assume that their interfaces are immutable. Changing a
module’s interface can be considered in our discussion as replacement of one module with
another.

Also of interest is whether or not the host application’s module structure is apparent
to third-party developers. If it 1s not, third-parties must infer or reconstruct the overall
structure by examining each module to determine which modules and bindings are impacted
by a change.

The following subsections evaluate each of the DSE techniques described in
Section 3.1. Figures 3-2 through 3-8 graphically depict these DSE techniques. These figures
use the same graphical elements as Figure 3-1, and use shaded boxes to designate the portions
of the host application’s module structure that third-parties cannot modify. A table in each
subsection summarizes the open point types supported by that technique. A filled circle (@)
indicates full support for the open point type, an unfilled circle (O) indicates partial or
restricted support for an open point type, and an empty cell indicates that the open point type

1s unsupported.
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Figure 3-2. API module diagram.

3.2.1 APIs

An API is an interface exposed by the host application, consisting of a subset of the
host’s internal module interface elements. Third-parties develop add-on modules that use this
API (see Figure 3-2). Thus, third-parties can add new modules, but the host application (and
other modules) lack a canonical means of discovering and binding to interfaces of new
modules. The host application is a monolithic entity whose internal modules, interface
elements, and bindings are opaque to third-parties. Thus, system integrators can only replace
and remove third-party modules. No explicit mechanism is provided to add, redirect, or
remove bindings.

internal  internal
add replace remove add redirect remove structure structure
DSE technique module module module binding binding binding mutable apparent

API O O O
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Figure 3-3. Scripting language module diagram.

3.2.2 Scripting languages

A scripting language provides a domain specific language for implementing add-ons. Yet
scripts use the same mechanisms as an API to alter the host application (see Figure 3-3).
Therefore, scripting languages share the same set of open points as an API.

internal  internal
add replace remove add redirect remove structure structure
DSE technique module module module binding binding binding mutable apparent

scripting language O O O

3.2.3 Software plug-ins

The host application expects a third-party plug-in module to expose a predefined mnterface,
which the host uses in a predetermined way (see Figure 3-4). This is in sharp contrast to an
API, where the host exposes an interface for add-ons. Plug-ins can expose additional
interface elements, but the host application (and other plug-ins) lack a canonical means of
discovering and binding to these elements. The host application 1s a monolithic entity whose

internal modules, interface elements, and bindings are opaque to third-parties. Thus, system
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Figure 3-4. Software plug-in module diagram.

integrators can only replace and remove third-party modules. No explicit mechanism is
provided to add, redirect, or remove bindings.

internal  internal
add replace remove add redirect remove structure structure
DSE technique module module module binding binding binding mutable apparent

plug-in (@) (@) (@) O

3.2.4 Event architectures

An event architecture exposes an event interface, which describes the set of messages that the
host application sends to and accepts from third-party modules. All communication among
the host application and third-party modules occurs indirectly through an event mechanism
(see Figure 3-5). Third-parties can add new modules that communicate with the host
application (or other add-on modules) by sending and receiving messages. The host
application is a monolithic entity and its internal modules, interfaces, and bindings are opaque
to third-parties. Thus, system integrators can only replace and remove third-party modules.
Depending on the capabilities of the event mechanism, third parties may also be able to add,
redirect, or remove some bindings. For example, third-party modules can intercept all

messages sent over FIELD’s message bus using the Policy Tool (Reiss 1996), and redirect or
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Figure 3-5. Event architecture module diagram.

eliminate them as desired. This enables third-parties to add, redirect, and remove bindings
established through the event mechanism.

internal  internal
add replace remove add redirect remove structure structure
DSE technique module module module binding binding binding mutable apparent

event architecture o (@] (@] (@] o (@]

3.2.5 Component architectures

The key property that distinguishes component architectures from the other techniques is
that it exposes the host application’s internal module sz7ucture to third-parties, allowing them
to change certain aspects of it (see Figure 3-6). Implementation technologies and frameworks
that support component architectures, such as COM (Platt 1999), CORBA (OMG 1999), and
JavaBeans (Chan and Lee 1997), provide canonical ways for modules to expose interfaces and
to discover and bind to interfaces of other modules. Third-parties can add new modules and
replace existing modules, but can only reliably remove a module once references to it have
been removed. Since a component’s implementation often references the other components
is depends on (by name or using a unique identifier), third-parties can only add, change, or

remove a binding by replacing the component that initiates it.
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Figure 3-6. Component architecture module diagram.

Several modern component implementation technologies and frameworks provide
special-purpose mechanisms for altering a component’s bindings without modifying its
implementation. For example, the “interception” mechanisms in COM+ (Platt 1999) and
CORBA (OMG 1999) allow distinguished modules to intercept function calls to a specific
module’s interface as a means of extending its behavior. This approach has several
limitations. One, interceptor modules are distinguished modules and unlike the host
application’s modules. As a result, they themselves cannot be extended using the interception
mechanism. Two, the overall architecture of the host application is not apparent to third-
parties. This makes certain changes fragile, since a third-party may, for example, replace a
module that inadvertently disables critical interceptors.

internal  internal
add replace remove add redirect remove structure structure
DSE technique module module module binding binding binding mutable apparent

component architecture (] ([ O 0] 0] 0] o
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Figure 3-7. Source code module diagram.

3.2.6 Source code-based
Source code-based techniques, such as open-source software (Raymond 1999), expose the
host application’s behavioral specification to third-parties (see Figure 3-7). Thus, third-parties

can modify every aspect of the host application, including the six open point types.

internal  internal
add replace remove add redirect remove structure structure
DSE technique module module module binding binding binding mutable apparent

source code-based o o o o o o o

3.2.7 Summary

Table 3-1 summarizes the adaptability of the above techniques. APIs, scripting languages, and
plug-ins support three open point types (with different restrictions). Only component
architectures and source code techniques allow third-parties to modify the internal structure
of the host application, but neither technique makes this structure explicit. Instead, third-

parties must infer or reconstruct the overall structure by examining each module.

3.3 Consistency

Unrestricted change by third-parties may compromise the integrity of the host application.

This usually occurs in one of two ways. One, a third-party, either out of negligence or malice,
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Table 3-1: Summary of open point types supported by the six characteristic DSE techniques
at the module-level.

other modules cannot discover the interface of the added modules

confined to third-party modules and bindings only, not those within the host application
cannot bind to the functional interfaces of other modules

only the plug-in module of the internal structure is mutable

only if the module is not a destination of any binding

only by modifying the module that is the source of the binding

me oo g

implements an add-on that violates a property of the host application. For example, a poorly
written add-on for the Apache Web server may compromise the security of a Web site by
serving private files. Two, third-party developers, as a consequence of working independently
of one another, may change the host application in incompatible ways. In this case, each add-
on works correctly when used independently of the others, but they interfere with one
another when used together. For example, if two Netscape Communicator plug-ins try to
register for the same document type, only one will be used as the renderer.

Anomalies of the first type involve two self-aware parties— a third-party developer
creates an add-on for a particular host application—whereas anomalies of the second type
involve independent parties. This difference has lead to two classes of techniques for
addressing inconsistency. The next two subsections discuss and evaluate these techniques in

turn.
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3.3.1 Host application/add-on inconsistency

Host application developers offer a variety of resources to aid third-parties in creating add-
ons. Commonly provided resources include technical documentation covering pertinent
portions of the host application’s design and functional behavior, cookbook code and sample
add-ons, discussion groups and mailing lists, and test scripts. Such resources not only help
third-parties implement add-ons, but to implement them “correctly.” Clearly, this approach
does not ensure application consistency. Host application developers rely solely on the good
intentions and thoroughness of third-party developers in developing and testing their add-ons
using traditional testing and analysis techniques. Even so, this represents the most common
approach to avoiding application inconsistency in shrink-wrapped software applications.

When the intentions of third-parties are in doubt or when preserving integrity is
paramount, two general strategies are used: (a) restricting the language used to implement
add-ons, and (b) restricting the runtime environment of the add-on. We consider each of
these in turn below.

Restricting the implementation language amounts to circumscribing the set of
operators and operands available to add-on developers. This avoids certain classes of
inconsistencies all together by eliminating language constructs that lead to those errors. For
example, “type safe” programming languages like Java and Modula-3 do not allow pointer
arithmetic, thereby preventing dangling pointers and misuse of direct memory access.
Examples of more restricted implementation languages include spreadsheets formula
languages and database query languages.

But restricting the add-on implementation language 1s not a panacea. If the language

is Turing-complete, no amount of automated analysis can prove that the add-on terminates
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(this would be equivalent to the halting problem). Hence, only certain aspects of consistency
may be guaranteed and the host developers must still rely in part on the good intentions of
third-party developers.

Restricting the add-on runtime environment 1s achieved in one of two ways: program
interpretation or software fault isolation. Program interpretation prevents certain types of
inconsistencies by verifying program instructions before executing them. Examples of this
technique include Java’s virtual machine interpreter. Although interpretation usually occurs
on an intermediate executable format such as bytecodes or p-code or at the source code level,
modern virus checkers interpret native machine mstructions to detect and prevent malicious
operations by software viruses (Nachenberg 1997).

Software fault isolation (SFI) techniques (Wahbe et al. 1993), such as sandboxing, and
proof-carrying code techniques (Necula and Lee 1996) achieve similar results with non-
interpreted languages. In sandboxing, critical points of the compiled program are
“instrumented” with logic that verifies particular constraints on the program’s runtime
environment. MisFI'T (Small 1997), for example, instruments assembly language programs by
inserting code before every instruction that references memory to verify that only permissible
memory locations are addressed. Balzer (1998) uses SFI techniques to instrument common
communication mechanisms (such as Unix sockets, RPC, and file I/O) as a way of
augmenting an application’s behavior. Other SFI mechanisms include the invalid instruction
mterrupts of modern hardware processors, the memory and file system protection

mechanisms of operating systems, and Java’s virtual machine security manager.
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3.3.2 Interference add-on inconsistency

Although it is reasonable to expect a third-party developer to thoroughly test their add-on
with the host application before releasing it to the public, such testing cannot reveal
inconsistencies that may arise when it is used in conjunction with other third-party add-ons.
Given a host application with n add-ons, there ate unique host/add-on configurations
(including the degenerate case of the host application without add-ons). Thus, an application
with 20 add-ons has over one million unique configurations. Obviously, this makes
exhaustive testing of configurations infeasible.

Software producers use a variety of strategies to combat the problem. We have
generalized these into three categories: defensive design, standardized interfaces, and external
tools.

A defensive design strategy avoids inconsistencies altogether by having the host
application developers design and implement the host application in such a way that add-ons
are forced to be mutually independent—they do not depend on or interact with one another
directly. Instead, the host application mediates all interactions among add-ons.

Szyperski (1996) refers to such designs as independently extensible as they “can cope with the
late addition of extensions without requiring a global integrity check.” Krishnamurthi and
Felleisen (1998) have formalized a more restricted notion of independent extensibility. Many
shrink-wrapped applications adopt this strategy. For example, Netscape’s Communicator Web
browser supports a build-in set of audio and graphical media types, and allows third-parties to
incorporate new media types using its plug-in mechanism. When Communicator begins
executing, each plug-in associates itself with at least one media type. Communicator invokes

the plug-in whenever it retrieves a Web page containing that content type. If a single Web
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page contains multiple different content types, each plug-in is provided with an independent
means of retrieving its content and its own private region of the display screen for rendering.
With this strategy, two plug-ins will not interfere with one another so long as they follow the
host application’s direction. Although a defensive design strategy can be used to prevent
many types of inconsistency, it has its drawbacks. The host application must mediate all the
interaction between add-ons, which precludes the use of novel and useful interactions that
were not foreseen by the host developers. Additionally, consistency is preserved so long as
the add-ons do not inadvertently interact through some shared resource, such as an operating
system device or file.

A standardized interface strategy, used by component-based and event-based
architectures built on CORBA (OMG 1999), COM (Brockschmidt 1994), and FIELD (Reiss
1996), assumes that interface compatibility implies behavioral compatibility. For example,
FIELD’s debugger understands 34 command messages and broadcasts 22 event messages,
each of which has its own ASCII string representation. Other tools in the environment (i.e.,
add-ons) can invoke debugger commands by sending it appropriately formatted messages. As
a result, independently developed add-ons can interact so long as their interfaces are
compatible. But interface compatibility is a poor measure of consistency since it does not
prevent two (or more) add-ons from using the same component interface in incompatible
ways. In the debugger example, two add-ons that simultaneously send a command to the
debugger to ‘single step’ will end up advancing the program by two instructions instead of the
intended one.

An external tool-based strategy uses tools to detect and resolve inconsistencies. The

“system extension” mechanism of Apple Computer’s Macintosh System 7 operating system
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uses such a strategy. With System 7, inconsistencies arise when two or more add-ons, called
extensions or “INITs”, intercept invocations to the same operating system function (called
“patching a trap”) in incompatible ways (e.g., by returning an unexpected value) (Zobkiw
1995, page 253).

Since there 1s no built-in mechanism for avoiding “trap conflicts,” the only way to
determine if two or more add-ons will work together is by trying them together. System
integrators and end-users use utility programs to help detect and resolve inconsistencies in a
semi-automated way. For example, Casaday & Greene’s Conflict Catcher utility attempts to
resolve an inconsistency by repeatedly rebooting the machine with different combinations of
system extensions until it narrows the list of (potential) culprit extensions down to one. Such
tools rely on the end-user to determine if the anomaly persists after each reboot—an arduous,
time-consuming, and an error-prone process. The Complete Conflict Compendium
(www.mac-conflicts.com) and MacFixIt (www.macfixit.com/archive.html) ate examples of
related strategies. These Web sites catalog the conflicts reported by end-users. End-users
manually search these catalogues to find remedies to extension conflicts.

Strategies that detect and resolve inconsistencies for source code-based techniques
are severely limited. This is because determining whether or not two arbitrary source code
changes conflict requires careful analysis of the source code, and typically cannot be
automated. The problem is analogous to merging several branches of a revision tree in a
software configuration management system (see Buffenbarger 1995, Horwitz et al. 1989,

Yang et al. 1992).
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In general, these strategies assure a certain aspect of consistency in the host
application by governing third-party changes. We consider possible ways to improve upon

these techniques in Section 4.2.2

3.4 Related Work

Related work has largely focused on customization and extension in particular application
domains, such as operating systems and databases, or through the use of special-purpose
programming language constructs. In some instances, the proposed techniques imply
extension and preclude more general forms of software evolution.

Notkin and Griswold’s (1988) “extension interpreter” can dynamically load and link
components into a running system. Their dynamic linker is novel in that it resolves function
bindings using a separate “arbitrator” component. The arbitrator uses an explicit model of
the relationships among application components to resolve function names into entry points.
By replacing the arbitrator’s lookup algorithm, one can constrain the set of allowable program
structures. This mechanism could potentially be generalized to detect other types of program
mnconsistencies.

Research in “extensible operating systems” is concerned with incorporating
mechanisms in operating systems that allow application programs, which are written by
independent software vendors, to change underlying operating system services. Hence, the
operating system and the applications that extend it are analogous to our notion of host
application and third-party add-ons. Small and Seltzer (1996) survey operating system kernel
extension techniques, where issues of consistency, performance, security, and trust dominate
over the other issues on our list. They observe that operating system extensions generally fall

into three basic structural patterns—replacing default system policies like paging, filtering
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data streams as 1n a network protocol stack, or other generic extensions supported by the
operating system—and examine the performance overhead of using several different host
application/add-on inconsistency strategies in those contexts. Seltzer et al. (1996) examine
the range of choices made by different operating systems with regard to inconsistencies,
security and trust, and granularity of change. These surveys have informed our more general
results, which are one of the contributions of this paper. All of the issues and strategies we
have discussed apply to domain-specific systems; but their inherent properties and invariants
can simplify or confound particular issues or strategies. The dominance of performance and
trust in the operating systems domain is a good example.

The programming language Beta (Malhotra 1994) provides a unique construct for
allowing third-parties to extend application behavior without modifying or recompiling its
source code. Beta’s “virtual pattern” construct allows the host application to invoke a
(subsequently added) third-party method if one 1s provided (.e., the inverse of a super
method invocation in object-oriented languages). Lisp’s advise facility supports “insertive”
programming (Sandewall 1978), whereby programmers can extend the host by writing
functions that are executed before, after, or “around” its functions. Heineman (1998) has
proposed a similar technique for Java Bean components. Although quite powerful, extensive
use of insertive programming techniques can obfuscate the host application’s design, making
future extension more cumbersome. Holzle (1993) proposes “type adaptations,” which allow
object-oriented classes to be augmented “in place” by adding and renaming existing class
methods without accessing the application’s source code. Many of these techniques where

designed for specific programming languages, but could be incorporated into high level

services such as component object models. Although these techniques offer fine-grained
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adaptability, they rely on overly simplistic mechanisms for preventing inconsistency, such as
type or name compatibility.

Szyperski’s (1996) and Krishnamurthi and Felleisen (1998) notions of “independently
extensible software” is similar to ours, but more trestrictive—both assume mutual

independence among add-ons, which we do not.

3.5 Discussion

Systems development has an established history of providing source code as a means of
achieving the ultimate degree of third-party adaptability. In describing the Interlisp system,
Teitelman & Masinter (1981) observe:

“The most straightforward way of allowing users to modify or tatlor system tools ... is

simply to make sources available and allow the users to edit and modify tools as they wish.”

— Teitelman & Masinter 1981

In order for this work, users must be programmers and must understand enough
about the system—how its source code is organized, program invariants, interactions
between modules, etc.—before making changes. For systems consisting of several thousand
lines of source code, this burden can be negligible. In large systems, this is a significant
burden. Furthermore, some systems do not provide source code.

Source-based techniques also lack effective strategies for dealing with application
inconsistency. Remedies to this problem will likely remain elusive since the low-level of
abstraction at which the system must be examined confounds many whole-program analyses.

API, plug-in, scripting language, component architecture, and event architecture
techniques support much more effective strategies for dealing with inconsistency, but

sacrifice a significant degree of adaptability to attain it. The Iimitations of adaptability in

component architecture techniques stems from the high coupling among components. In
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API, plug-in, scripting language, and event architecture techniques, the lack of adaptability
stems from the fact that the host application’s internal structure is not exposed to, or
malleable by, third-party developers.

The trade-off between adaptability and consistency is apparent. Intuitively, we expect
this—the more changes we allow, the more opportunities we provide for making them
incorrectly. What we do not as yet known is precisely where the trade-off occurs and to what
degree new techniques can improve upon them. In other words, which aspects of the trade-
off are intrinsic and which are not?

One strategy for increasing adaptability is to combine complementary techniques
such that each masks the shortcomings of the other(s). Combining component architectures
with event architectures is promising—an event mechanism would reduce the coupling
among components, while at the same time exposing the host application’s internal module
structure. Farly examples of this, such as the SPIN operating system (Bershad et al. 1995),
have demonstrated improved adaptability.

We can similarly imagine devising more effective techniques for detecting add-on
inconsistencies. Current strategies use simplistic models of compatibility (e.g., name,
mterface, or type compatibility). With the exception of tool-based strategies, the compatibility
models are encoded into and mntertwined with the application’s implementation, making them
difficult to verify and change independently.

We consider these and other alternatives in the next chapter.
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CHAPTER 4 Pr Oblem S tatemeﬂt,
Analysis, and
Motivation

The purpose of this chapter 1s three-fold. First, it concisely states the problem that this
dissertation tackles (its thesis). Second, it demonstrates that prior work in the area has not
addressed this problem. Third, it discusses why it is beneficial to find a solution to this

problem. The next chapter presents one particular solution to this problem.

4.1 Adaptability versus Consisting

Available DSE techniques are bipolar—they either offer a high degree of adaptability with
little or no assurance over consistency or severely restrict change to achieve consistency.
Figure 4-1 abstractly depicts this dichotomy.

Source code, depicted in the extreme lower-right corner, offers complete adaptability
because it permits third-parties to change the application’s source code, its principal

behavioral specification. In theory, any change is possible. In practice, the burdens of
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Figure 4-1. An abstract depiction of the trade-off between adaptability and
consistency offered by current DSE techniques.

understanding the source code well enough to make changes coupled with verifying the
correctness of those changes poses significant hurdles, especially for large, intricate software
systems. While any change is possible, few if any assurances are provided over those changes.
In response, various strategies have been devised that help raise confidence in source code
changes, and hence an application’s consistency. These include confining change to certain
source files and verifying application invariants using embedded assertion statements or test
scripts. The consistency gained using these measures cuts off certain avenues of adaptability.
Monolithic applications, which lack DSE mechanisms altogether, represent the opposite
extreme. By prohibiting third-party change, application developers can guarantee a high
degree of consistency. Even so, large monolithic applications cannot achieve complete
consistency due to the fundamental limits of program analysis (Young & Taylor 1986).
Incorporating DSE techniques into these applications, by utilizing APIs or component

architectures for example, increases adaptability by permitting third-parties to change certain
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aspects of the application, but simultaneously introduces the possibility that those changes
could violate consistency.

Software nirvana, the mythical “software ideal” in which third-parties can change all
aspects of an application without sacrificing its consistency, is represented in the extreme
upper-right corner of this space.

The thesis of this dissertation is o7 that this adaptability/consistency trade-off can be
eliminated. In truth, any externally perceptible change to a program’s behavior could be
regarded as an inconsistency. In other words, what one constituent regards as an erroneous
change to a program, a second constituent may regard as a desirable feature. This does not
mean that consistency is a meaningless or indiscriminate concept, just that notions of
consistency are relative to an application domain and must be consciously and explicitly
stated. This 1s especially true in the context of decentralized software evolution where
application developers cannot anticipate the imaginative changes that third-parties may make
to their applications, including tailoring it to different application domains.

The thesis of this dissertation zs that:

An application’s architectural system model can provide a basis for decentralized software

evolution that offers greater degrees of adaptability while at the same time supporting more

assurances over consistenc).
We claim that it 1s possible to devise a new DSE technique that offers more assurances over
consistency than source-code techniques while simultaneously exposing more adaptability
than non-source-code techniques. More precisely, this dissertation demonstrates that the

open-architecture software technique can expose all six open point types defined in

Section 3.2 without revealing source code, and govern how those open points are used by
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third-parties. As a result, this new DSE technique offers a unique adaptability/consistency

trade-off that is more desirable in some situations than currently available techniques.

4.2 Limitations of Previous Techniques

Whereas Chapter 3 answers the question “what 1s and 1s not adaptable and assured by
available DSE techniquesr”, this section answers “why?” and “how comer” Why do certain
DSE techniques engender greater degrees of third-party adaptability than others? What limits
the degree to which DSE techniques can assure consistency over third-party changes? This

section answers these questions.

4.2.1 Limited adaptability
Section 3.2 characterized the adaptability offered by six DSE techniques using the concept of
open points. Figure 3-1 on page 45 summarizes their key differences. Here, we examine
“why” these DSE techniques fail to support all six open point types. Source code-based
techniques are not considered in our analysis since they inherently support all open point
types without restrictions.

A simple example elucidates the conspiring factors that limit third-party adaptability.
Consider the partial implementation of the calculator application in Figure 4-2. It is
comptised of three interacting modules: cal cul at or, st ack, and di spl ay. In the

excerpt shown here, the cal cul at or module references several of the exposed interface
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Figure 4-3. On the left, the internal modules of the calculator
example. On the right, an API for the calculator application.

functions of the St ack and di spl ay modules.”> The module diagram for the calculator
example 1s shown in Figure 4-3 (left).

One factor limiting third-party adaptability stems from not exposing the host
application’s internal module structure to third-parties. We call this opague structure. Consider
the result of using the API technique on the calculator application. No matter which or how
many interface functions get exposed to third-parties—assume all functions in all modules

are exposed as in Figure 4-3 (right)—third-parties will perceive the application as a

nodul e cal cul at or; nmodul e st ack; nodul e di spl ay;
i mport nodul e st ack, public function pop() public function
di spl ay; returns integer { print(String s) {
public function add() { } }

result = stack.pop() + public function public function

st ack. pop(); push() returns print(int i) {

i nteger {

di splay.print(result); }
} }

Figure 4-2. The partial implementation of a calculator application comprised of three modules, a
calculator module (left), a stack module (middle), and a display module (right). Here, the calculator
module explicitly references interface functions in the stack and display modules.

3. In this example, the calculator module explicitly references the stack module’s pOp function using
the construct St ack. pop() as is common in programming language like Java (Gosling et al.
1996). In programming languages such as C (Kernighan and Ritchie 1988), references are implicit.
In such cases, the cal cul at or module would reference a function named pop (eliding the ref-
erence to stack), and a program linker would resolve this under-specified reference to an actual
function by scanning the exposed interfaces of other modules for a function implementation
named POP; multiple matching functions would result in a linkage error.
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monolithic entity, whose internal module structure is opaque and impervious to change4.
This acts as a barrier to change since third-parties cannot modify those modules (or the
bindings among them). To understand why this is so, let us compare identical changes to an
application, one performed on its source code form, the other performed on its compiled,
monolithic form.

In the program’s soutce code form, replacing the St aCk module with another
module is a simple matter of text editing and recompilation. We can either alter the St ack
module’s definition or replace the cal cul at or module’s references to the St aCk module
with another (named) module. In the program’s compiled form, making a similar change is
arduous. Consider just some of the potential impediments:

e difficnlt to locate behavior: In the program’s compiled machine processable form,
symbolic, human comprehensible function names such as push and pop have been
replaced with machine addresses that reference the function’s implementation.
Without a symbol table relating names to addresses, locating the function references
of interest in order to change them is a laborious and error-prone process.

e replicated behavior: Certain performance optimizations replicate the implementation of a
function or module, for example to specialize a generic or parameterized behavior for
an often used data type. This complicates changes since all replicated copies of the
behavior must be located and changed together.

* blurred module boundaries: Inline function optimizations, which replace a function call

with its definition, may have eliminated some of the cal cul at or module’s

4. The application’s deployed form may consist of multiple discrete parts, but third-parties cannot re/-
ably change the application by manipulating these parts unless the host application developers have
documented how the parts operate and interact (in which case, it is a component architecture).
Irrespective of documentation, segmented applications are more amenable to invasive software
customization techniques.
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references to the St aCK module’s functions. Further optimizations on such inlined

functions may have intertwined the two implementations such that they can no longer

be independently recognized or modified.

* abridged behavior: Control-flow optimizations may have detected unused functions and
modules and removed them from the compiled form, thus precluding the possibility
of redirecting bindings to them.

The compilation process, as a by-product of translating the program’s source code
description into a machine executable specification, petrifies the malleability inherent to the
source code. Compiler directed program transformation aimed at improving the program’s
runtime efficiency blur module boundaries, further complicating change.

Since host application developers can artificially impose such barriers on their
application, 1.e., by confining their use of DSE techniques to a subset of their application and
deploying the rest as a monolithic entity, no DSE technique 1s immune to these issues. But
this problem is inherent to APIs, scripting languages, and event-based systems since these
techniques, by themselves, do not segment the host application.

Plug-ins and component architectures, in contrast, do expose an application’s internal
module structure, though to different degrees. Plug-ins expose a single module and allow
third-parties to provide alternate implementations of that module. Component architectures
go further by exposing all modules—a technique that is conceptually akin to making every
application module a plug-in. Plug-ins and component architectures achieve this by
segmenting the host application along module boundaries. Each segment can then be
compiled and distributed separately from the rest. And, if a segment (i.e., module) is

adequately documented, third-parties can reliably replace it.>
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Although segmentation allows plug-ins and component architectures to support
module addition and replacement open points, module removal and all three binding open
points are either unsupported or their use is severely restricted. This is because module
bindings are over-specified and cannot be changed without replacing the module in which the
binding originates. Consider just some of impediments to changing bindings in plug-in and
component architectures:

* replicated bindings: Similar to the replicated behavior problem of modules, this problem
occurs if compiler optimizations replicate a module reference, for example to select
the most optimal function implementation based on the particular data types passed
as parameters 1n a function reference. This complicates change since all replicated
copies of the behavior must be located and changed together.

o difficult to locate bindings: Module bindings, which can be readily identified in a module’s
source code, are difficult to locate once the module has been compiled. This makes
locating and changing the binding of interest a difficult, ad hoc process. Some of the
invasive customization techniques can locate and modify such bindings. These
techniques often rely on subtle characteristics of the implementation technology or
eavesdrop on the module as it executes, looking for and replacing bindings of interest
before they are de-referenced.

* over-specified bindings: Module bindings are often over-specified, directly naming the

destination module and its interface element, or worse, naming the destination

5. The particular implementation mechanisms used to segment host applications are beyond the
scope of this thesis, but can be readily found as a part of popular operating systems and compo-
nent object technologies. For example, the Microsoft Windows operating system’s Dynamic Link
Libraries (DLLs) mechanism allows a program module to be compiled, packaged, and distributed
separately from applications that use it. Applications can then use the mechanism to locate, load,
and dynamically link to these modules. Component object technologies, such as COM (Brock-
schmidt 1994) and CORBA (OMG 1999), provide similar services.
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module and substituting a memory offset that points to the element’s

implementation.

All of these factors conspire to diffuse and rigidify module bindings. This ultimately forces
third-parties to change module bindings by replacing the modules in which the bindings
originate.

Programming language and design approaches provide numerous strategies for re-
factoring source code to localize and encapsulate the specification of behaviors and bindings.
Ultimately, mechanisms that preserve this locality need to be available to third-parties so that
they can make similar changes just as easily. What is needed is a mechanism that enables

bindings to change as easily as segmentations enables modules to change.

4.2.2 Fragility

Section 3.3 reviewed the characteristic techniques for gaining assurance over third-party
changes. Each technique has its place in the tool chest of DSE, offering a unique trade-off
with respect to the errors detected, runtime overhead, etc.

The techniques that attempt to detect inconsistencies (as opposed to preventing them
in the first place) rely solely on either the program’s source code specification or its compiled,
machine executable specification. While these executable specifications can accommodate
certain inconsistency checks, they do not favor whole-program analyses such as deadlock
detection, schedulability, resource allocation, and dependency checking. The immensity and
uniformity of detail in the program’s executable specification, coupled with its low-level
abstractions, confound whole-program analyses. We refer to this as the confounded analysis

problem.
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To overcome the confounded analysis problem, researchers have developed
modeling languages specially suited for whole-program analyses. Examples of such modeling
languages include MetaH/ControlH (Binns et al. 1996), Rapide (Luckham and Vera 1995),
Darwin (Magee and Kramer 1996), Wright (Allen and Garlan 1997), Instress (Perry 1996),
and Armani (Monroe 1998). These and other modeling languages overcome the confounded
analysis problem by (a) capturing a subset of the program’s overall behavior, (b) using
language constructs that are not necessarily executable, and (c) using language constructs that
facilitate analysis as opposed to efficient translation into a machine executable form.

Often, these high-level program models are not mapped to corresponding
implementation concepts, making it impossible to determine whether a program’s
implementation adheres to the properties ascribed to its high-level model. We refer to this as

the zmplementation mapping problem.

4.2.3 Composition

Add-ons can interference with one another if their behaviors overlap. We refer to this as the

change composition problem. In the calculator example, consider a scenario in which two add-ons

interpose themselves between the cal cul at or and di spl ay modules. The first add-on

logs calculator actions to a persistent file and the other add-on magnifies the output text for

visually impaired users. Different behaviors emerge depending on the order in which the add-

ons are invoked. Consider the behaviors that can emerge using four different composition

strategies:

1. magnified text in the persistent log and on the display, which occurs when the magnifica-
tion feature executes first, then passes its modified (i.e., magnified) input to the logging

feature.
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2. regular sized text in the persistent log and magnified text on the display, which occurs
when the logging feature executes first, then passes its unmodified input text to the
enlarging feature.

3. regular sized text in the persistent log and on the display, which occurs when the magnifi-
cation feature executes first, then passes its modified (i.e., magnified) input text to the log-
ging feature. The logging feature then unknowingly strips the ‘text size’ attribute from its
input because its developers assumed that it would always be of regular size. This combi-
nation mysteriously disables the enlarging feature.

4. regular sized text in the persistent log and magnified text on the display, which occurs
when the modules run in parallel instead of serially, and only the enlarging feature has its
output “wired” to the inputs of the di spl ay module.

In this example, only one of the four resulting behaviors is clearly undesirable (#3) as one

feature unintentionally masks a second. Outcomes #2 and #4 produce the same external

outputs, at least for these two particular features. Which is the “correct” outcome? There is
no clear best choice—it depends on the needs of an application and its customizations. In
light of this, it is surprising that some programming languages and class frameworks

encourage (or even require) developers to use the composition policy they provide, e.g.,

CLOS’s call-next-method mechanism (Kiczales et al. 1991), BETA’s inner method construct

(Malhotra 1994), AP’s traversal algorithm (Lieberherr 1996) and CORBA’s interceptors

(OMG 1999).

4.3 Protean Software

The ultimate goal of software engineering is the systematic, principled design of systems that

fulfill the original promise of sofiware: protean applications that are just as easy to modify

65



once implemented as they are on the drawing board. Decentralized software evolution
extends this tradition to third-parties, empowering them to modify applications in-the-field
and mdependently of their original developers.

Much progress remains to be made in the area of decentralized software evolution.
Currently available off-the-shelf software applications fall far short of the goal. Many
commercial software packages are still distributed as opaque, monolithic programs that lack
sanctioned mechanisms for third-party change. Nearly all commercial applications that do
incorporate DSE mechanisms confine change to a small subset of the application’s behavior.
Most freeware and shareware applications rely solely on source-code DSE techniques, and are
plagued by its limitations.

Substantial benefits will accrue if these problems are remedied by. For example,
broadening the scope of change gives third-parties more leverage to reuse and adapt existing
software as opposed to custom building a solution from scratch. Offering greater assurances
over change raises the level of confidence in the resulting application. These efficiencies
ultimately benefit society by:

* shortening development cycles, since more opportunities for reuse can lead to greater
productivity as compared to custom development;

¢ reducing application development costs, since more opportunities for reuse can lead
to greater productivity and hence less development cost as compared to custom
development; and

* increasing production quality, since more opportunities for reuse can lead to products

tailored to user needs.
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CHAPTER 5 Op cn-ar Chj.teCtU,]f c
Software

Ewvery problem in computer science can be solved by
adding a layer of indirection.
— unknown
This chapter describes the Open-architecture Software approach to decentralized software
evolution. Unlike previous techniques, open architectures support all six open point types at
the module-level without revealing source code and offer new opportunities for consistency

checking. Chapters 6 and 7 describe three case studies in which the approach has been used.

Chapter 8 evaluates the approach.

5.1 Description of the Approach

The open-architecture software approach consists of three integral and interacting elements:

1. An architectural system model that abstractly represents the application.

2. An implementation that independent third-parties evolve by altering the application’s archi-
tectural system model.

3. An architectural evolution manager that validates changes to an application’s architectural sys-
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tem model and makes corresponding changes to its implementation.
An application’s architectural system model is causally connected to its implementation—
changes to one affect the other. This relationship is maintained by the architecture evolution
manager. In the parlance of software reflection, this approach would be characterized as
declaratively reflective (Maes 1987) since the implementation is changed indirectly using a
declarative representation, in this case, an architectural system model.
Figure 5-1 abstractly depicts these elements in relation to one another. The following

subsections describe each of these elements in further detail.

5.1.1 Architectural system model

A system model describes an abstracted, high-level representation of an application’s
implementation. System models typically capture an application’s implementation as a
collection of components, each of which represents a unit of functional behavior, and a
configuration, which represents the binding relationships among components. In most
instances, components correspond to a collection of program modules, and the configuration

corresponds to the control and data dependencies among modules.

Third-party
developers
changes o O S changes
applied to S« implicitly affect
model *. implementation
\\
\
\
¥
architectural implementation
system model ;3)3
validates Changes
chages to implementation
model software
evolution
manager |« | external
analysis
modules

Figure 5-1. An abstract depiction of the open-architecture software approach.
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An architectural system model enriches this representation by recognizing interaction
as a concept distinct from functional behavior (Perry and Wolf 1992). An interaction between
two or more components may range from a simple procedure call to a complex protocol for
organizing nodes in an ad hoc distributed network. Traditionally, every component describes
a portion of the interactions it participates in—the portion it is responsible for. As such, each
interaction’s implementation is intertwined with the others and with the module’s functional
behavior. This has the effect of diffusing an interaction’s description, making it difficult to
understand, reason about, and change. This frustrates third-party changes to component
interactions. By representing interactions as distinct elements called connectors, an architectural
system model efficiently circumvents these problems.

An architectural system model can also capture and associate arbitrary data with its
elements, called annotations. Below, we elaborate upon each element of an architectural system
model—components, connectors, a configuration, and annotations.

One novel aspect of the open-architecture approach is that it regards the architectural
system model as an integral part of an application. The approach deploys this model with the
application’s implementation, exposes the model to third-party developers, and permits third-
parties to evolve the application’s implementation by changing the model. Permissible

changes to the model effect corresponding changes to the application’s implementation.

Components. A component represents a unit of software, a locus of computation and state
(Shaw and Garlan 1996, Shaw et al. 1995). A component exposes one or more interfaces, each
of which consists of a collection of functions, types, and variables. A component actuates

another component’s behavior solely through its exposed interface.
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A component’s specification is also context nentral: it does not reference other
components or connectors (explicitly or implicitly) and is independent of the application’s
configuration. This permits binding decisions among components and connectors to change
independently of component models. A configuration specifies the actual bindings among

components and connectors (see below).

Connectors. A connector represents a unit of interaction, the “glue” that holds the system
together (Perry and Wolf 1992). Traditionally, a component has intertwined its functional and
interaction specifications. A connector extricates interaction specifications from components
and models them as distinct elements. This permits the specifications to change
independently of one another (Perry and Wolf 1992, Purtilo 1994).

A connector’s specification is also context neutral, thereby permitting binding decisions

to change independently of connector models.

Configuration. A configuration describes the bindings between an application’s components
and connectors. As such, it is used as instructions for assembling the application out of its

component and connector parts.

Annotations. An annotation describes arbitrary information related to a component,
connector, or configuration. Annotations are a form of meta-data, i.e., data about data.
Annotations make system models more useful. For example, an annotation that links the
elements of a system’s implementation to its associated design documentation can help third-
parties better understand the system. Annotations that describe system invariants can be used

to prevent erroneous system configurations.
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5.1.2 Implementation

An implementation refers to an executable form of an application’s functional behavior. The
particular form and representation of an implementation is inconsequential—it can be
specified in any compiled or interpretable language, implement an entire system or a small
part of one, be packaged as a single binary image or as many small parts, etc.

An application’s implementation reflects its architectural system model—if one
changes in a valid way, the other is changed in a corresponding manner. In order to achieve
this, a zapping between these two forms is necessary. We assume a one-to-one mapping
between the elements in an application’s architectural system model and the elements in its
implementation. This is done for three reasons. First, it greatly simplifies the task of mapping
between the two, a task which the architectural evolution manager must perform. Second, it
permits us to clearly and concisely assign responsibilities to implementation elements. Third,
a simple, intuitive mapping is easier for people to understand than a complex one. Although
more complex and flexible mappings could be devised, their benefits must be weighed against
the cognitive burden they place on people. Third-parties “see,” comprehend, reason about,
and change the application’s implementation through its architectural system model. As such,
a mapping should strive for intuitiveness and fidelity.

Below, we elaborate upon each element of an implementation—components,

connectors, a configuration, and annotations.

Implementation components. A component implements an encapsulated unit of
computation and state of arbitrary complexity. Its internal structure 1s regarded as a black
box. A component’s implementation is also context nentral: it has no preconceptions regarding

its bindings to other implementation elements and it does not establish bindings (implicit or
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explicit) on its own volition. This permits binding decisions to change independently of
component implementations and permits the architectural system model’s configuration to
determine all binding decisions.

A component is explicit and distinct in the implementation. It is packaged in a form
that allows the undetlying environment to add, replace, and remove it from/to a deployed
application. Popular operating systems have provided such services for many years. For
example, the Dynamic Link Library mechanism of Microsoft’s Windows operating systems
provides a programming language-independent module package and a late-binding
mechanism for loading and linking components into an application during runtime (Petzold
1996). Most popular implementations of the Unix operating system provide a similar dynamic
library mechanism. Component object models and technologies, such as CORBA (OMG
1999), Microsoft’s COM (Brockschmidt 1994), and JavaBeans (Chan and Lee 1997), can also
be used. These technologies augment dynamic linking facilities with mechanisms that can
locate components given an interface description, enumerate the interfaces of a component,

perform reference counting, etc.

Implementation connectors. A connector implements an encapsulated unit of interaction
of arbitrary complexity. Its internal structure is regarded as a black box. A connector’s
implementation, like a component, 1s context nentral and provides a mechanism for adding,
redirecting, and removing bindings.

Traditionally, connectors have been implemented as indiscrete entities, e.g., UniCon
reifies connectors as linker instructions (Shaw et al. 1995). This, in effect, entangles

interactions with a components functional behaviors, making them difficult to change.
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In the open-architecture approach, a connector 1s a discrete, explicit, reconfigurable
entity in the implementation. The practical utility of explicit connectors in the
implementation has put them to a myriad of uses, including specifying communication
mechanisms independent of functional behaviors and thereby enabling components written
in different programming languages and executing on different processors to transparently
interoperate (Purtilo 1994); visualizing and debugging system behavior by monitoring
messages between components (Purtilo 1989); and integrating tools by using a connector to

broadcast messages between them (Reiss 1990).

Implementation configuration. A configuration encapsulates the binding relationships

among components and connectors in an application.

Implementation annotations. Annotations associate arbitrary data with components,
connectors, or a configuration. Annotations commonly desctibe mappings between an
architectural system model and an implementation, and application invariants that help
analysis tools determine whether or not a particular change to the architectural system model

1s valid. The architecture evolution manager ensures that the two descriptions correspond.

5.1.3 Architecture Evolution Manager

The architectural evolution manager is an agent with two responsibilities:

1. it validates all changes to an application’s architectural system model; and

2. it changes an application’s implementation to reflect its architectural system model.

A third-party changes the architectural system model by adding, replacing, and removing
components and connectors, altering its configuration, and altering any annotations on these

elements.
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To support task #1, the architectural evolution manager uses a combination of
analysis tools external to the approach and annotations on the architectural system model. If a
change is judged valid after analysis, the architectural evolution manager makes the
corresponding changes to the application’s implementation. Otherwise, some appropriate
reaction 1s initiated, such as denying the change or notifying a responsible party.

To support task #2, the architectural evolution manager uses the model-to-
implementation mapping to translate changes specified in terms of the architectural model to

corresponding changes in the implementation.

5.2 Evaluation

As a consequence of exposing an explicit architectural model for the application and allowing
third-parties to change the implementation by changing the model, open-architectures
support all six open point types. As before, a filled circle (®) indicates full support for the
open point type, an unfilled circle (O) indicates partial or restricted support for an open point
type, and an empty cell indicates that the open point type is unsupported.

internal  internal
add replace remove add redirect remove structure structure
DSE technique module module module binding binding binding mutable apparent

open-architecture o o o o o ® ® ®
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CHAPTER 6 Case StUdy I<LAX aﬂd
Cargo Router

This chapter describes two case studies that used the open-architecture approach on two
small applications: KLLAX, a clone of the game by Atari, and Cargo Router, a simple logistics
planning application. The case study in the next chapter describes the use of the approach on
a complex, real-world, commercial software application. Chapter 8 validates and evaluates the
open-architecture approach based, in part, on these case studies.

This chapter begins by describing the systems and tools used by the KLAX and Cargo
Router applications. We then describe each application, its architecture, and the third-party

changes that were made to it.

6.1 Implementation Apparatus

Both KILAX and Cargo Router are implemented in the C2 architectural style with the help of
an object-oriented class framework. The C2-style and the class framework are described in

Section 6.1.1 and 6.1.2, respectively.
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Figure 6-1. An abstract C2 architecture. Jagged lines
represent portions of the architecture not shown.

6.1.1 C2 architectural style
The C2 architectural style6 (Taylor et al. 1996) can be informally summarized as a network of
concurrent components bound together by connectors, i.e., message routing devices, in
accordance with a set of style rules. Components and connectors both have a defined top and
bottom. The top of a component may be connected to the bottom of a single connector and
the bottom of a component may be connected to the top of a single connector. No direct
component-to-component links are allowed. A connector may be connected to an
unbounded number of other components and connectors. When two connectors are attached
to one another, it must be from the bottom of one to the top of the other (see Figure 6-1).
Components implement application behavior and may encapsulate functionality of
arbitrary complexity, maintain state information, and utilize multiple threads of control. The
style does not place restrictions on the implementation language or granularity of the
components. It does require that all component communication occur by asynchronous

message exchange through connectors . Furthermore, components cannot assume that they

6. The description of the C2 architectural style presented here is summarized from (Taylor et al.
1996)—a more detailed description of the style and its benefits can be found therein.
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will execute in the same address space as other components or share a common thread of
control.

Central to the architectural style 1s a principle of limited visibility or substrate
independence: a component within the hierarchy can only be aware of components “above” it
and 1s completely unaware of components which reside at the same level or “beneath” it.
Notions of above and below are used to support an intuitive understanding of the
architectural style. A component explicitly utilizes the services of components “above” it by
sending a reguest message. Communication with components below occurs implicitly;
whenever a component changes its internal state, it announces the change by emitting a
nottfication message, which describes the state change, to the connector below it. Connectors
broadcast notification messages to every component and connector connected on its bottom
side. Thus, notification messages provide an implicit invocation mechanism, allowing several

components to react to a single component’s state change.

6.1.2 C2 class framework

We have developed an extensible class framework to facilitate the implementation of C2-style
applications (Taylor et al. 1996, Medvidovic et al. 1997). The framework provides abstract
classes for C2 concepts such as components, connectors, and messages, and implements
default behavior for interconnecting components and connectors, message passing, and
component initialization and termination (see Figure 6-2). Application components (and

connectors) subclass from the appropriate framework classes and override the default

7.  While the style does not forbid synchronous communication, the responsibility for implementing
synchronous message passing resides with individual components. Ideally, the most common syn-
chronous communication patterns would be implemented in the C2 class framework and reused
across applications.
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Figute 6-2. C2/Java class framework for building C2-style atchitecture.

behavior as needed. Like other frameworks, the C2/Java framework eliminates most
repetitive programming tasks associated with developing C2-style applications, and allows
developers to focus on application-specific concerns. The class framework has also been

implemented for C++ and partially for Ada.

6.1.3 ArchStudio 2.0 environment
ArchStudio 2.0 is an extensible, integrated environment for architecture-based software
development. It comprises a number of tools, including:
* a graphical design environment called Argo (Robbins and Redmiles 1998)
* support for runtime evolution (Oreizy and Taylor 1998)
* static analysis and code generation (Medvidovic et al. 1999)
* hypertext linking to external artifacts using Chimera (Anderson et al. 2000)
* a Web browser for downloading new software components
¢ a shared XML-based data store (Khare et al. 2000)
ArchStudio was implemented in collaboration with Nenad Medvidovic, Jason Robbins, Rohit

Khare, Michael Guntersdozrfer, Kari Nies, Eric Dashofy, and Yuzo Kanomata.
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The tools comprising ArchStudio 2.0 are implemented in the Java programming

language, and can modify C2-style applications written with the C2/Java class framework.

Figure 6-3 depicts a conceptual view of ArchStudio 2.0’s architecture. The lightly shaded tools

in the figure represent integrations intended to assess feasibility; they have not yet been added

to the production environment. The more heavily shaded tools are part of the current

environment.

All the tools in the environment use a shared model of the application-under-design

that 1s maintained by the ArhADT component. ArchStudio 2.0%s tools query and modify the

model by sending C2 request messages to ArhADT. If a tool’s request changes the model

(e.g,, adds a new component), ArhADT emits a C2 notification describing the change to the

connector below it, which, in turn, broadcasts it to the tools attached below it. Each tool

receives and reacts to the state change independently; typical reactions include making a
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Figure 6-3. Architecture of the ArchStudio 2.0 development environment in the C2-style.
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corresponding change to its internal representation, updating affected graphical views, or
ignoring state changes that fall outside its domain of interest.
The primary tools used to support decentralized software evolution are described in

the following subsections.

6.1.4 ArchADT

The ArchADT component encapsulates the architectural system model of the system-under-
design. Its implementation represents the model as an abstract data type (ADT) whose public
interface is shown in Figure 6-4. The ADT provides operations for querying and modifying
the application’s architectural system model as well as storing a representation of it in the file
system. Additionally, the model may be extended by adding new attributes to existing
elements or by adding new sub-hierarchies of elements. The model is stored in XML (Harold
1999), a hierarchical structured ASCII format.

ArchADT represents all four basic elements of the architectural system model:
components and connectors (lines 24-29 in Figure 6-4), a configuration (lines 45-54), and
annotations (lines 31-43). ArchADT augments the basic model by associating type
information (lines 9-14) and interface specifications (lines 16-22) with each component and

connector.

6.1.5 Architecture Evolution Manager

Abrchitecture Evolution Manager (or AEM) maintains the correspondence between the
architectural system model and the implementation. Attempts to modify the architectural
model invoke the AEM, which determines if the modification is valid. The AEM may utilize

external analysis tools, such as an architectural constraint mechanism, to determine if a
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public interface | ArchADT {

/] category: architecture

public void defineArchitecture(String archNane);

public void setArchProperty(String archNanme, String name, Object value);
public Object getArchProperty(String archName, String nane);

public Vector enumArchProperties(String archNane);

public Vector enumArchitectures();

/] category: conponent/connector types

public void defineType(String archNane, String type, String nane);
public bool ean isType(String archName, String type, String nane);
public Vector enumTypes(String archNane, String type);

public String get TypeKi nd(String archName, String typeNane);
public void renmoveType(String archNane, String type, String nane);

/] category: interface elenents
public void addMet hod(String archName, String name, String portNane,
String returnType, String nsgNane, Vector paranlist);
public Vector enum\Vethods(String archNane, String nane);
public Vector enumvethodsAtPort(String archNane, String nane, String portNane);
public void renmpbveMet hod(String archNane, String nane, String portNane,
String returnType, String nsgNane, Vector paranilist);

/] category: conponent/connector instances

public void addl nstance(String archNane, String typeNanme, String nane);
public bool ean islnstance(String archNanme, String type, String nane);
public String getlnstanceKi nd(String archName, String nane);

public Vector enum nstances(String archName, String type);

public void renovel nstance(String archNane, String nane);

/] category: properties (types and instances)
public void addProperty(String archNane, String type, String nane,
StringpropNanme, |PropertyVal ue val ue);
public void renoveProperty(String archName, String type, String nane,
String propNane, |PropertyVal ue val ue);
public Vector enunProperties(String archNane, String type,
String name, String propNane);
public Vector enunProperties(String archName, String type, String nane);

/] category: attributes
public void setAttribute(String archNanme, String type, String nane,
String attrNanme, String attrValue);
public String getAttribute(String archNane, String type, String nane, String attrNane)
public Vector enumAttributes(String archName, String type, String nane);

/] category: configuration
public void weld(String archNane, String from nstance, String fronPort,
String tolnstance, String toPort);
public void unwel d(String archNane, String from nstance, String fronPort,
String tolnstance, String toPort);
publ i c bool ean areWel ded(String archNane, String from nstance, String fronPort,
String tolnstance, String toPort);
public Vector areWl ded(String archNane, String from nstance, String tol nstance);
public Vector enumAél ds(String archNane);
public Vector enumAél dsAtPort(String archName, String instanceName, String portNane

/1 category: file I/O
public void load(String fil enane);
public void save(String fil enane);

Figure 6-4. The public interface for ArchStudio’s ArchADT in Java. Tools in the ArchStudio environment use
this interface to manipulate the software architecture for the system-under-design. Third-party developers use

the same interface for evolving the application in-the-field. Java exception clauses have been elided for brevity
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particular change 1s acceptable. The current implementation of the AEM uses implicit
knowledge of C2-style rules to constrain changes. If a change violates the C2-style rules, the
AEM rejects the change. Otherwise, the architectural model is altered and its implementation

mapping 1s used to make the corresponding modification to the implementation.

6.1.6 ArchShell

ArchShell (Oreizy 1996) provides a textual, command-driven interface for describing and
modifying an application’s architectural model, even as it is running. Commands are provided
for adding and removing components and connectors, reconfiguring the architecture, and
displaying a textual representation of the architecture. Architects can also send arbitrary C2

messages to any component or connector, which facilitates debugging.

6.1.7 Extension Wizard

The Extension Wizard is a simple end-user tool for installing and removing software add-ons
that is also deployed as a part of the host application. End-users use a Web browser to display
a list of downloadable software add-ons, e.g., provided by the software vendor on their Web
site. When the user selects the file representing the add-on, the Web browser downloads the
file and invokes the Extension Wizard. The software add-on file is a compressed archive
containing new implementation modules and an installation script. The Extension Wizard
uncompresses the file, locates the installation script it contains, and executes it. The software
add-on’s installation script may query and modify the architectural model as necessary. As the
installation script queries and alters the architectural model, the AEM ensures that application
invariants are preserved. If the installation script violates any application invariants, the AEM

prevents the change and throws an exception to the installation script. If the installation
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succeeds, the Extension Wizard notifies the end-user and provides an option to un-install the

add-on. A similar approach for deploying system updates is used by Hall et al. (1999)

6.1.8 Armani

Armani Monroe 1998) 1s a language and tool set for specifying and checking constraints over
a system’s architectural topology. ArchStudio’s integration with Armani enables architects to
specify constraints over how an application’s topology may be changed. If any tool (e.g.,
ArchShell) or third-party add-on installation script modifies the architectural system model in

a way that violates a constraint, Armani detects a constraint violation and undoes the change.

6.1.9 Other tools

Argo/C2. Argo/C2 (Robbins et al. 1996) is an interactive, graphical design environment for
software architectures. Architects construct a software system by dragging-and-dropping
components and connectors from a palette onto a design canvas. Argo/C2s critics
continuously examine the system under design and non-intrusively suggest design alternatives

and identify errors.

DRADEL. The DRADEL tools supports analysis and code generation capabilities for C2-style
architectures using a heterogeneous type system for software architectures (Medvidovic et al.
1999). This allows dradel to establish (the degree of) behavioral conformance among

interacting components and among different versions of a single component.

Web browser. An off-the-shelf Web browser, e.g., Netscape Communicator or Internet
Explorer, allows architects to browse the Web for new components. Clicking on a C2

component (1dentified by a unique MIME type and file extension) causes the browser to
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execute an external program to emit a C2 notification message announcing a successful

download of a new C2 component.

Resource Partitioning. One of Argo/ C2% graphical views allows architects to assign system
components and connectors to operating system processes and machine hosts. The Resource
Partitioning tool retrieves these attributes and generates initialization and startup code for

executing the system in the specified configuration.

Dependency Analyzer. The Dependency Analyzer tool examines the interface of every
component in the system (consisting of the messages understood and potentially emitted by
the component) and the architectural topology to reveal dependencies between components.
This information helps architects evaluate how components are used and the consequences

of adding, removing, replacing and reconnecting components.

Argo/UML. Argo/ UML (Robbins and Redmiles 1999) is a design environment for UML,
much like Rational Rose. Our prototype integration allows architects to diagram a component’s
internal design, initializing the diagram with a component’s interface specification. Since
Argo/ UML was developed independently of ArchStudio, it stotes its diagrams in individual
files, not within Arch-ADT. To relate the UML diagrams with the architectural model, our
integration stores the file name of each component’s UML diagram as an annotation on the

component’s model within ArchADT.

Arabica. Arabica (Natarajan and Rosenblum 1998) provides interoperability between Sun
Microsystems’ JavaBean components (Chan and Lee 1997) and C2 components by
automatically translating JavaBean events imnto C2 messages, and visa versa. Additionally,

Arabica ensures C2’s topological rules among connected JavaBean components.
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Metamata IDE. After generating template code for a component’s interface using
DRADEL’s Code Generator (Medvidovic et al. 1999), developers can edit the code using
Metamata Inc.s Andit (www.metamata.com). Using Metamata’s style checking feature, our
integration detects source code changes that diverge from the component’ interface and
notifies the architect. This assures a certain degree of fidelity between the architectural model

and its implementation.

6.2 Case Study: KLAX

6.2.1 Host application

Figure 6-5 illustrates the C2-style architecture for the KLAX game application. The user
interface and the game rules are illustrated in Figure 6-6. The connectors, Connector; g4, are
responsible for routing messages between components. For our example, we assume that the
connectors use an inter-process communication mechanism.

The components that make up the KILAX game can be divided into three logical
groups. The game state components are at the top of the architecture. These components
receive no notifications, but respond to requests and emit notifications of internal state
changes. The game logic components request changes of game state in accordance with game
rules and interpret the resulting notifications to determine the state of the game in progress.
The artists also receive notifications of game state changes, causing them to update their
depictions. Each artist maintains a set of abstract graphical objects which, when modified,
send state change notifications in hope that lower-level graphics components (in this case,
GraphicsBinding) will render them. GraphicsBinding, in turn, translates user events, such as a key

press, into requests to the artist components.
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Figure 6-5. KLAX’s C2-style architecture. Figure 6-6. KILAX’s user interface and game rules.

6.2.2 Third-party changes demonstrated

6.2.2.1 Spelling KLAX

The team of graduate students that implemented the original version of the KLLAX game
using the C2 class framework for C++ also implemented a variation of the game called
Spelling KILAX. This game variation involved replacing the original Tie Matching, Next Tile
Placing Logic, and Tile Artist components with components that instead matched, placed, and
displayed letters, respectively. This transformed the objective of the game from matching the
colors of tiles to spelling words. Each time a word was spelled correctly, it would be removed
from the well. The spelling logic component wrapped an existing spell-checker, written in C.
Figure 6-7 depicts the architecture for Spelling KILAX and Figure 6-8 shows the updated

game interface with letters instead of tiles.
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6.2.2.2 High score list
A team of four undergraduate students from a UC Irvine project class in software design
implemented a high score list feature for KLAX. These students had access to one of the two
developers of the KILAX application. The students also had access to KILAX’s soutce code
and architecture diagram. Their implementation of the high score list feature does not modify
any of KILAX’s pre-existing components. Figure 6-9 depicts KILAX’s architecture after the
addition of the high score list feature and Figure 6-10 depicts its user interface.

The high score list feature adds three new components to KILAX’s architecture: a
High Score ADT component that maintains a persistent list of the top ten player scores and
names, a High Score Iogic component that decides when the high score list needs to be
changed, and a High Score Artist component that provides a user interface for displaying the

list. The interaction between these new components and KLLAX’s other components are
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minimal. The High Score Logic component waits until the Szatus ADT emits an endOfGanze()

notification, at which time it queries the S7azus ADT for the final game score and the High

Score ADT for the list of high scores. If the final game score is greater than the lowest score in
the high score list, it sends a sezNewHzghScore(finalScore) request to High Score ADT, causing the
ADT to update its internal state and broadcast a state change notification on Connector;. High
Score Artist recetves this notification (since the notification is also broadcast on Connector;) and
responds by creating a dialog box for retrieving the players name and subsequently sending a

setPlayerName(name) request to the High Score ADT.
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Figure 6-9. KLLAX’s high score list architecture. Figure 6-10. KLLAX’s high score list

user interface.

6.2.2.3 Multi-player support
The team of undergraduate students that developed the high score list feature also
implemented multi-player support for KILAX. In this variation of the game, several players of

the game compete to score points. A separate display reveals the scores of the other

88



contestants, and each time a player makes a match in the well, he gains a tile that he can

“throw” onto another player’s chute (see Figure 6-12). The architecture for each game client

To game server
architecture

Clock | [Status| [ Chute | [ Well | [Palette] : ~ Client ~ *
Logic || ADT ADT ADT ADT

" [ — T "~ -
Conr lu,u,l ll l | | |

Next Tile Tilellvlatch Relati|vePos
Placing Logic| | Logic Logic B Mutli-Player Klax (Randor
ConNectory el '
Stlatus Senver Im Cunnam'ﬂismnnuc:l
Logic Name [Feez
Connectors i i i i —
Satus | | Well |[Chute | [Palette]: ~ Client Players in game:
Artist || Artist | | Artist | | Artist |+ Artist @ Flayarl 0030 &
corre e A =B
4 Playars 1EG00
Tie &£ - =
Artist @
Connectorg —‘—'—-
Miatiager
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Figure 6-11. Multi-player KLLAXs architecture for Figure 6-12. Multi-player KILAX user

each game player. intetface for each game player.

Game Server | | Game Server
ADT

Clock
Connector | | |
Game Server
Logic
Shared connector | | ; .
Shared connector Shared connector Shared connector J_

e liglop o (~ gl 2 ( el

Connector, Connector Connector,
Connector. = =

Ce

i
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i |

Connector,
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Figure 6-13. KLLAX’s architecture for the game server with 3 connected clients.
All client architectures shatre the connector labeled “Shared connector”.
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1s depicted in Figure 6-11, and the architecture for the game server with three connected
clients in depicted in Figure 6-13.

Each participant executes a separate instance of the game. All instances communicate
with a single shared game server component via a shared connector in each of their
architectures. This connector can span multiple machines and uses Java/RMI (Chan and Lee
1997), an inter-process communication mechanism provided with the Java runtime

environment.

6.3 Case Study: Cargo Router

6.3.1 Host application
The Cargo Routing application is a simple logistics system for routing incoming cargo to a set
of destination warehouses. The Cargo Router’s C2-style architecture is depicted in Figure 6-
14 and its user interface is depicted in Figure 6-15. The three list boxes on the top represent
three incoming cargo delivery ports, in this case two airport runways and a train station.
When cargo arrives at a port, an item is added to the port’s list box. The system keeps track of
each shipment’s content, weight, and the amount of time it has been sitting idle at the port.
The text box 1n the center displays available vehicles for transporting cargo to destination
warehouses. The system displays the vehicle’s name, maximum speed, and maximum load.
The bottom most text box displays a list of destination warehouses. The system displays each
warehouse’s name, maximum capacity, and currently used capacity. End-users route cargo by
selecting an item from a delivery port, an available vehicle, and a destination warehouse, and
then clicking the “Route” button.

Figure 6-14 depicts the architecture of the Cargo Routing system. The Ports, 1ebicles,

and Warehonses components are ADTs which keep track of the state of ports, the
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Figure 6-14. Cargo Router’s C2 architecture. Figure 6-15. Cargo Routet’s user intetface.

transportation vehicles, and the warehouses, respectively. The Te/emetry component
determines when cargo arrives at a port, and tracks the cargo from the time it is routed until it
1s delivered to the warehouse. The Port Artist, Vebicle Artist, and Warehouse Artist components
are responsible for graphically depicting the state of their respective ADTs to the end-user.
The Router component sends a message to the telemetry component when the end-user
presses the “Route” button and provides the end-user’s last selected port, vehicle, and
warehouse. The Graphics component renders the drawing requests sent from the artists using

the Java AWT graphics package.

6.3.2 Third-party changes demonstrated

We now describe how ArchShell and Extension Wizard were used to add new functionality
to the application. ArchShell was used to add a new graphical visualization of cargo routes,
and an Extension Wizard script was used to add an automated planning component that

assists users in making optimal routing decisions. In this case, both of these changes can be
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Figure 6-16. Cargo Router’s C2 architecture Figure 6-17. Cargo Routet’s user interface with
with graphical artist and Al planner graphical artist and Al planner.

made while the system is executing, Figure 6-16 and Figure 6-17 depict the updated

architecture and user interface, respectively, after both modifications have been made.

6.3.2.1 Alternative visualizations

Adding the new visualization requires adding a Rouzer Artist component to the architecture.
We add the new router artist between Connector 1 and Connector 4 because it uses
notification messages provided by the Porz, Warehonse, and 1ehicle ADTs and utilizes the
Graphics component for drawing graphics. The architect uses ArchShell to add the
component using the “add component” command, connect it to buses using the “weld”
command, and signal that the component should receive execution cycles using the “start”

command (see Figure 6-18).

6.3.2.2 Automated planner
Adding the automated planner involves adding a Planner component to the architecture. The

new planner component is added below Connector 1 because it monitors the state of the
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try {
if (model.architectureName().equals(“ CargoSystem™)) {
Connector above = model.connectorBelow(“ Ports’);
Connector below = model.connectorAbove(“ PortArtist”);
model.addComponent("Planner”, "planner");
model .weld(above, "planner");
model.weld(“planner”, below);
model .startEntity (" planner");
return true;
} elsereturn false;
} catch (ArchitectureModificationException €) {
return false;
}

Figure 6-19. A portion of the Extension Wizard script used to add the Planner component into the running
system. The “model” represents the ADT interface to the system’s architectural model.

ADTs to determine optimal routes. Figure 6-19 shows the critical portion of the modification
script the Extension Wizard executes when installing the change. The script determines if the
architectural model is that of the cargo routing system, then queries the model to determine
the names of the connectors to which the planner component must be attached. If any of
these operations fail, an exception is thrown which aborts the installation. An operation may
fail if the architectural elements on which the change relies have been previously altered by

other architectural modifications.

Supporting decentralized software evolution requires the deployment of the Architecture
Evolution Manager, the Extension Wizard, and a portion of the cargo routing system’s

architectural model. The Architecture Evolution Manager and the Extension Wizard consist

> add component
ClassName: c2.planner.Router Artist
Name? Router Artist

> weld

Top entity: Connectorl
Bottom entity: RouterArtist
> weld

Top entity: Router Artist
Bottom entity: Connector4
> start

Entity: RouterArtist

Figure 6-18. The ArchShell commands used to add the Router Artist component. Commands are
denoted using bold text and command arguments are denoted using italicized text.
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of 38 kilobytes of compiled Java code. The cargo routing system’s architectural model
consumes 2 kilobytes of disk space. The Planner system update, which consists of the

modification script and the compiled Planner component, is 6 kilobytes.

6.4 Discussion

In addition to the adaptability demonstrated in the above scenarios, two types of consistency
checks were employed. The first, as discussed in Section 6.1.5, prevents third-party changes
that violate the constraints of the C2-style. The second, as discussed in Section 6.1.8, prevents
third-party changes that violate constraints specified in Armant’s architectural constraint

language.
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CHAPTER 7 Case StU.dy MOZiHa
Web Browser

This chapter describes a case study in which the open-architecture approach was used on a
commercial software application: the Mozilla Web browser. Mozilla is the open source
version of Netscape Communication Inc’s popular Communicator Web browser.?

Mozilla was chosen for this case study for several reasons. One, unlike the previous
case studies, Mozilla is a large, complex, legacy software system developed by an independent
commercial software company under the “real-world” conditions imposed by the competitive
shrink-wrapped software industry. Two, Mozilla implements several traditional third-party
extension mechanisms, thus serving to demonstrate how the open-architecture approach can
co-exist with other DSE techniques as well as to permit direct comparison with them. Third,
Mozilla represented an opportunity to inject a minimal implementation of the open-
architecture approach into a large, legacy system that did not necessarily conform to a

component-based software engineering methodology. Fourth, most users of Web browsers

8. Netscape Inc. is now part of America Online, Inc.
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can readily suggest new features they would like to have, but which cannot be implemented
using Mozilla’s traditional DSE techniques. Additionally, our selection of Mozilla was not
biased by its implementation, or any other factors that would necessary lead to success.

This case study examines how well the open-architecture approach performs on such
an application. Although the results of this study, by its very nature, cannot be generalized to
other systems, the study does demonstrate that the open-architecture approach can be
successfully applied to a particularlarge, complex legacy system in an incremental manner, and

within a reasonable amount of time and effort.

7.1 Implementation Apparatus

The mmplementation of the open-architecture approach for Mozilla 1s quite minimal. Why?
This was the first time the approach had been used on an large, legacy system that did not
(a) have an explicit architectural model, (b) whose components did not communicate using
message passing, (c) whose modules did not respect the principles of information hiding, and
(d) whose implementation assumed a single address space. These differences warranted a
cautionary approach. Instead of attempting to implement an elaborate, general-purpose
infrastructure for open architectures on the first try, an ad hoc, experimental strategy was
used. This permitted quick exploration of issues. Ultimately, the experience gained here will
guide an implementation of a general-purpose infrastructure for legacy systems similar to the

C2/Java framework and environment (see Section 6.1).

7.2 Host Application

Mozilla is by any measure a large, complex software system. It consists of 1.2 million lines of

source code (SLOC) implemented in a mixture of the C and C++ programming languages,
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and 1t supports multiple operating system platforms (Microsoft Windows, Apple Macintosh,
and many varieties of Unix), and has undergone considerable evolution over multiple releases

spanning several years (four major releases since 1994).

7.2.1 Original architecture
Mozilla’s existing third-party adaptability mechanisms mncluded:

* helper tool: The helper tool mechanism can execute other applications in response to
retrieving a particular media type, such as an application that can display postscript
files on the screen.

o plug-in mechanism: The plug-in mechanism permits third-parties to provide new or
replacement handlers for media types and render them within the Web browser’s user
interface window.

e Java applets and JavaScript: These two mechanisms allow third-party applications and
scripts embedded within a Web page to execute whenever it is retrieved. If these
programs are granted special privileges, they can execute as ordinary programs in the
same runtime environment as the Web browser.

* proxy server: Mozilla can optionally redirect all Web-related (HT'TP) network request to
an intermediary server called a proxy server. Proxy servers are commonly used as
bridges between private corporate networks and the public Internet, or as a shared
cache of frequently requested resources.

Each of these mechanisms can be used to extend Mozilla in different ways. Yet, the changes
we consider could not be made using any of these mechanisms because none of these

mechanisms provides adequate access to Mozilla’s internal data structures and behaviors.
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7.2.2 Rearchitecting Mozilla
Our goal was to expose a small number of key bindings and modules as open points. These
few open points could then potentially be used in a different ways to support the

development of numerous add-ons. Several factors constrained the selection of open points:

Externalizing existing adaptability. Our intent was not to modify Mozilla’s source code
arbitrarily to add new features. This 1s certainly possible and desirable in certain situations as it
permits any feature to be added, but it would not further our claim that open-architectures
engender greater adaptability than previous techniques. Instead, we sought flexibility in the
existing implementation that could only be used through source code modification. We then

considered the potential benefits of externalizing that flexibility for third-party use as well.

Mozilla’s existing design. Several aspects of Mozilla’s implementation constrained our
choice over open points. For example, an assumption that all of the modules execute in a
single address space pervades much of the implementation. This is evidenced by the

ubiquitous use of pointers to objects, object interfaces, variables, and data structures that

straddle module boundatries.

Complexity. Mozilla’s large size and complexity prevents a complete understanding of its
implementation. For example, the implementation makes it difficult to elicit module
dependencies and design assumptions. As such, it becomes difficult to know exactly how a

change to its source code will affect other modules.

Excessive compile time. It can take anywhere from one to forty minutes to recompile
Mozilla on a high-end workstation after a change depending on how much of the system 1s

affected. This worked against interactive programming,
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After examining and evaluating Mozilla’s source code, we selected three points of flexibility

that we wanted to expose to third-parties. Each of these i1s described below.

7.2.2.1 Network module open point

The network module open point provides a standard means for third-party add-ons to
mnterpose behavior between Mozilla and its built-in network module, called 7ez/zb. Mozilla uses
its zet/zb module whenever it has to retrieve a resource on the network, such as an HTML
page or a GIF file. This open point permits third-party add-ons to augment or replace #et/ibs
behavior or the data exchanged between it and Mozilla. Add-ons can, for example, support a
new networking protocol (e.g., one that begins with “liop://”) or modify the contents of an
HTML page as it passes from zez/ib to Mozilla’s HIML parser and renderer.

This open point was implemented in three steps. First, a NetworkOpenPoint
connector was constructed with the same functional interface as Mozilla’s #et/ib module.
Second, the name of Mozilla’s zez/ib module was changed to net/ib.orig. Third, the
NetworkOpenPoint connector was assigned the name #e#/zb. This was the simplest way to
ensure that all of Mozilla’s numerous references to the #e#/ib module were propetly redirected
to the NetworkOpenPoint connector. Third-party add-ons register with the connector if they
want to use the open point.

The NetworkOpenPoint connector acts as a proxy to zet/ib. Whenever Mozilla’s code
invokes a zet/ib function, the connector is mvoked instead. This permits the connector to
allow any third-party add-ons interested in altering or replacing the function’s behavior to

execute before Mozilla does. A third-party add-on can optionally return a special value that
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informs the connector not to invoke Mozilla’s implementation of the function or that of any
other yet-to-be-invoked third-party add-ons.

One aspect of Mozilla’s implementation complicated the connector’s ability to serve
as an effective proxy: net/ib functions in which clients pass an object reference as a parameter
instead of a simple data type. For instance, when clients invoke the 7e#/ib function
opNetlibService::OpenS tream, they pass a URL specification (i.e., “http://www.ics.uci.edu/”) and
a reference to an object of type nslStreaml_istener. Netlib stores this object reference with the
URL, issues an asynchronous network read request, and immediately returns. Later when the
network read request completes, a separate thread of execution within Mozilla invokes several
interface functions on the associated nslStreaml istener object. Implemented this way, the
connector’s purview into the data exchanged between clients and #e#/zb is incomplete—it does
not witness the data exchange between 7e#/ib and the client it is occurs via the nslStreamlistener
object. The NetworkOpenPoint connector addresses this problem by dynamically creating a
proxy for the nslStreamistener object passes as a parameter to opNezlibService::OpenStream. This
way, #etlib stores a reference to the dynamically created proxy object instead, which permits

the NetworkOpenPoint connector to witness all of the communication between these

modules.”

7.2.2.2 Content tree open point
The content tree open point provides a standard means for third-party add-ons to query and

modify the abstract data type (ADT) Mozilla uses to represent the currently displayed HTML

9. Note that although this solution is adequate for this particular case, it can still be foiled. The solu-
tion assumes that the connector witnesses all attempts at indirect forms of communication, such as
the nslStreamListener object. But other forms of communication may be implicitly agreed upon in
advance, such as a shared file or shared memory, and therefore are not discoverable by the proxy.
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page, what Mozilla calls the content tree. As Mozilla’s HTML parser populates this data
structure, Mozilla’s HIML render queries the ADT and renders the content in the browser
window. Mozilla’s built-in HTML editor provides an interactive user interface for changing
this content tree.

The content tree ADT provides a functional interface for querying and changing the
content tree data structure. Built-in to the browser is an incremental display update facility
that can intelligently redraw the content tree as it changes. Mozilla’s HTML editor uses this
capability.

This open point was implemented by modifying a function in Mozilla’s
nsNativeBrowserW indow module called Endl 0adURIL and by introducing a
ContentTreeOpenPoint connector to Mozilla’s architecture. Third-party add-ons register
with the connector if they want to use the open point. Endl oadURIL was modified to notify
the ContentTreeOpenPoint connector that Mozilla had just finished loading a new HTML
page and, consequently, updated the content tree ADT. This permits the connector to notify
any interested third-party add-ons and invokes them with a reference to the content tree

ADT. Third-party add-ons use this reference to query and modify the content tree as needed.

7.2.2.3 Menu open point
The menu open point provides a standard means for third-party add-ons to add menu items
to Mozilla’s main menu and be notified when any menu item (including their own) is selected
by the user.

This open point was implemented by modifying two functions in Mozilla’s
nsINativeBrowserlW indow module, one which loads Mozilla’s main menu called CreateMenuBar

and another that handles menu events called DispatchMenulten, and by introducing a
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MenuOpenPoint connector to Mozilla’s architecture. Third-party add-ons register with the
connector if they want to use the open point. CreateMennBar was modified to notify the
MenuOpenPoint connector that Mozilla had just loaded its main menu. This permits the
connector to notify any third-party add-ons interested 1n this event and permit them to add
their own menu items to the menu. DisparchMennlternz was modified to notify the
MenuOpenPoint connector that the user had selected a menu item before Mozilla handles
the event. This permits the connector to allow any third-party add-ons interested in the menu
selection event to handle it before Mozilla does. After a third-party add-on has handled the
event, it can optionally return a special value that informs Mozilla that the menu selection

event has already been handled.

7.3 Third-party Changes Demonstrated

7.3.1 URL Filter add-on
The URL Filter add-on prevents an end-user from visiting a Web site whose URL matches a
an entry in a list of “blocked” URLs. This add-on was implemented by the author and uses

both the network module and menu open points. Figure 7-1 depicts the output produced by

I - Raptor [_ O] x] URL Filter Properties

File Edt Debug Style Tools Addins = Filter URLs that begin with:
Back Forward " http:/fauctions yahoo.com E

http://auctions.amazon.com
http://auctions.yahoo.com

This URL has been blocked by the '"URL Ppi /i ebsy. com
Filter' add-on.

I Also search within the URL

hitp:ffauctions.yahoo.comi: progress 11499

Figure 7-1. URL Filter add-on. The result of attempting to visit a filtered URL on the
left, and the add-on’s properties for changing the list of blocked URLs on the right.
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the add-on when the user attempts to visit a filtered URL (left) and the user interface for

changing the list of “blocked” URLs (right).

7.3.2 Popularity Meter add-on

The Popularity Meter add-on, when activated, monitors an end-user as they traverse from
one URL to another and, in a separate thread of execution, queries AltaVista’s search engine
(www.altavista.com) for the number of Web pages that refer to that URL. This add-on was
implemented by the author and uses both the network module and menu open points.
Figure 7-2 depicts the user interface of the add-on (left), which reflects the currently viewed

Web page (right).

7.3.3 Content Filter add-on

The Content Filter add-on scans the body of an HTML page looking for HTML tags that
define background colors, audio, and images, custom fonts, or images that have the same
proportions as most banner ads (468 pixels wide by 60 pixels high). Based on end-user
settings, the add-on can remove these HIML tags from the HTML page, and hence remove

those attributes from the rendered Web page.

[ Peyman Oreizy - Raptor
File Edit Debug Style Tools Add-ins

Bl Eerrard " http: /sy ics uci.eduf~peymano/
Web Page Popularity Meter [ |
7 - ‘4
No other Web sites reference http://www.ics.uci.edu/~peymano/ Pe“ man Ol elZ)
Status: Idle (last changed on Sunday, 28-Feb-1999 17.08:30 PST)
Research Area Software
Advisor Richard N. Taylor
E-Mail peymano(@ics.uci.edu
Office ICS2 262 (pictures)
Office phone +1 (949) 824-8438 ~|

[ hitp:sict thecounter.com/id=267079: progress 43 (out of 43)

Figure 7-2. Popularity Meter add-on. The add-on’s user interface on the left automatically updates to
reflect the currently viewed Web page on the right.
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v o Cocrup Fiter Propatios
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¢ Directions & Maps ¢ ICS Computing Support hly)
 ICS Computing Support o ICS Computine Labs ~Fontsandecolors——————————————————
* ICS Computing Labs Degree Programs & Student Affairs 'R
Degree Programs & Student Affairs ¢ Undergraduate Program
o Undereradiabreeran * Graduate Programs ~ Background
or ot - )
+ Graduafeibioernne ¢ Course Information IV Remove background image
graduate rograms -
* Course Information ¢ Student Affairs V' Remove background audio
o Student Affairs Campus-Wide Resources V' Remove background color =
Campus-Wide Resources I
I http:iwwaw.ics.uci.edul: progress 5267 (out of 5267)

Figure 7-3. Content filter add-on. The background image in the Web page (at left) is removed (at middle)
after the user has enabled the ‘remove background image’ check box (at right).

This add-on was implemented by the author and uses both the network module and
menu open points. Figure 7-3 depicts how the background image in the Web page (at left) is
removed (at middle) after the user has enabled the “remove background image” check box (at

right).

7.3.4 Text Highlighter add-on
The Text Highlighter add-on scans the body of an HIML page and highlights phrases
specified by an end-user. This add-on was implemented by the author and uses both the
content tree and menu open points. Figure 7-4 depicts two pages (at left and at middle) with
words highlighted in yellow based on the phrases specified by the user (at right).

This third-party add-on and the content tree open point were implemented in
approximately 29 person hours. A majority of this time (18 person hours) was spent
discovering how to propetly use the content tree’s functional interfaces to add HIML

elements.
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Figure 7-4. Text Highlighter add-on. The add-on’s user interface on the lower-right permits the user to
specify words that are subsequently highlighted as the user surfs the Web. Two sample Web pages with
highlights are shown on the left and in the middle.

7.4 Discussion

Overall, it took approximately 100 person hours to examine Mozilla’s source code,
implement all three open points, and implement all four add-ons. This was done without the
aid of a class framewortk (such as C2/Java) ot special tools. With these three open points in

place, third-parties can implement a large variety of add-ons.

105



CHAPTER 8 Vahdati()ﬂ aﬂd
Evaluation

This chapter validates the claim made back in Chapter 4, that:
An application’s architectural system model can provide a basis for decentralized software
evolution that offers greater degrees of adaptability while at the same time supporting more
assurances over consistency.
Does open-architecture software, which 1s an example of the architectural system model
approach, offer greater degrees of adaptability and consistency? We validate this claim using a
two-pronged approach. First, a conceptual argument is given that compares the adaptability
and consistency offered by open-architectures with that of previous DSE techniques. Second,

experience using the open-architecture approach on three case studies is summarized and

used to demonstrate that the approach can be implemented in a practical manner.
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8.1 Conceptual Validation

8.1.1 Evaluating adaptability using open points
Section 3.2 introduced open points as a measure for adaptability and used it to compare
several characteristic DSE techniques at the module-level of abstraction. Table 8-1
summarizes that comparison and adds to it the open-architecture software approach
proposed in Chapter 5. As before, a filled circle (@) indicates full support for the open point
type, an unfilled circle (O) indicates partial or restricted support for an open point type, and
an empty cell indicates that the open point type is unsupported.

Unlike previous techniques, open architectures fully support all six open point types
without revealing source code. This is due in part to the use of multiple flexible connectors

and an explicit architectural model.

Internal  Internal

Add Replace Remove Add Redirect Remove structure structure

DSE technique module module module binding binding binding mutable apparent
API o2 Ob Ob
plug-in ox  ob oP od
scripting language o2 oP oP
component architecture () () o€ of of of ()
event architecture [ ob ob oP oP oP
source code [ ] o ([ ([ [ [ (]
open-architecture ([ ([ ([ ([ [ ([ [ [

Table 8-1: Summary of open point types supported by DSE techniques at the module-level.

me oo g
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other modules cannot discover the interface of the added modules

confined to third-party modules and bindings only, not those within the host application
cannot bind to the functional interfaces of other modules

only the plug-in module of the internal structure is mutable

only if the module is not a destination of any binding

only by modifying the module that is the source of the binding



This validates the claim that an application’s architectural system model can provide a
basis for decentralized software evolution that engenders novel types of adaptability. The

argument that the technique is practical is made in Section 8.2.

8.1.2 Evaluating assured consistency

Assuring consistency for any non-trivial program is difficult and in general undecidable.
Young and Taylor (19806, page 54) observe that “since the presence of faults is generally an
undecidable property, it 1s not even theoretically possible to devise a completely accurate
technique which 1s applicable to arbitrary programs.” In the context of decentralized software
evolution, this problem is aggravated by (a) independent change and often (b) limited or no
access to source code.

The open-architecture approach neither claims to prevent inconsistencies, nor does it
advocate a particular technique for doing so. Instead, the open-architecture approach offers a
means for using traditional model-based analyses in the context of decentralized software
evolution. Specifically, analyses that operate upon abstract, high-level representations of an
application’s implementation can use the approach’s architectural system model as a
surrogate.

Consider, for example, consistency analysis with reuse contracts (Steyaert et al. 1996).
Reuse contracts can codify some of the assumptions a host application developers makes
regarding the manner their application is customized by third-party developers. A reuse
contract can, for example, state that add-ons cannot override or mask certain host application
functions. Reuse contracts such as this can annotate an application’s architectural system
model. Whenever a third-party add-on 1s installed, the reuse contract can be rechecked to

prevent stated assumptions from being violated.
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This same strategy can be applied to other system model-based analyses, such as
configuration graphs (Hiltunen 1998), grammars (Batory and Geraci 1998), architectural type
theory (Medvidovic et al. 1999), and architectural constraints (Monroe 1998). Oreizy and
Taylor (1999) suggests another possible strategy based on the resource contention
mechanisms used by operating systems. Annotations can also be used to support less
automated, possibly human-directed, analyses.

This validates the claim that an application’s architectural system model can provide a

basis for decentralized software evolution that engenders novel types of consistency.

8.2 Empirical Validation

Empirical validation of new software techniques is notoriously difficult. Proper empirical
evaluation requires multiple, carefully controlled studies that have been adequately
randomized to achieve a certain degree of confidence or external validity. However, research
in software concerns large-scale, collaborative development efforts that involve multiple
developers and diverse stakeholders. Project scale plays a critical factor. Certain software
development techniques, such as Stepwise Refinement (Wirth 1971), have a positive impact
on well-understood or small-scale projects, but breed disaster on novel or large-scale projects.
The reverse is also true. On a large-scale project, the inherent overhead of some software
techniques, such as information hiding (Parnas 1972), are negligible and overshadowed by the
benefits produced. On a small-scale project, the benefits may never accrue to outweigh the
technique’s overhead.

In most cases, running a large-scale empirical study 1s infeasible. The cost, time, and
risks often cannot be substantiated, and even if they could, it 1s difficult to control the study.

As a result, empirical validation of new software techniques relies on alternative methods,
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such as case studies. Although case studies do not prove that a technique is better in all

situations, it does provide some evidence that the technique is beneficial and practical.

Open point types used
Add Replace Remove  Add Redirect Remove
Application Third-party change module module module binding binding  binding
high score list X b4
KLAX spelling KLAX X X X X
multi-player KLAX X b d
Cargo alternate visualizations X X X X
Planner automate planner X X
URL filter X X pd b d
content filter X X X X
Mozilla
popularity meter X X X X
text highlighter X pd

Table 8-2: Summary of case studies showing the open point types used by each change.

Table 8-2 summarizes the three case studies presented in Chapter 6 and Chapter 7 by
relating the third-party add-ons of each with the open point types used to make the change.
Collectively, the changes demonstrated by the three case studies have used all six open point
types and done so without source code modification. Furthermore, the effort expended to
make these changes was acceptable.

It should be noted that the time and effort spent rearchitecting Mozilla to introduce
open points is amortized by every third-party add-on that uses the open points. This is
because each third-party add-on developer that uses the open points is relieved of the burden

of having to understand, reason about, modify, and retest Mozilla’s source code.
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8.3 Evaluation

Open points. Are “open points” a good measure of adaptability? Although we cannot offer

a rigorous proof of their utility, we argue that open points are useful because:

1. they provide a useful characterization of existing techniques based on what can and can-
not be changed by third-parties;

2. they measure an essential property of third-parties adaptability, namely “what can third-
parties change and what can they not?”

3. they identify several shortcomings of existing techniques and suggest ways of combining
techniques to overcome them;

4. they help identify the types of adaptability that are not provided by available techniques.

Several challenges and risks remain.

Intellectual property rights. Exposing an application’s system model to third-parties reveals
an aspect of its software design, and can be used by competitors to reverse engineer the
application’s implementation, eroding the host application vendor’s “competitive advantage.”
While this is a legitimate concern in certain competitive markets, the host application
developer has some recourse. For example, host application developers can encrypt the
system model and selectively disclose it trusted third-party developers, e.g., those developers

that have agreed not to build competitive products.

Runtime performance. The use of connectors in the implementation can degrade runtime
performance. The greatest performance impact occurs for primitive connectors, such as
procedure calls, since an additional level of indirection 1s introduced. For more complex

connectors, such as RPC and software buses such as FIELD (Reiss 1990), the functionality
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required can usually be integrated without a significant runtime performance penalty. Recent
developments in the area of dynamic linking attempt to reduce or even eliminate the runtime
overhead associated with altering binding decisions (e.g., see (Franz 1997, Massalin 1992,
Pardyak and Bershad 1990)).

Ultimately, host application developers determine which connectors are used based
on application requirements. In situations where performance outweighs third-party
adaptability, connectors may be replaced in the implementation with direct component-to-

component bindings such as is done in UniCon (Shaw et al. 1995).
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CHAPTER 9 C OﬂClUSiOﬂ

9.1 Contributions of this Dissertation

The contributions of this dissertation are:

1.

a measure for evaluating and comparing the flexibility of DSE approaches;

a system model-based DSE approach that supports a broader class of changes than previ-
ously feasible and that can be applied 1n an incremental manner;

a conceptual architecture for implementing system model-based approaches, such as
open-architectures;

a policy neutral mechanism for governing third-party changes based on system-models;

a more effective characterization of the relationships between system models, the types of

third-party changes they support, and the assurances they provide.

9.2 Further Research in the Area

There are a number of directions for further work in the area of decentralized software

evolution. These are:
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Developing applications using their own DSE techniques. The most customizable
applications are generally those that implement a significant portion of their functionality
using their own DSE mechanisms. This helps in two ways: (1) it forces the host application
developers to exercise the DSE mechanisms, which reveals limitations sooner, possibly in
time to remedy them, and (2) third-parties can learn from and use the host application’s own
add-ons. Systems that use component architectures or source code are intrinsically built in
this fashion, but other techniques may be similarly used. For example, a large portion of
Emacs 1s implemented using its own scripting language and hook mechanism, and add-ons

use the same mechanism as built-in features to document themselves.

Supporting composition of non-behavioral aspects. Numerous strategies guide us in
composing add-on behaviors and dealing with inconsistencies. But there are few guidelines
for composing non-behavioral aspects of add-ons, such as documentation, user interface
elements, and data models, and for dealing with their inconsistencies. For example, if an add-
on augments the printing capabilities of a word processor, its documentation should be

presented along with the host application’s built-in documentation on the subject.

Detecting inconsistencies. Deploying an architectural system model as an integral part of
an application creates new opportunities for detecting inconsistencies in-the-field. One
promising area 1s suggested by the resource contention models used by operating systems
(Oreizy and Taylor 1999). Operating systems effectively prevent multiple, independently
developed applications from interfering with one another even though the applications must
share common functional interfaces and resources such as processors, memory, the file
system, and hardware devices. Operating systems essentially do this by managing the

resources accessible to applications. For example, the speaker device is usually reserved for a
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single application. Applications must request exclusive access to the device before using it;
attempts to use the device without permission are prevented. More complex resource sharing

policies are used for the processor, memory, and file system.

9.3 Final Remarks

Although numerous methodologies, techniques, and tools aid the task of designing and
implementing evolvable software, 1.e., centralized software evolution, we know relatively little
about its decentralized counterpart. Successful uses of decentralized software evolution,
especially post-deployment, have demonstrated increased opportunities for software reuse
and offered solutions that would have otherwise been infeasible.

This dissertation takes the first steps toward improving our understanding of
decentralized software evolution. We have defined and contrasted decentralized software
evolution from other facets of software evolution and identified a number of unique issues
that 1t raises. We have also presented a practical and general-purpose technique for measuring
the adaptability of software customization techniques and have used our technique to
compare six commonly used, characteristic techniques.

We have also proposed a novel software customization technique, called open-
architecture software, that offers greater degrees of adaptability and consistency than
previous approach. We have described our experience in using the approach on two small
examples and on the Mozilla Web browser, the open-source version of a large, legacy
commercial software application.

The contributions of this dissertation lay the groundwork for further work in the area.
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weooxa  Programming
Language and Event-
based Open Point
Comparison

During the course of system design and implementation, numerous design decisions are
made. The principles of separation of concerns and modularity tell us that localized design
decisions are easier to change than those that permeate the system. A design must ultimately
be implemented using abstractions provided by implementation frameworks, such as
programming languages, event mechanisms, and/or component infrastructures. Thus, the
fidelity with which a design can be implemented depends on the abstractions provided by
available implementation frameworks.

Programming languages and event mechanisms are commonly used implementation
frameworks whose abstractions localize changes to the system implementationl. For example,
a programming language’s function abstraction encapsulates a behavioral specification that
may be reused in other parts of the system implementation using function invocation.

Because the function abstraction localizes a behavioral specification, changing the
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specification in one place affects all the parts of the system that invoke the function. Similarly,
an event mechanism’s message routing abstraction encapsulates how events propagate from
participant to participant.

APIs, scripting languages, plug-ins, component-based, and source code DSE
techniques are function-based and adopt programming language abstractions. We cover these
in Section A.1 and summarize their open and closed points in Table A-1. Event-based
techniques, in contrast, adopt event abstractions. We cover these in Section A.2 and

summarize their open and closed points in Table A-2.

A.1 Function-based Approaches to Flexibility

Since different programming languages provide different abstractions, we focus on two
popular object-oriented programming languages of the day: C++ and Java. The process we
use here could just as easily be followed to evaluate other programming languages.

Given the C++ and Java programming languages, we enumerate the abstractions they
provide below. Since we are only interested in changes that support behaviorally open DSE,
we only enumerate programming language abstractions that would allow third-parties to add
new program behaviors. Global constants and variables, name spaces, default function
parameters, access modifiers, and the like are non-behavioral abstractions—they only support
selection and combination of built-in behaviors. We also restrict ourselves to abstractions at

or above the level of abstraction of functions—we do not consider intra-function

1. Of course, tools may be built that “localize” changes that would otherwise be distributed across the
system. For example, the HTML language does not provide a construct for specifying common
headers and footers across a collection of Web pages. Yet, Web site design tools let users specify
common headers and footers that are systematically appended to every Web page when the site’s
HTML files are generated. Program restructuring and transformation tools provide similar capabil-
ities for source code. For third-parties to make the same changes as easily as the original develop-
ers, a similar mechanism must be provided for them as well.
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abstractions such as statement labels, critical sections, etc.—since none of the available DSE
techniques support such fine-grained changes to program abstractions.

The behavioral abstractions in C++ and Java are:

* macro substitutions, template functions and classes?, and file inclusion (C++ only): A
C++ header file encapsulates function, type, and macro substitution definitions;
changes to these definitions affect all the source files that include the header file using
the “#include” directive of the C++ preprocessor. An approach supports file inclusion
open points if changes to include files are propagated to all the modules that include the
file. If changes are not thoroughly propagated, inconsistencies resulting from
incompatible definitions would arise.

* function definition: Function definitions encapsulate behavioral specifications that
may be reused throughout the system via function invocation. Changes to a function
definition affect all invocations of the function. An approach supports function
definition open points if changes to the executable behavioral specification of functions
can be made, and if new functions can be defined.

¢ function binding: Function bindings determine the function definition that 1s bound
to a function invocation. Changes to a function binding affect which function is
invoked. An approach supportts function binding open points if changes to a function
binding can be made.

* function overloading: Function overloading determines which function definition 1s

bound to a particular invocation based on the context in which it is used (Aho et al

2. Template functions are instantiated (i.e., expanded for each actual type) during compile-time in
C++. The compiler treats them more like macro expansions than functions. See Lippman (1991,
pages 197-198). Template classes appear to be handled in a similar fashion.
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1986). Introducing or removing an overloaded function may alter function bindings if
existing function invocations resolve to a different function definition. An approach
supports function overloading open points if changes to overloaded functions cause existing
function bindings to be reevaluated and rebound.

variable-type binding: Variable-type bindings determine to which type a variable is
bound. Changes to the type of a variable affect the set of operations that can be
performed on the variable. An approach suppotts variable-type binding open points if
changes to a type propagate to affect all the variables instantiated with that type. In
C++, for example, if the definition of a type 1s changed to reorder existing data
members or add new data members, all the source modules that declare variables of
that type must be recompiled since the offsets for accessing each data member have
changed.

inheritance: Class inheritance relationships determine what behavior a class acquires
from its parent classes. Changes to a class, such as adding or removing methods or
altering the classes it inherits from, may affect the behavior of descendant classes. An
approach supports znberitance open points if changes to a class are propagated to
inherited classes.

virtual functions: Virtual, or dynamically bound, functions allow function bindings to
be determined during runtime based on the type of object being invoked. In C++,
functions are statically bound unless they are declared “virtual”. In Java, functions are
dynamically bound unless they are declared “final”. An approach supports virtual
Sfunction open points if the introduction of new types or changes to existing types cause

existing function bindings to be reevaluated and rebound.
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* class definition: Class definitions encapsulate a collection of related behavioral
specifications that modify a shared state. Changes to a class definition affect all uses
of that class. An approach supportts class definition open points if behavioral changes to
classes can be made, and if new classes can be defined.

¢ class binding: Class bindings determine the class definition that is bound to a class
reference. Changes to a class binding affect which class is referenced. An approach
supports class binding open points if changes to this binding can be made.

¢ dynamic class loading (Java only): Dynamic class loading allows the definition of new
classes during runtime. Java classes may optionally execute behavior when loaded
(Gosling et al 1996). Hence, changing the set of dynamically loaded classes affects
behavior. An approach suppotts dynamic class loading open points if changes to the set of
dynamically loaded classes can be made.

* package location (Java only): Package locations are determined by Java’s runtime
system, which uses a class loader to retrieve class definitions. The default
implementation of the class loader looks in each of the file system directories
specified in the host machine’s CLASSPATH environment variable. Changing the set
or relative order of directories in the environment variable affects which class
definitions are retrieved by the class loader. An approach supports package location open
points if the set of classes retrieved by the class loader can be changed.

¢ interfaces (Java only): Interfaces determine which functions a class implements.
Changes to the set of interfaces implemented by a class changes the type of class. An
approach supports znterface open points if the set of nterfaces that a class implements

can be changed.
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¢ synchronized modifier (Java only): Synchronized modifiers determine whether or not
access to data and function invocations are serialized in a multi-threaded
environment. Changes to the synchronized modifier affect the behavior of execution
threads that attempt to access the data or function simultaneously. An approach
supports synchronized modifier open points if changes to the synchronized modifier of a
function affect all invocations of the function.
¢ reflection (Java only): Reflection in Java allows classes, functions, and data fields to be
mspected and allows new class, function, and variable bindings to be established. An
approach supports reflection open points if such bindings can be established during
runtime using reflection.
Note that these abstractions are particular to C++ and Java. Different abstractions may be
provided in other programming languages or as a part of the runtime environment. For
example, although C++ does not offer dynamic class loading, C++ programs utilizing
CORBA can use CORBA’s dynamic linking mechanism to achieve dynamic class loading.
Table A-1 summarizes the open and closed points of different DSE techniques. Since
we are comparing approaches, not particular implementations, we take the most liberal
mnterpretation of each approach. In this way, we convey what is possible, not what has been
realized. Consequently, existing implementations of these approaches may or may not
demonstrate all of these open points. In the case of C++, we assume the presence of a linker.
The differences between C++ and Java in Table A-1 can be attributed to the fact that Java is
a more dynamic language than C++.
Source code-based technique, such as open source, expose the entire behavioral

specification of the application. Hence, all behavioral abstractions are open points.
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Table A-1: The open and closed points of different function-based DSE approaches.
Empty cells represent closed points, checked cells tepresent open points, and cells
with text describe restrictions on open points.
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Figure A-1. API approach to decentralized Figure A-2. Scripting language approach to decentralized
software evolution. software evolution.

APIs allow add-ons to bind to functions, types, and classes exposed by the host
application and support the addition of bindings to those abstractions, where these bindings
originate from the add-on and terminate at the host application (see Figure A-1). Thus, APIs
support function binding, variable-type binding, and class binding open points; all other
behavioral abstractions are closed points in APIs.

Scripting languages and APIs share the same set of open and closed points. This is
because scripting languages just add a special-purpose language that 1s more suitable for end-
users and integrate the development environment with the host application (see Figure A-2).
Although this lowers the entry-bartier for writing add-ons, it does not introduce additional
open points.

We contrast the plug-in and component-based approaches by examining each type of
abstraction in turn. Abstract depictions of plug-in and component-based approaches are
shown in Figure A-3 and Figure A-4, respectively. These figures will be used in the

discussions that follow.

Function definitions. Plug-ins are the inverse of APIs. The host application expects a plug-
in to implement a specific, predetermined interface, which the host invokes in a

predetermined way (see Figure A-3). Plug-ins can implement and expose additional functions,
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Figure A-3. Plug-in approach to decentralized software evolution.

but the host application (and other plug-ins) have no way to invoke such functions directly.
Hence, plug-ins allow a restricted form of function definition open points. In component-
based approaches, add-ons can replace function definitions and introduce new functions that
other components can invoke. But since components are the smallest unit of change, the
component containing the redefined function must be replaced. Thus, function definitions
are open points in component-based approaches at the component-level.

Function binding and function overloading are closed points in plug-ins since function
bindings, which always originate in the host application and terminate at the plug-in’s
interface, cannot be changed by plug-ins—they are bound to the abstract interface of the
plug-in when the host application is compiled. In the component-based approach, function
bindings are open points since new bindings are added when new components are added (in
Figure A-4, bindings 4, and 4, are added when component » is introduced), and an existing
binding can be changed or removed by replacing the component that originates the binding
(in Figure A-4, binding /3 can be changed by replacing component 3). Function overloading
open points are also supported if all the components that invoke the overloaded function are
replaced (in Figure A-4, if a function in component g is overloaded by a function in
component #, function bindings from components x and y to component g must be

rebound).
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Variable-type bindings occur when an add-on exports a type that is bound to a variable
declared in the host application. Since C++ calculates a type’s object size, data member
offsets, and function member offsets at compile time, a plug-in cannot change the type
because it cannot re-compile the host application. Hence, variable-type bindings are closed
points in plug-ins with C++. Similar problems plague component-based systems, though a
variable-type binding can be changed if components that reference it are replaced. Hence,
variable-type bindings are open points in components with C++. Java, on the other hand,
stores symbolic references to public data and function members, and resolves them during
runtime. Hence, plug-in and component-based approaches can change the exported type as
long as type compatibility with the original type 1s maintained.

Inberitance and virtual functions in C++ are closed points for plug-ins and open points
for component-based approaches when components that implement descendant classes are
replaced. The reasoning is identical to variable type bindings. In Java, inheritance and virtual
function bindings are also resolved at compile time with one exception.3 Therefore, these

abstractions are open points for plug-ins and component-based approaches in those
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situations where Java dynamically resolves inheritance bindings; otherwise they are closed
points.

Class definitions in C++ are closed points for plug-ins and open points for component-
based approaches when components that reference the class are replaced. The reasoning is
identical to variable type bindings. In Java, class definitions that are exported by the plug-in
are open points since bindings to the exported class are stored symbolically and resolves
during runtime. Class definitions in component-based systems are open points as long as type
compatibility with the original type is maintained.

Class bindings in plug-ins are closed points since class bindings, which always originate
in the host application and terminate at the plug-in’s interface, cannot be changed by plug-
ins—they are bound to the abstract interface of the plug-in when the host application is
compiled. In component-based systems, class bindings can be changed by replacing the
components where the binding originates, and thus are open points.

Dynamic class loading (Java only) 1s an open point for plug-ins if the add-on initiates the
dynamic loading of classes. Likewise, in component-based approaches, every class that is
dynamically loaded can be changed by replacing the add-on that initiates it.

Package location (Java only) is an open point for both plug-ins and component-based
systems since Java’s class loader 1s localized and may be changed through the runtime system
without modifying the host application or its add-ons.

Interface tmplementation (Java only) is similar to inheritance in Java—bindings are

resolved at compile time with one exception. Therefore, interface implementations are open

3. Inheritance bindings to direct superclasses using “super” are resolved dynamically, otherwise they
are static. For details, see binary compatibility in the Java Language Reference Manual (Gosling et
al 1996, §13.4).
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points for plug-ins and component-based approaches in those situations where Java
dynamically resolves inheritance bindings; otherwise, they are closed points for plug-ins and
open points for component-based systems when referencing components are replaced.

Synchronized method modification (Java only) 1s an open point for both plug-ins and
component-based approaches because the behavior that implements it is localized to the
function it modifies.

Reflection (Java only) is an open point for both plug-ins and component-based
approaches because it is provided by Java’s runtime system, making it independent of the

host application and its add-ons.

A.2 Event-based Open Point Comparison

Barrett et al (1996) develop a generic event-based integration (EBI) framework that models
the key components of event-based integration mechanisms and, consequentially, the set of
abstractions provided by event-based systems (see Figure A-5). We use the abstractions they
identify as the basis of our comparison of event-based approaches. Of the seven abstractions
they identify, one, “messages”, does not affect program behavior since messages represent
units of information exchange by programs. For our evaluation, we assume that messages do

not contain executable speciﬁcations.4 Therefore, we can eliminate the message abstraction

Event mechanism

event

event registration

registration Ly event <

registrar
participant participant

instruct

Y

message
) router
message

send MTFs DCs message
receive

Figure A-5. Event-based integration framework, adapted from Barrett et al [1996]
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from our discussion since we are only interested in behavioral changes to programs. The
behavioral abstractions provided by event-based systems are:

* Participants: Participants represent software modules that encapsulate a collection of
related behavioral specifications. Participants use the event-based communication
mechanism to exchange messages with other participants. When a participant receives
a message, it may execute some behavior that may result in messages being sent to
other participants. Changes to a participant affects all uses of that participant. An
approach supports participant open points if behavioral changes to participants can be
made and if the set of participants in an application can be changed.

* Event registration: Before a participant engages in message exchange, it must register
its intent to do so with a registrar. As a part of this step, the participant may register
its interest in receiving messages from particular participants or in receiving messages
that match a particular pattern. Changes to a participant’s event registration
information may affect which messages it receives and how the messages it sends are
processed by the event mechanism. An approach supports event registration open points if
changes to the event registration information can be made.

* Message routing: Message routing involves delivering messages sent from one
participant to one or more participants. The message routing agent that performs this
task encapsulates decisions regarding who receives a sent message, how a message is
transmitted, and whether or not any transformations or delivery constraints should be
applied to a message. Presumably, message routing is informed by the event

registration information provided by participants. Changes to message routing affects

4. We consider situations in which messages contain executable specifications as a combination of
the event-based and scripting language approaches.
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message transmission and message delivery, both of which may alter program
behavior. An approach suppotts message routing open points if changes to message
routing can be made.

Groups: A group represents a collection of participants, an event registrar, and a
message router such that all group members can be logically treated as a single entity.
Changes to a participant’s group memberships may affect the messages it receives. An
approach supports group open points if changes to group memberships can be made.
Message transformation functions (MTFs): Message transformation functions modify
the content and/ot the routing of messages within the message routing agent. For
example, a MTF may filter a participant’s outgoing messages. Adding, removing, or
modifying MTFs may affect message contents and message delivery. An approach
supports zzessage transformation open points if MTFs may be added, removed, or
modified.

Delivery constraints (DCs): Delivery constraints define rules governing message
delivery within the message routing agent. For example, a constraint may state that a
message must be delivered to at most one participant, or that a message must be
delivered in a certain amount of time. Changes to delivery constraints affect
properties of message delivery, which may alter program behavior. An approach
supports delivery constraint open points if changes to the delivery constraints within the

router can be made.
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yes by changing the add-
on to channel mapping
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ing the add-on to chan-
nel mapping in the MIL

v

yes by changing the add-
on’s interface definition

change by replacing add-
on

change by replacing add-
ons

Table A-2: The open and closed points of different event-based DSE mechanisms. Empty
cells represent closed points, checked cells represent open points, and cells with text describe
restrictions on open points.

Table A-2 summarizes the open and closed points engendered by three different event-based
DSE mechanisms: FIELD (Reiss 1990, Reiss 1996), Polylith (Purtilo 1994), and
CORBA 2.0 (OMG 1999). We evaluate the flexibility that these mechanisms engender in
applications that employ them, not the mechanism itself. Consequently, we take the most
liberal interpretation of each mechanism since we are interested in conveying what is possible,
not necessarily what has been realized in applications built using the mechanism.
We contrast the three different mechanisms by examining each type of abstraction in turn.
Participants are open points with all three mechanisms since participants may be added,
removed, or replaced. Since participants are the smallest unit of change, finer-grained changes
require that the entire participant to be replaced.
Event registration is an open point with all three mechanisms, though each requires that
different software artifacts be modified to effect change. FIELD offers two ways to change a

participant’s event registration: (1) use FIELD’s Policy tool to add or remove message
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transformation functions that change the messages a participant receives; or (2) replace the
participant since the participant’s event registration is specified programmatically. In Polylith,
a participant’s event registrations are derived from the binding instructions that involve it in
the application’s MIL specification. In CORBA, a participant’s event registrations are
specified in the participant’s IDL specification. Unlike FIELD, Polylith and CORBA can
accommodate event registration open points without replacing participants.

Message routing 1s an open point with all three mechanisms, though, as before, each
requires that different artifacts be modified. FIELD again offers two ways to change message
routing: (1) use FIELD’s Policy tool to add or remove message transformation functions that
change how messages are routed among participants; or (2) replace all the participants
affected by the change in message routing since message routing is specified
programmatically. In Polylith, message routing is determined by aggregating all of the explicit
binding instructions in the application’s MIL specification. Hence, Polylith supports message
routing open points without replacing participants. In CORBA, message routing is specified
programmatically in the executable specification of participants and can evolve during
runtime. Thus, message routing open points are supported in CORBA when all the
participants affected by the change are replaced.

Groups and message transformation functions (M TFs) are open points in FIELD and
Polylith. As before, FIELD offers two ways to change groups and MTFs: (1) FIELD’s Policy
tool can be used to add and remove MTFs, and MTFs can be changed such that the
participant’s event registration matches that of a group; or (2) replace the participant since it
programmatically joins a group when it registers with the event mechanism and can

programmatically add and remove MTFs. In Polylith, a participant’s group membership and

141



MTTFs are implicitly determined based on the binding instructions that involve it in the
application’s MIL specification. Hence, Polylith supports group open points without
replacing participants. CORBA does not provide any mechanistic support for groups or
MTFs.

Delivery constraints are open points in FIELD and CORBA, though to different
degrees. FIELD’s Policy tool only allows the priority of message delivery to be specified
using MTFs. In CORBA, participants can programmatically select between two delivery
constraints: “best effort”, which does not cause an exception if the message cannot be
delivered, and “at most once”, which ensures that the message is delivered to at most one
participant or an exception is generated. Hence, delivery constraints are open points in
CORBA when participants are replaced. Polylith does not provide any mechanistic support

for delivery constraints.
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