
Compiler Driven Code Comments and
Refactoring

Per Larsen1, Razya Ladelsky2, Sven Karlsson1, and Ayal Zaks2

1 DTU Informatics, Technical University of Denmark
{pl,ska} @imm.dtu.dk

2 IBM Haifa Research Labs
{razya,zaks}@il.ibm.com

Abstract. Helping programmers write parallel software is an urgent
problem given the popularity of multi-core architectures. Engineering
compilers which automatically parallelize and vectorize code has turned
out to be very challenging. Compilers are not powerful enough to exploit
all opportunities for optimization in a code fragment – rather, they are
selective with respect to the coding patterns they optimize. However,
even minor code changes may enable optimizations to succeed where
they previously would not.
We present an interactive approach and a tool set which leverages ad-
vanced compiler analysis and optimizations while retaining programmer
control over the source code and its transformation. Our tool-set pro-
vides comments describing why optimizations do not apply to a code
fragment and suggests workarounds which can be applied automatically.
We demonstrate the ability of our tool to transform code, and suggest
code refactoring that increase its amenability to optimization.
Experiments with an image processing benchmark shows that automatic
loop parallelization of the original code result in minor speed-ups or sig-
nificant slow- downs with the GNU C compiler, gcc. With our approach,
automatic parallelization yields 8.6 best-case speedup over the sequen-
tial version. The transformations and suggestions are based on the loop
parallelization and matrix reorganization capabilities in the latest pro-
duction release of gcc.

1 Introduction

Programmers can no longer depend on increasing single-thread performance.
In recent years, execution speed of a single processor core has only improved
marginally. Instead, the number of processor cores has increased. To fully utilize
these cores, software must be made parallel.

The programmer must shoulder additional burdens to ensure correctness and
e�ciency when writing parallel software. Compilers can assist by automatically
parallelizing [5], vectorizing [11,12,15] and improving locality of memory refer-
ences [7,8] of some code fragments.

Analysis done by compilers rely on simplifying assumptions to make opti-
mization possible. This means that di↵erent translations of an algorithm into
source code are not optimized with the same probability. E↵ectively, compilers

64

2

are very selective when choosing code fragments to optimize. A recent study
of vectorizing compilers from Intel and IBM showed that 51 out of 134 code
fragments were optimized by one compiler but not the other [6].

When the integrated development environment, IDE, can inform the pro-
grammer why a code pattern cannot be parallelized or vectorized, she stands a
better chance of making it optimizable. In addition, the e↵ort required to make
a code pattern optimizable can be reduced by suggesting how the code can be
refactored and automating the transformations including the ability to preview
and undo changes.

This paper describes a tool-set which transforms the traditional compilation
process. The compiler no longer acts as a passive component which merely opti-
mizes the input. Rather, it also generates comments which explain to non-expert
programmers where and why optimizations did not apply. The compiler also gen-
erates comments to show where source-code optimizations are applicable.

Our work takes advantage of the built-in capabilities of IDEs to highlight the
code comments directly in the source code alongside compiler errors and warn-
ings. In addition, the tool may suggest to the programmer how to transform the
source code based on the code comments. Lastly, the refactoring infrastructure
of the IDE is used to automate the code transformations which are accepted by
the programmer.

The benefits are threefold. First, it is possible to explain in detail why a code
fragment was not optimized and, in some cases, suggest how the programmer
can change the code to allow the optimization in question. This helps increasing
the portion of the codebase that the compiler is able to optimize.

Second, our programmer-in-the-loop approach to optimization is able to take
advantage of the programmers understanding of conceptual, algorithmic and
structural aspects of a program. Consider loop parallelization for instance. Two
questions must be answered to decide if iterations of a loop should execute in par-
allel or not. Can the loop iterations be grouped such that there are no true data-
dependences among them? If so, is parallelization likely to be profitable? The
recent releases of the GNU Compiler Collection [4], gcc, contains state-of-the-
art algorithms [5,14] to compute data dependences in loops. The heuristic that
estimates the profitability of parallelization only considers iteration count, how-
ever. We expect the programmer to have a richer understanding of the amount
of work embodied in a loop – and, in general, have enough knowledge of the
target architecture to determine profitability of parallelization.

Third, the tool makes it possible to apply and track optimizations at the
source level, i.e. not only at the level of machine code. Some developers refrain
from turning on traditional optimizations to maintain accurate debug informa-
tion in spite of the associated performance loss. Applying optimizations on the
source level allows performance improvements even in such cases. It also enables
the source code to carry optimizations from one compiler to another. Consider a
product that must be compiled with compiler X which lacks an important opti-
mization such as automatic loop parallelization. With our approach it is possible
to use a another compiler, Y, which supports loop parallelization and apply the

65

3

filter.h

main.c

filter.c

.

 z[i] = x[i] * y[i];

 sum += z[i];

 }

 return sum;

}

void fn(int *x, int *y, int *z) {

 int i, sum = 0;

 for (i = 0; i < N; i++) {

 z[i] = x[i] * y[i];

 sum += z[i];

 }

}

Eclipse

Problem: pointers 'z' and 'y' may alias.
Loop can not be parallelized.

! Fix: add 'restrict' quantifier to
pointers 'z' and 'y'

> gcc -fcode-comment main.c
Terminal

libcodecomments.a

main.c.parloops
main.c.tree-vect
main.c.matrix-reorg

filter.h

main.c

filter.c

code comments
Eclipse plug-in

void fn(int *x, int *y, in
 int i, sum = 0;
 for (i = 0; i < N; i++) {

 z[i] = x[i] * y[i];
 sum += z[i];

 }
}

Problem: pointers 'z' and 'y' may
alias. Loop can not be parallelized.

! Fix: add 'restrict' quantifier to
pointers 'z' and 'y'

uses produces consumes used by

Fig. 1: Illustration of the code comments tool-set. A library extends gcc with
the capability to output code comments in its diagnostic dump files. A plug-
in extends the Eclipse CDT environment with the functionality to i) read the
compiler generated code comments ii) display them at the proper places in the
source code and iii) provide refactoring support for the changes suggested by the
code comments.

parallelization achieved by compiler Y at the source level and subsequently com-
pile the final product using compiler X. For instance, applications for the Apple
iOS mobile operating system must be compiled with an older gcc release which
does not support auto-parallelization.

Our prototype implementation currently supports comments for auto-parallel-
ization, vectorization and matrix flattening optimizations in gcc. We currently
target programs written in C/C++ but the core approach extends to all lan-
guages supported by the compiler. The current refactoring capabilities include
insertion of OpenMP pragmas for loop parallelization, adding the restrict key-
word to function parameters and, finally, declaring that functions are pure.

The edge detection application in the UTDSP benchmark suite [9] was used
to measure the impact of our tool-set. Using the code comments, a single func-
tion signature was modified to work around a problem of possible aliasing of the
function parameters. The change allows parallelization of the most computation-
ally intensive loop and allows a best case speedup of 5 over sequential execution
on a dual socket Intel machine and a 8.6 speedup on an IBM POWER6 blade.
In both cases, the maximum speedup is obtained with 8 threads.

The rest of the paper presents the code comments tool in Sect. 2. Section 3
gives concrete examples how the tool helps programmers improve source code
and Sect. 4 presents the preliminary experimental results. Finally, Sect. 5 surveys
related work before Sect. 6 concludes.

2 Tool Overview

The compiler and an IDE are key components when developing software. Our
tool extends both of these as illustrated in Fig. 1. Extending the compiler rather

66

4

than implementing our own analysis framework lets us take advantage of the
existing, production-quality program-analysis facilities and optimization heuris-
tics. Limitations in the compiler, of course, are inherited too.

The compiler is extended such that it produces informative messages - code
comments - in addition to warnings and errors. As soon as an analysis pass
determines that its corresponding optimization is possible or not, a code com-
ment is generated. Whereas warnings and errors are usually written to the stan-
dard streams, code comments are written to compiler diagnostic files. Therefore
comments are only generated when diagnostic or dump files are enabled for a
particular analysis pass.

Currently, the analysis passes which implement auto-parallelization and matrix-
reordering have been extended to generate code comments. An analysis pass typ-
ically consists of a sequence of steps to determine if an optimization is possible
followed by a sequence of steps that transform the code. If one of the feasibility
checks fails, a code comment is generated to describe the nature of the problem.
If possible, any variables or expressions that are part of the problem and their
locations in the source code are also output. If, on the other hand, an optimiza-
tion is feasible, the code comment contains enough information to allow the IDE
to transform the source code.

An analysis pass skips to the next code fragment as soon as an issue pre-
venting optimization is discovered. Therefore, the code comments only report
the first issue that prevents optimization although there may be several issue.
The programmer must therefore resolve each issue to discover the next. Re-
porting multiple issues for the same code fragment would require a substantial
re-engineering of the compilers analysis passes.

The analysis passes operate on a low-level, intermediate representation, IR,
which di↵ers substantially from the source code and therefore makes little sense
to the programmer. Rather than describing an issue preventing optimization in
terms of the intermediate representation, we reconstruct the source-level expres-
sions. The reconstructed source-level expressions are not necessarily identical to
the code written by the programmer because we do not take formatting and pre-
processor definitions into account. Taking these things into account may be very
helpful in practice. We have not done so, however, as it is mainly an engineering
task of little research value.

A small library, libcodecomments, was added to gcc. It contains function-
ality that is commonly needed when generating code comments. This includes
functions which convert the compilers intermediate representation into source-
level expressions and code finding the source code location of loops, variables
and functions.

The Eclipse C Development Tools, CDT, was extended to provide IDE sup-
port. A plug-in enables CDT to read the code comments from dump files gener-
ated by gcc during compilation. The reading of the dump files is done by extend-
ing the Eclipse build process and requires no programmer intervention besides
enabling the code comments. This is currently done on a project-by-project basis.
Code comments read from the compiler dump files are converted into markers,

67

5

which are shown as icons in the left margin of the code in the Eclipse source
editor. The markers automatically track the source code construct, say a loop
or variable, which is associated with the comment. The comment may include
an option for resolution (refactoring), in which case the source code is changed.
For example, lines may be added or deleted around the construct. A description
of the marker is shown in the Problems view in Eclipse, and pops up when the
cursor hovers over the marked code as shown in the call-out in Fig. 1. Similar
to compiler warnings and errors, the code comments are automatically updated
after each full or incremental build.

3 Code Comments and Refactoring

The code comments tool currently generates comments for the following analy-
ses: loop auto-parallelization, auto-vectorization and matrix reorganization. This
section showcases the current capabilities of our tool.

3.1 Auto Parallelization

Recent versions of gcc have added support for automatic parallelization of reg-
ular loop nests. It includes support for recognition of reductions and private
variables. Loop parallelization works by inserting calls to the OpenMP runtime
just as if the programmer had inserted directives in the source code. However,
with gcc auto- parallelization, no directives are inserted at the source code level.
parallelization pass builds on the existing support for explicit parallelization with
OpenMP [13] and the data-dependency analysis used for auto-vectorization.

We extended the loop auto-parallelization pass to output its analysis results.
This allows us to parallelize the loop at the source level. Parallelization is done by
inserting the omp parallel for directive before the loop nest to be parallelized.
The compiler dump file was extended with the following information for each
parallelizable loop: i) file name and line number of the loop, ii) a list of zero
or more private clauses; and iii) a list of zero or more reduction clauses. The
private clauses are used to instruct the subsequent OpenMP analysis pass to
create per-thread copies of variables mentioned in these clauses. For example,
induction variables in every sub-loop nested inside the loop being parallelized
need to be private. The reduction clauses cause special code to be generated
for reduction variables recognized by the loop parallelization pass. Figure 2 gives
an example which includes the use of these two clauses.

Each thread should have its own copy of the induction variables j and i. The
variable jis implicitly made private by the parallel for directive. It is easy to
forget to also declare the induction variable i as private when parallelizing the
loop manually.

Special cases are loops where the reduction operation is minimum or max-

imum of two values. The compiler recognizes these operations in the C code,
but the reduction clause in OpenMP for C only allows the use of primi-
tive, commutative operators such as addition and multiplication [13, Section

68

6

 1 int sum_matrix(int A[N][N]) {
 2 int i, j, x[N], sum = 0;
 3
 4 for (j = 0; j < N; j++) {
 5 for (i = 0; i < N; i++) {
 6 x[i] = A[i][j];
 7 }
 8 sum += x[j];
 9 }
10 return sum;
11 }

 1 int sum_matrix(int A[N][N]) {
 2 int i, j, x[N], sum = 0;
 3
 4 #pragma omp parallel for \
 reduction(sum, +) private(i)
 5 for (j = 0; j < N; j++) {
 6 for (i = 0; i < N; i++) {
 7 x[i] = A[i][j];
 8 }
 9 sum += x[j];
10 }
11 return sum;
12 }

accept

Fig. 2: Refactoring which parallelizes a loop nest. If user accepts the refactor-
ing an OpenMP clause is introduced with the reduction and private clauses
necessary to ensure correct execution on multiple threads.

2.9.3.6]. The code may still be parallelized by inserting several OpenMP di-
rectives in the source code. Instead of inserting a single #pragma omp parallel

for reduction(...), three directives are used instead: #pragma omp parallel,
#pragma omp for and #pragma omp critical.

3.2 Matrix Reorganization

The matrix flattening and transposing pass in gcc can optimize the data layout of
matrices. This reduces the level of indirection when accessing multi-dimensional
arrays in C [8]. This is done by replacing a multi-dimensional matrix with a
lower-dimensional one and, optionally, transposing the elements.

The matrix reorganization pass is an invasive optimization in the sense that
it must have access to the whole program to change all access sites of the matrix.
This means that the optimization, when applied to the source code, potentially
cause many files to be modified and the programmer must assert that the com-
piler can discover all matrix access sites during compilation. By leveraging the
built-in refactoring support, Eclipse can be modified to preview changes before
they are applied and changes can be undone with a single keystroke as long as
the IDE stays open. This is convenient if it is subsequently determined that the
program does not profit from that particular optimization. Figure 3 illustrates
the flattening of a 3-dimensional matrix at the source code level. Refactoring
previews are yet to be implemented in our tool.

3.3 Missed Opportunities for Optimization

There are many situations where compilers do not apply optimizations, regret-
fully. Some cases are essential while others are not. The major causes we encoun-
tered during this work are i) pointer-aliasing, ii) data which escapes from the
unit of compilation, iii) complex control flow, iv) complex data dependencies,
v) function calls inside loop bodies; and vi) code containing vector intrinsics or
inline assembly.

69

7

 1 int mat3d() {
 2 A = (int ***)malloc(N * sizeof(int**));
 3 for (int i = 0; i < N; i++) {
 4 A[i] = (int **)malloc(N * sizeof(int *));
 5 for (int j = 0; j < N; j++)
 6 A[i][j] = (int *)malloc(K * sizeof(int));
 7 }
 8 for (int i = 0; i < N; i++)
 9 for (int j = 0; j < N; j++)
10 for (int k = 0; k < K; k++)
11 A[i][j][k] += 1;
12 printf("%d\n", A[N-1][N-1][K-1]);
13 for (int i = 0; i < N; i++)
14 free(A[i]);
15 free(A);
16 return EXIT_SUCCESS;
17 }

 1 int mat3d() {
 2 A = (int *)malloc(4096);

 4 for (int i = 0; i < N; i++)
 5 for (int j = 0; j < N; j++)
 6 for (int k = 0; k < K; k++)
 7 A[64*i+j*4+k] = A[64*i+j*4+k] + 1;
 8 printf("%d\n", A[1023]);

 9 free(A);
10 return EXIT_SUCCESS;
11 }

accept

Fig. 3: Refactoring which flattens a multi-dimensional matrix. If user accepts
the refactoring suggestion, the three dimensional matrix is flattened to a one
dimensional array and all memory allocation, access and memory deallocation
sites are transformed as shown. Symbols N and K are compile time constants with
values 16 and 4.

In a number of circumstances, it is possible to transform the code such that it
no longer fails the compiler’s test that determines if an optimization is applicable.
Due to space constraints, we will only discuss one such transformation – marking
a function pure so as to allow a loop to be parallelized even though its body
contains a call to a function defined outside the current translation unit. Pure
functions return a value which is calculated based on given parameters and global
memory and do not change the values of global variables and memory.

We use the code shown in Fig. 4 as an example. It contains a loop that is
not parallelized due to a function call. Function inlining would have allowed
parallelization to proceed but inlining max is not done because only the function
declaration, not the function definition, is seen when compiling a single transla-
tion unit at a time. Nor can it be determined that the function call is free from
side e↵ects for the same reason. The fact that max is pure should be obvious to
the programmer upon inspection of the code and the build process (not shown).

The code comments assist the programmer as follows. Markers are shown in
two places in the source code: at the call site and at the function declaration.
Also, when hovering the marked code, a text in a pop-op window explains how
to determine if a function is pure or not. Figure 5 shows the appearance of
code comments. Finally, a refactoring is suggested at the declaration site. It
applies an annotation to inform the compiler that all function implementations
of the declaration are guaranteed to be pure. The refactoring eliminates the need
for the programmer to be familiar with the compiler specific syntax to declare
functions as pure. When the refactored code is compiled again, the loop will get
parallelized.

Link-time optimization could also resolve the issue by making the max func-
tion definition available at optimization time. Changing the build system to
do link-time optimization, however, is non-trivial with complex, cross-platform
build- systems.

70

8

accept

 1 double
 2 max(double a, double b);
 3

util.h

 1 double
 2 max(double a, double b) {
 3 return a > b ? a : b;
 4 }

util.c
 1 #include "util.h"

42 for (j = 0; j < N; j++) {
43 for (i = 0; i < N; i++) {
44 x[i] = max(x[i], 42.0);
45 }
46 sum += x[j];
47 }

proc.c

 1 double
 2 max(double a, double b)
 3 __attribute__((pure));

util.h

Fig. 4: Suggestion to the programmer to consider if the declaration of a function
can be marked as pure since automatic loop parallelization would otherwise not
process the loop in proc.c.

4 Preliminary Results

To measure the e↵ect of using our tool-set, we generated code comments for the
edge detection application in the UTDSP benchmarking suite [9]. The program
detects edges in an 8-bit grayscale image. The unmodified code uses a 128x128
image which we changed to 4096x4096 to increase running times well above the
timing resolution.

The program consists of the main function which calls convolve2d repeatedly
with 3x3 Gaussian and Sobel kernels to do edge detection. The mainmethod con-
tains two loop nests but the bulk of the computation takes place in convolve2d’s
second loop nest. During compilation, gcc can parallelize the loop nests in the
main method but not the work intensive loop in convolve2d.

A code comment is shown in the Eclipse editor on the source line containing
the code which the auto parallelization optimization can not analyze without
programmer assistance. Figure 5 shows the code comment as it appears in the
Eclipse editor. As can be seen from the comment, the problem is aliasing be-
tween the arrays kernel, output image and input image. The tool currently
generates three comments reporting an aliasing problem between a pair of mem-
ory references, but such sets of comments could be merged in to a single one for
clarity.

Any programmer with a basic understanding of the semantics of the arrays
in the edge detection code knows that these can never point to the same mem-
ory. To convey this information to the compiler, the restrict keyword can be
used. It was introduced in the C99 standard but gcc also accepts restrict

when compiling in C89 mode. The fact that only pointers can be qualified with
restrict complicates the situation. Thus, to use the restrict qualifier, the
declaration of the arrays, which are parameters to the convolve2d function,
must be changed to use pointers. The function signature was therefore changed
as shown in Table 1.

71

9

Fig. 5: Code comments generated with our tool shown in the Eclipse editor.
Lines with comments are highlighted with an orange background and with small
lightbulbs in the gutter area. By hovering the mouse on a source line with a
comment, an overlay shows an explanatory message and a list of refactoring
suggestions (if any). The problem view in the botton shows code comments in
addition to regular warnings and errors.

4.1 Experimental Method and Setup

We measured the speedup enabled by modifying the edge detection application
to allow automatic parallelization of the most computationally intensive loop
nest.

Two di↵erent machines were used to measure the speedup. The first was a
dual-socket server equipped with two quad-core 2.93 GHz Intel Xeon 5570 CPUs
and a total of 12 GB DDR3 RAM. It contained eight cores each of which supports
two hardware threads. It had 256 KB L2 cache per core and 8 MB shared L3
cache per CPU. The operating system was Linux using the 2.6.30 kernel patched
to support hardware performance counters.

The second was an IBM JS22 (7998-61X) blade with a quad core 4.0 GHz
POWER6 SCM processor. Each processing core supports two hardware threads.
The machine includes 8 GB DDR2 SDRAM, 64 KB I-cache and 64 KB D-cache
L1 cache per core, and 4 MB L2 cache per core. The operating system kernel
was Linux 2.6.27 for PowerPC.

On the Intel platform, gcc version 4.5.1 was used, which at the time of
writing is the latest production release. For the IBM platform we used gcc

4.6 experimental. The -O2 compilation flag was used for optimization for two

72

10

Table 1: Original (left) and modified (right) function signature for the
convolve2d function. The modifications were done based on code comments
and allows auto parallelization of an important loop nest.

void convolve2d(void convolve2d(

int input image[N][N], int (* restrict input image) [N],

int kernel[K][K], int (* restrict kernel)[K],

int output image[N][N]) int (* restrict output image) [N])

reasons. First, auto-vectorization, which is enabled at optimization level -O3may
interfere with auto-parallelization and secondly the auto parallelization does not
succeed at -O3 for reasons which we have yet to investigate. Measurements were
made for 2-16 threads. No auto parallelization is done when less than two threads
in gcc. We also measured the di↵erence in sequential performance between the
original and modified edge detect application and found it to be zero.

To measure the average execution time of each program version, three warmup
runs and ten benchmark runs were performed on an otherwise idle server. The
edge detection program spends most of the execution time loading the image
from disk and saving the output image due to the simple but ine�cient file for-
mat and IO routines. Consequently, the time spent on IO was excluded from our
measurements.

4.2 Results on Intel Xeon Platform

We measured the speedup relative to sequential execution when gcc parallelized
the original edge detection code. The edge detection code was subsequently mod-
ified based on the code comments from our tool as described in the previous
section. We also measured the speedup when gcc parallelized the modified code
relative to sequential execution and relative to execution of the unmodified, auto-
parallelized code. The speedups on the Intel based server are summarized in Fig.
6.

When auto parallelizing the unmodified edge detection code, a small speedup
is obtained when using 2 to 8 threads with 4 threads providing the best result.
Using 12 or 16 threads, however, results in a as much as a 28% slowdown.

When auto parallelizing the code with modification based on the code com-
ments, all three loop nests are transformed by gcc. Once again, the biggest gain
is not realized with the highest number of threads. Using eight threads we ob-
served a factor 5 speedup over the sequential version and a factor 4.8 over the
original edge detection code when auto-parallelized. Super-linear speedups was
observed over both the sequential and original, auto parallelized code when using
2-4 threads. We believe that this e↵ect is due to the cache system. By adding
cores, we e↵ectively reduce the working set of each core thus allowing it to hold
a larger fraction of its working set in the L1 data cache. Thus, the application
benefits not only from the added computational resources but also from the ad-
ditional cache capacity. We have not yet had the time to verify this hypothesis
by measuring the cache miss rates with hardware performance counters.

73

11

!" #" $" %!" %&"
'()*+',"-+../(+" %012$" %013$" %01#%" 10$22" 10333"
4*55.6)-"-+../(+"78,8)8"-.9" !02#3" #0:1%" 2012!" !02&2" %0##2"
4*55.6)-"-+../(+"78,8)8"'()*+'," !0#3" #0#1!" #0$2#" !0:" %0$&"

1"

%"

!"

;"

#"

2"

&"

!"
##
$%

"&

'%()#*&+,&-.*#/$!&

Fig. 6: Speedups on Intel Xeon platform. In the version modified on the basis
of comments, all three loop nests in the program are parallelized by gcc, in the
unmodified version, only the two loop nests in main are parallelized.

4.3 Results on POWER6 Platform

We also ran our experiments on an IBM POWER6 based server. The speedups
that was observed on this machine are summarized in Fig. 7. When running the
unmodified, auto parallelized edge detection code, we observed a slowdown of
approximately 6-7% on 2-8 threads.

When auto parallelizing the code with modification based on the code com-
ments, however, we observe speedups ranging from 3.5 to 8.6 over the sequential
version and 3.7 to 9.2 relative to the original, auto-parallelized version. Again, su-
per linear speedups are observed – this time for all thread counts. This strength-
ens our belief that the application benefits from the added cache capacity as well
as from the additional cores. As on the Intel platform, we have not investigated
this.

5 Related Work

ReLooper is an Eclipse plug-in that can help the programmer parallelize regular
loop nests in Java code [2]. Parallelization is done using the ParallelArray

framework and not OpenMP. The former is limited to handle fewer kinds of
parallel loops. Like our tool, ReLooper also relies on static data-dependence
analysis to detect parallelism – but unlike in gcc the data-dependence analysis
is inter-procedural.

ReLooper puts the programmer in the loop in the sense that she picks a
“target array” and ReLooper then analyses the loops which access the array
and reports if they can be parallelized safely. The programmer can then choose

74

12

!" #" $"
%&'()%*"+),,-&)" ./01$" ./0#!" ./0#2"
3(44,5'+"+),,-&)"67*7'7"+,8" 1/#9" :/!##" $/:#"
3(44,5'+"+),,-&)"67*7'7"%&'()%*" 1/;$" :/:!0" 0/2;;"

."

2"

!"

1"

#"

9"

:"

;"

$"

0"

2."

!"
##
$%

"&
'%()#*&+,&-.*#/$!&

Fig. 7: Speedups on POWER6 platform. In the version modified on the basis of
comments, all three loop nests in the program are parallelized by gcc, in the
unmodified version, only the two loop nests in main are parallelized.

to parallelize unsafe loops as is or make changes before re-running the analysis.
This mode of interaction di↵ers from our tool since we may also give refactoring
suggestions that remove obstacles to optimization.

Sean Rul et al. proposed the Paralax infrastructure which also exploits pro-
grammer knowledge for optimization [16]. Paralax is comprised of tree parts.
The first is a compiler for automatic parallelization of outer loops containing
coarse- grain pipeline-style parallelism. The second is a set of annotations which
primarily supply data-dependency information not inferred by static analysis in
the compiler and which are verified dynamically. The final part is a tool which
suggests how the programmer may add annotations to the program.

The Paralax approach is complimentary to ours. It parallelizes irregular,
pointer- intensive codes whereas we are primarily concerned with regular codes
that are amenable to parallelization, vectorization and locality enhancement with
slight modifications. Also, the suggestions generated by the Paralax tool rely on
both static analysis and profiling information whereas our suggestions, so far,
do not require the programmer to perform program profiling.

FASThread [10] is a commercial tool from Nema Labs that helps the pro-
grammer parallelize code by identifying issues which prevent parallelization. It
also shows “generic” examples of workarounds to the programmer and integrates
with the IDE. Our knowledge of the tool is limited as the tool is in closed beta-
testing. The core approach seems similar to the part of our work which address
auto- parallelization. However, the approach presented here includes automated
refactoring of certain optimization issues.

Suggestions for locality optimizations, SLO, provides refactoring suggestions
at the source level aiming to reduce reuse distances and thus the number of
cache misses [1]. The suggestions are based on cache profiling runs and are

75

13

complimentary to the types of refactoring o↵ered by our tool. For instance, SLO
does not help the programmer expose parallelism in the source code.

Xlanguage [3] is a pragma language for C which allows automatic exploration
of program optimizations. The programmer inserts pragmas, or directives, to in-
dicate where transformations such as loop unrolling, loop interchange and tiling
are legal. Multiple transformations may be legal for each loop nest. The best
combination of transformations for a particular machine can then be found au-
tomatically. With this approach, the programmer explicitly directs the source
transformation, whereas we supply semantic information but let the compiler
decide if an optimization is legal. A combination of the two approaches may be
possible. Code comments could help the programmer write code such that the
compiler can determine where xlanguage pragmas are safe to insert.

The vectorization pass in gcc already o↵ers an option to generate compilation
reports. However, since problem descriptions are very terse and often reference
compiler generated intermediaries rather than source code variables, we believe
these reports are of more use to compiler writers than programmers.

6 Conclusions

This paper presents the first iteration of our code comments and refactoring tool.
It increases the level of integration between the IDE and the compiler to aid the
programmer in optimizing software for embedded, multi-core architectures.

It o↵ers two kinds of feedback to the programmer. First it allows optimiza-
tions to be applied to the source level. This is beneficial in scenarios where the
final code must be compiled with optimizations disabled to ensure accurate de-
bugging information and it allows optimizations to be carried by the source code
from one compiler to another.

Second, we bring attention to problems which obstruct particular optimiza-
tions and a particular optimization to succeed and optionally suggest workarounds
in the form of refactoring.

The preliminary experiments on an edge detection application shows that
without the code comments, the application either runs slightly faster or slower
depending on the platform and number of threads. When modifying the code to
allow an important loop nest to be parallelized, however, both platforms show
significant speedups from 5 to 8.6 relative to the sequential code and from 4.8
to 9.1 over the unmodified, auto- parallelized code.

The tools are work in progress and much work remain. Our primary goals are
to expand the types of analysis supported and increase the number of refactoring
options for situations where an optimization fails for reasons which may be
corrected by the programmer. Also, any codebase is likely to contain a lot of code
which is essentially not amenable to optimization. Consequently, not all code
comments represent true optimization opportunities. To help the programmer
focus on the most promising code comments, we believe it would be helpful to
prioritize code comments which relate to code which is frequently executed and
also code comments which o↵er automated refactoring.

76

14

Finally, one could apply the refactoring suggestions speculatively to deter-
mine which ones actually enable additional optimization and use that infor-
mation as an additional ranking criteria. When the prototype implementation
matures, we plan to make our tool-set publicly available as free and open source
software.

Acknowledgments This work was done while the first author was on HiPEAC in-
ternship at IBM Haifa. The authors thank Gad Haber at IBM Haifa whose e↵orts have
greatly contributed to this work. The research made use of the University of Toronto
DSP Benchmark Suite, UTDSP. Finally, the authors are grateful for the clear and
plentiful constructive feedback provided by an anonymous reviewer.

References

1. K. Beyls and E. D‘Hollander. Refactoring for data locality. IEEE Computer,
42(2):62–71, 2 2009.

2. D. Dig et al. ReLooper: Refactoring for loop parallelism. Tech-
nical report, University of Illinois Urbana-Champaign, 2009.
https://netfiles.uiuc.edu/dig/papers/ReLooper.pdf.

3. S. Donadio et al. A language for the compact representation of multiple program
versions. In Int. Workshop on LCPC. Springer-Verlag, 2005.

4. Free Software Foundation. GNU Compiler Collection. http://gnu.gcc.org. Date
accessed: September 11th 2010.

5. Free Software Foundation. Wiki page on auto-parallelization capabilities in GCC.
http://gcc.gnu.org/wiki/Graphite/Parallelization. Date accessed: September 14th
2010.

6. M. J. Garzaran et al. Program optimization through loop vectoriza-
tion. http://sc10.supercomputing.org/schedule/event detail.php?evid=tut140,
2010. Date accessed: December 19th 2010.

7. O. Golovanevsky and A. Zaks. Struct-reorg: Current status and future perspectives.
In Proc. of GCC Developer’s Summit, 2007.

8. R. Ladelsky. Matrix flattening and transposing in GCC. In Proc. of GCC Devel-

oper’s Summit, 2006.
9. C. Lee et al. UTDSP benchmark suite. http://www.eecg.toronto.edu/

corinna/DSP/infrastructure/UTDSP.html, 1998. Date accessed: July 4th 2009.
10. Nema Labs. FASThread product page. http://www.nemalabs.com/?q=node/7.

Date accessed: October 18th 2010.
11. D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of interleaved data for

SIMD. In Proc. of PLDI, 2006.
12. D. Nuzman and A. Zaks. Outer-loop vectorization: revisited for short SIMD ar-

chitectures. In Proc. of PACT, 2008.
13. OpenMP Architecture Review Board. OpenMP application program interface,

version 3.0. Technical report, 2008.
14. S. Pop et al. GRAPHITE: Loop optimizations based on the polyhedral model for

GCC. In Proc. of GCC Developer’s Summit, 2006.
15. K. Trifunovic et al. Polyhedral-model guided loop-nest auto-vectorization. In Proc.

of PACT, 2009.
16. H. Vandierendonck, S. Rul, and K. D. Bosschere. The paralax infrastructure:

Automatic parallelization with a helping hand. In Proc. of PACT, 2010.

77

