
Expressing Inter-task Dependencies between
Parallel Stencil Operations

Per Larsen, Sven Karlsson and Jan Madsen

DTU Informatics
Technical University of Denmark

{pl,ska,jan}@imm.dtu.dk

Abstract. Complex embedded systems are designed under tight con-
straints on response time, resource usage and cost. Design space ex-
ploration tools help designers map and schedule embedded software to
complex architectures such as heterogeneous MPSoC’s. Task graphs are
coarse grained representations of parallel program behaviour which are
used to evaluate the feasibility of a particular design. However, automat-
ically extracting an accurate task graph from source code is challenging.

This paper investigates how to describe data dependencies to aid tools
based on program analysis in extracting task graphs from source code.
We will examine a common parallel programming pattern – stencil op-
erations – and show that even for such codes with a regular control flow,
the precise dependencies between two stencil operations cannot always
be determined at compile time.

We introduce a language construct which i) captures an upper bound on
the number of dependencies between successive stencil operations and
ii) instructs the compiler to generate code which ensures that the bound
holds for each execution of the program.

The impact of our proposal is evaluated using a micro-benchmark and
two soft real-time embedded image processing applications. The coding
effort is low – at most one line of code per parallel loop was added. The
performance impact is evaluated on a quad-core Linux workstation and
we observe no statistically significant slowdown.

1 Introduction

Today’s embedded systems are expected to process complex data in real time
while being highly energy efficient and inexpensive to manufacture. The afore-
mentioned goals are often in conflict so design decisions must be made. Design
space exploration, DSE, tools can help designers make well-informed decisions
by automatically finding and evaluating the trade-offs between the set of feasible
designs [1,2,3].

To evaluate each design point, a coarse grained model of the application be-
havior must be extracted from its source code. Task graphs, which are directed
acyclic graphs, are commonly used for this purpose. Each node in the graph rep-
resents sequential computation and each edge represents a precedence constraint

2

iteration n

iteration n+1

1 , n

2 , n

3 , n

4 , n

1 , n + 1

2 , n + 1

3 , n + 1

4 , n + 1

a) b)

1 , n

2 , n

3 , n

4 , n

1 , n + 1

2 , n + 1

3 , n + 1

4 , n + 1

Fig. 1: a) Desired task graph for two iterations of heat diffusion example on four
threads. b) Task graph fragment with over-approximation of inter-task dependencies.

between two tasks due to a data or control flow dependence in the source code
[4].

Neither program analysis nor traces of program execution alone are sufficient
to extract task graphs from source code. The former approach [5,6,7] computes
a safe over-approximation of the inter-task dependencies for all program exe-
cutions. Trace based approaches [8,9] can compute the precise dependencies be-
tween the tasks for a single program execution. However, trace based task graphs
do not contain all possible dependencies since traces can only be generated for
a tiny fraction of all possible program inputs.

In this paper, we show that it is possible to avoid some over-approximated
edges and thus increase the accuracy of task graphs computed using program
analysis by adding extra information to the source code through a programmer
inserted directive.

Listing 1.1 contains a simple heat diffusion program parallelized with
OpenMP [10] directives. It repeatedly applies a non-compact stencil which is five
elements wide to a one dimensional array. The number of iterations in the inner
loop and the number of threads are unknown. Stencil widths can also be un-
known. The goal is to determine the dependencies between successive iterations
of the outer loop.

Listing 1.1: Heat diffusion example. The code is adapted from Mattson et al. [11]

1 for(int k = 0; k < NSTEPS; ++k) {
2 /* instruct compiler to distribute iterations among available threads */
3 #pragma omp parallel for schedule(static)
4 for(int i = 2; i < NX -2; ++i) {
5 /* compute new value in ’ukp1 ’ based on neighbouring values in ’uk ’ */
6 ukp1[i] = uk[i] + (dt/(dx*dx)) * (-1/12*uk[i-2]
7 +4/3*uk[i-1] -5/2*uk[i]+4/3* uk[i+1] -1/12*uk[i+2]);
8 }
9 /* swap pointers before executing next iteration */

10 tmp = ukp1; ukp1 = uk; uk = tmp;
11 }

Figure 1a shows a fragment of the task graph corresponding to two successive
iterations of the outer loop assuming the number of iterations is at least twice the
number of threads. Program analysis, however, cannot prove that each thread
will receive more than one iteration of the inner loop – as thread and iteration
counts are unavailable – and must therefore produce the task graph fragment
shown in Fig. 1b.

3

Scope and Contributions We allow ourselves to assume that programs i) are
parallelized with OpenMP ii) do not contain data races and iii) access arrays
and dynamically allocated memory correctly.

This paper makes the following contributions:

– We introduce the taskshare directive (Section 3) which is necessary to
derive task dependencies between parallel stencil operations when stencils
wider than three elements are used.

– We also present the required runtime support (Section 4) so that object code
generated by a compiler can check at runtime that the actual dependencies
match the claims of the programmer inserted taskshare directives.

– The impact of the new directive is evaluated in terms of the resulting task
graphs, coding effort and performance (Section 5). We use the heat diffusion
example and two soft real-time embedded programs.

The ability of the directive to exclude dependencies otherwise reported by
program analysis is directly proportional to the stencil width. When stencils
spanning five elements are used, it enables a 40% reduction of dependencies
between task pairs while stencils only three elements wide do not benefit from
the directive. The dependencies excluded by the directive can allow DSE tools to
find more feasible designs and prevent over-provisioning of resources. Secondly,
less dependencies lowers the running times of task scheduling algorithms whose
asymptotic complexity increase with the number of dependencies in the task
graph [12,13,14,15].

In terms of coding effort, the impact is low – the taskshare directive adds
at most one additional line of code to each loop performing a stencil operation.
In terms of performance, benchmark measurements of three appliations show no
statistically significant impact of runtime checks at the 95% confidence level.

2 Related Work

Vallerio et al. proposed an automated task graph extraction approach from un-
modified C code [7]. Explicit parallelism is not supported and the extraction
method relies on very conservative assumptions about the use of pointers and
arrays which lead to task graphs containing dependencies which do not exist in
the actual program. The challenge presented by pointer aliasing in context of
task graph extraction was addressed in our previous work [16].

Adve and Sakellariou address task graph extraction in the context of high-
performance computing [5]. They assume that a distributed memory program-
ming model, MPI [17], is used exclusively for communication among tasks
thereby making dependencies explicit. They also argue in favor of generating
task graphs from OpenMP programs.

Ha has proposed the HoPES programming environment for development
and mapping of embedded software to MPSoC’s [18]. OpenMP is used to ex-
press data-parallelism in programs while task-parallelism is expressed in a syn-
chronous data flow model. The difficulties of calculating dependencies among
tasks representing parallel loops are not considered.

4

Liu and Dick present a tool which can generate communication graphs by
tracing loads and stores during execution rather than compile time analysis [8].
Unlike task graphs, communication graphs cannot be parameterized or com-
posed hierarchically to analyze application behavior across different program
executions and execution platforms.

The hArtes project aims to develop an end-to-end development framework for
real-time embedded systems [19]. The approach to task graph extraction is based
on automatic parallelization of sequential C code. However, only a few types of
code of can be parallelized automatically. Secondly, being able to derive a parallel
program from a sequential program does not imply that an accurate task graph
can be derived from the program. As this paper will explain, the number of
dependencies between two parallel stencil operations depends on factors which
are seldom available at compile time.

Schmitz et al. [1] determine inter-task dependencies by hand to schedule and
map small applications to a smartphone. This approach is labour intensive and
prone to errors.

3 Directive to Quantify Sharing among Tasks

We propose a new directive which can assert the maximal number of threads
which will access the same array slice when executing a parallel loop.

The syntax of the directive in the informal notation of OpenMP [10] is:
#pragma depends [taskshare(expr, ts) . . .] where expr must evaluate to ei-
ther an array or a pointer to an array and ts must be the maximal number
of threads concurrently accessing a slice of expr. The directive can only be
used with an omp for directive and must appear directly before it. If several
loops in a loop nest are parallelized with omp for then each should have its own
taskshare directive. Finally, annotated loops must be coded such that the width
of the stencil can be determined at compile time. This requirement is justified
in Sect. 3.

The taskshare directive is useful when a sequence of stencil operations are
encountered during task graph extraction in preparation for design space explo-
ration. Program analysis can use the second argument of the taskshare directive
to determine the number of dependencies from tasks belonging to stencil oper-
ation n to each task in stencil operation n + 1 instead of using a conservative
approximation. In the heat diffusion example, the dependencies excluded are
those which are in Fig. 1b but not Fig. 1a.

Correctness of the Directive At runtime, the iterations of a parallel loop
are divided into a number of slices which in turn are mapped to threads. Con-
sider a situation where the inner loop in the heat diffusion example contains
24 iterations which are divided into four slices of length six such that thread 0
executes iterations 0-5, thread 1 executes iterations 6-11, etc. Since the stencil
width is five, thread 1 will read elements 4-13 which were written in the previous
iteration of the outer loop – thread 0 wrote elements 4-5, thread 1 wrote 6-11

5

Listing 1.2: Innermost loop in the example with taskshare directive applied. The
directive is underlined.

1 #pragma depends taskshare(uk ,3)
2 #pragma omp for schedule(static)
3 for(int i = 2; i < NX -2; ++i) {
4 ukp1[i] = uk[i] + (dt/(dx*dx)) * (-1/12*uk[i-2]
5 +4/3*uk[i-1] -5/2*uk[i]+4/3* uk[i+1] -1/12*uk[i+2]);
6 }

and thread 2 wrote 12-13. The task executed by thread 1 therefore depends on
three of its predecessor tasks. Generally the number of predecessors of a task
equals the number of adjacent slices read plus one.

The number of adjacent array slices read by a task depends on the width of
the stencil and the length of the slices – the wider the stencil and the shorter the
length of each slice, the more adjacent slices are read. To check the correctness
of the taskshare directive, the stencil width and minimal slice length must be
computed to check that the number of adjacent slices read plus one is less than
or equal to the value of ts argument in the directive. We note that the directive
is not needed in case the stencil width is three because each task then reads at
most three array slices regardless of their length.

Listing 1.2, shows the taskshare directive applied to the inner loop in the
heat diffusion code. The schedule clause [10, p. 43] controls how iterations are
divided into slices and mapped to threads. A certain slice length can be requested
by the chunk size parameter. Since the schedule is static with no chunk size,
each thread receives a slice with a length in proportion to the total number of
iterations. The slice length is therefore greater than max(bn

t c, 1) for n iterations
and t threads. Whenever 2n ≥ t, the length of each slice is at least 2 and since a
five-point stencil can never access more than two elements of an adjacent slice,
it accesses one adjacent slice on each side. Thus, in cases where the schedule is
static, the stencil is five elements wide and the number of iterations is at least
twice as great as the number of threads then the inserted directive correctly
bounds the number of threads which concurrently access each slice in the loop.

Prerequisites for Runtime Checks The correctness of each taskshare anno-
tation should be checked for correctness to guard against human error. Changes
to i) the loop schedule or chunk size ii) the number of iterations iii) the stencil
width or iiii) the number of threads can render the assertion captured by the
directive invalid. None of these factors are required to be compile time constants
but must be loop invariant [10] so checks must be performed at runtime.

To insert checks, the variables containing the values of the four factors must
be identifiable by the compiler. The variables controlling loop schedule, iteration
count and chunk size are trivially obtained. However, the width of the stencil is,
in som cases, hard to identify at compile time.

Loops annotated with the taskshare directive must therefore adhere to three
coding rules.

6

1. Do not convert multi-dimensional arrays to one-dimensional arrays.
2. Use array indexing expressions rather than pointer arithmetic.
3. Two taskshare clauses must not contain conflicting information on the num-

ber of threads accessing a possibly aliased array slice.
The first two rules ensure that program analysis can distinguish between

accesses in different dimensions of a multi-dimensional array. The third criteria
addresses pointer-aliasing. A taskshare clause specifies the number of threads
that access an array slice. Aliasing may occur since the directive allows for the
use of pointers to specify the array.

4 Runtime Checks

To measure the performance impact of the runtime checks, a library containing
the necessary functionality was implemented. We also wrote a compiler plug-
in which inserts runtime checks of taskshare directives during compilation.
We used llvm-gcc version 2.5 with and gcc 4.2.1 which includes the libgomp
OpenMP runtime. The exact nature of the runtime checks depends on how an
OpenMP runtime implements the four different loop schedules. Our work is
specific to libgomp.

If the schedule type of the parallel loop is either static or dynamic then
the minimum slice length can be computed in constant time when the loop
begins executing. However, if the schedule is guided then the length of each
slice depends on all previously computed slices in the loop. The shortest slice is
therefore found by comparing each slice as it is computed during the execution
of the parallel loop – thus the overhead is in proportion to the number of slices.
The runtime schedule is handled similarly to guided.

In case a runtime check detects a that a directive was not satisfied, it raises
a runtime error. This implies that a task graph based on the assertions in
taskshare directives does not match observable program behavior. It is left
to the program to determine whether to continue execution or not. Runtime
errors can be avoided either by modifying the schedule clause to lengthen the
shortest slice, by modifying the directive, i.e. increasing the bound on threads
concurrently accessing an array slice, or decreasing the stencil width if possible.

Inserting Runtime Checks during Compilation Figure 3 illustrates how
the compiler transforms code annotated with an omp for directive.

The loop with a static schedule and unspecified chunk size in Fig. 3a is
transformed into Fig. 3b whereas all other types of loops corresponding to Fig.
3c are transformed to Fig. 3d. In the first case, each thread receives its slice of the
iteration space by means of a single call to loop start. In the second case, each
thread receives the initial slice from a call to loop start and subsequent slices
by calling loop next at the end of the compiler inserted loop which encapsulates
the original loop.

Our llvm-gcc plug-in adds an additional compilation step after the process-
ing of OpenMP directives as illustrated in Fig. 2. In this step, the code generated

7

1 #pragma omp for schedule(static)
2 for(i=lb;i<ub;i+=incr)
3 /* <loop body > */

1 #pragma omp for schedule (...)
2 for(i=lb;i<ub;i+=incr)
3 /* <loop body > */

a) Parallel loop with static schedule and
unspecified chunk size.

c) All other schedule choices.

1 /* slice begin , slice end */
2 long sb, se;
3 if(loop_start(
4 lb,ub,incr ,"static" ,0,&sb ,&se) {
5 for(i=sb,i<se;i+=incr)
6 /* <loop body > */
7 }
8 }
9 loop_end ();

1 /* slice begin , slice end */
2 long sb, se;
3 if(loop_start(
4 lb,ub,incr ,ls ,c,&sb ,&se)) {
5 do {
6 for(i=sb,i<se;i+=incr)
7 /* <loop body > */
8 }
9 while(loop_next (&sb ,&se));

10 }
11 loop_end ();

b) Code generated for static schedule and
default chunk size.

d) Code generated for all other
schedule choices.

Fig. 3: a-b) Translation of loop with omp for directive with schedule(static) clause
into parallel loop. c-d) Translation of loop with omp for directive for all other schedule
choices. Functions which may be replaced by wrapper functions containing runtime
checks are underlined.

from the omp for directives is identified and runtime checks are inserted for loops
annotated with the taskshare directive. When the minimal slice length can be
calculated before entering the loop, i.e. when schedule type is static or dynamic,
the call to loop start is replaced by a call to loop start wrapper. The call
performs a runtime check and then forwards the call to loop start. Otherwise
the call to loop next is replaced with a call to loop next wrapper, which per-
forms a runtime check on the length of the slice which was just processed and
forwards the call to loop next.

5 Experimental Results

We evaluate the required programming effort and how the runtime checks im-
pact execution time of three parallel OpenMP benchmarks. We also evaluate the
impact of the taskshare directive in terms of its ability to exclude dependencies
between tasks which would otherwise have been computed by program analysis.
This is only done on the first benchmark, however, as we have not been able to

source
code +

directives
instrument-

ation
execution

pass/
fail
checks

task graph
extraction

design
space

exploration

embedded
system
design

validation of directives exploitation of directives

Fig. 2: Use of the taskshare directive in an embedded system design flow. Directives
are validated by instrumenting the program and executing it to determine if all checks
pass for all relevant program inputs. The information in the directives can then be
exploited by a task graph extraction tool in preparation for the design space exploration
step.

8 Name Sequential time Relative speed-up Memory use
2 threads 4 threads

Heat diffusion 1.3781 1.9 3.1 2
Demosaicing 0.8980 1.9 3.5 221
Edge detection 0.5971 1.9 3.5 192

Table 1: Memory usage and speed-up of the benchmark applications run with static

scheduling of loops. All times are in seconds and memory consumption is in megabytes.

obtain real embedded code using stencils wider than three elements. The em-
bedded code can still be used to evaluate the runtime checks since the overhead
of each check is independent of the stencil width.

The average execution time is calculated from thirty consecutive executions.
We compare these averages with a two-sided, unpaired t-test using 95% confi-
dence intervals. To quantify the utility of the directive, we study the relative
change in the number of dependencies between a pair of tasks belonging to dif-
ferent stencil operations - e.g. tasks τ2,n and τ2,n+1 in Fig. 1. Finally, the number
of directives added in the source code is used to approximate the required pro-
gramming effort.

5.1 Experimental Set-up

All experiments were performed on a workstation with a quad-core 2.66 GHz
Intel Core i7 920 CPU and 3 GB DDR3 RAM. It had 256 KB L2 cache per
core and 8 MB shared L3 cache. The operating system was 32-bit Ubuntu Linux
9.04 with kernel version 2.6.28. The measurements we will present were obtained
using four threads but similar results were observed for experiments with one,
two and eight threads.

Only the parts of the benchmark performing parallel work and which can
contain our runtime checks are included in the execution time. The scalability
of the parallelized parts of the benchmark applications is shown in Table 1.

We used the timing-facilities included in OpenMP which, on our platform,
uses hardware cycle counters and obtains precision in the nanosecond range.
To reduce the variability between executions we disabled dynamic power and
frequency scaling, all hardware pre-fetching and simultaneous multi-threading
(Hyper-Threading) via BIOS settings. The system ran in single user mode to
reduce interference from background processes.

We have compared the quality of the code generated by llvm-gcc and gcc.
This was done to ensure that the use of the LLVM optimizer did not do a
poor job thus lowering the impact of our non-optimizable instrumentation. Our
experiments show that that code generated by llvm-gcc is consistently faster
than that of gcc. We used the optimization flag -O2 which is supported by both
compilers for all experiments.

5.2 Heat Diffusion

The heat diffusion code was used as a micro-benchmark. An omp parallel di-
rective was put before the outer loop and an omp for replaced the omp parallel
for to improve efficiency. It executes the same stencil operation iteratively for
a number of time-steps so the inserted runtime checks are exercised repeatedly.

9

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

runtim
e

static

static,2

static,4

static,8

static,16

static,64

static,256

dynam
ic,2

dynam
ic,4

dynam
ic,8

dynam
ic,16

dynam
ic,64

dynam
ic,256

guided,2

guided,4

guided,8

guided,16

guided,64

guided,256

ex
ec

u
ti

o
n

ti
m

e
in

se
co

n
d
s

loop schedule

Heat diffusion

checked
unchecked

Fig. 4: Comparison of the maximal, minimal and average running times of checked
and unchecked builds of the heat diffusion simulation with four threads and various
selections of schedule and chunk size. The labels on the x-axis refers to the schedule

clause.

The example uses a five-point stencil and thus the conservative estimate of
inter-task dependencies among two executions of the stencil operation is five.
Annotating the inner loop with a taskshare directive as shown in Listing 1.2
reduces that number to three between task pairs corresponding to a relative
improvement of 40%.

The heat diffusion simulation was run for 2000 time steps with an array of
131072 doubles. The array sizes were set such that all data structures should fit
in the CPU caches.

The running times of the heat diffusion simulation with and without run-
time checks inserted are shown in Fig. 4. There were no statistically significant
difference between the average running times of the binaries with and without
runtime checks inserted.

The executions using the dynamic schedule and small values of the chunk
size parameter have significantly higher execution times when compared to the
other executions. This is because the dynamic schedule incurs a synchronization
overhead each time a slice of iterations is mapped to a thread and the number
of slices is in inverse proportion to the chunk size for the dynamic schedule.

Fig. 4 also shows a significantly higher worst-case execution time for unin-
strumented builds for runtime and static schedules. Even when performing
two or more warm-up runs before calculating average execution times, we saw
that whichever build was executed first was also most likely to show a slightly
higher worst-case execution time.

5.3 Demosaicing

An indispensable function in digital cameras is demosaicing which interpolates
sensor data from a color filter mosaic. We used code developed for an embedded
MPSoC [20]. It only uses stencils three elements wide which is too small to
benefit from our taskshare directive but is nevertheless representative of a real

10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

runtim
e

static

static,2

static,4

static,8

static,16

static,64

static,256

dynam
ic,2

dynam
ic,4

dynam
ic,8

dynam
ic,16

dynam
ic,64

dynam
ic,256

ex
ec

u
ti

o
n

ti
m

e
in

se
co

n
d
s

loop schedule

Demosaicing

checked
unchecked

Fig. 5: Comparison of the maximal, minimal and average running times of checked and
unchecked builds of the demosaicing program with four threads and various selections
of schedule and chunk sizes.

world embedded application. Higher quality can be achieved with an algorithm
using 5x5 stencils for interpolation [21]. A 21 mega-pixel image with a resolution
of 5616x3744 pixels was used as input. The application contains three sequences
of parallel stencil operations which were annotated.

No measurements were made with the guided schedule for this application
since it triggers a known bug in the OpenMP runtime. All other results are
shown in Fig. 5. There were no statistically significant differences between the
average running times of the binaries with and without runtime checks inserted.

A slight increase in running time can be observed when increasing values of
the chunk size parameter from 16 to 64 to 256 for the static schedule type.
The effect also increases slightly when going from four to two threads. We are
currently unable to give a reason for this but speculate that we are observing
negative interference in the shared parts of the memory hierarchy, i.e., the L3
cache and memory controller.

5.4 Edge Detection

Detecting edges in an image is an important step in machine vision. We used
the edge detection implementation which is part of the UTDSP benchmarking
suite [22]. The input used consisted of 4096x4096 integer values.

The UTDSP edge detection code uses small stencils spanning only 3 elements
which again does not require a taskshare directive. However, more advanced
edge detection methods such as Canny’s edge detection use dynamically com-
puted Gaussian stencils whose width typically range from 5 to 19 elements [23].
Lacking a more advanced edge detection implementation, we annotated the
UTDSP edge detection benchmark. It contains a method with a single paral-
lel stencil operation which is called multiple times with Gaussian and Sobel
filters as input so a single taskshare directive was added.

The results are shown in Fig. 6. There were no statistically significant differ-
ences in the average execution time with and without checks inserted.

11

0

0.05

0.1

0.15

0.2

runtim
e

static

static2

static4

static8

static16

static64

static256

dynam
ic2

dynam
ic4

dynam
ic8

dynam
ic16

dynam
ic64

dynam
ic256

guided2

guided4

guided8

guided16

guided64

guided256

ex
ec

u
ti

o
n

ti
m

e
in

se
co

n
d
s

loop schedule

Edge detection

checked
unchecked

Fig. 6: Comparison of the maximal, minimal and average running times of checked
and unchecked builds of the edge detection program with four threads and various
schedules and chunk sizes.

6 Discussion and Conclusions

This paper presented a new directive to assist program analysis in comput-
ing inter-task dependencies. Specifically, it allows a reduction in the number
of assumed dependencies in task graphs representing shared memory programs
performing non-compact stencil operations. Such programs are found in embed-
ded multimedia, machine vision, signal processing applications and in scientific
computing.

Reducing the number of dependencies in task graphs i) can allow DSE tools to
find more feasible designs and prevent over-provisioning of resources and ii) lower
the running time of task scheduling algorithms whose asymptotic complexity
increase with the number of dependencies.

When the stencil is compact, the inter-task dependencies can be correctly de-
termined by program analysis. Whenever the stencil width is larger than three
or unknown at compile time, the difference in the number of inter-task depen-
dencies between the worst case and the common case grows with the number of
threads.

The impact of the proposed directive was evaluated on the heat diffusion
code, a single directive was added which results in a 40% decrease in the number
of dependencies.

The embedded programs at our disposal used only 3x3 stencils and thus
did not benefit from a taskshare directive. We argue that this is due to the
simplicity of the particular implementations and can point to algorithms which
use wider stencils to produce a higher quality output.

In none of the cases were there a statistically significant increase in the av-
erage running times due to the insertion of runtime checks. However, the low-
overhead runtime checking, presented in this paper rests on the fact that stencil
operations access data in a highly regular manner – less predictable codes will
require more elaborate runtime checks.

12

Acknowledgements This work was partially supported by HiPEAC2 and Artist-
Design, both European Union Networks of Excellence. The demosaicing example was
provided by Polytechnique Montreal and STMicroelectronics Ottawa. The research also
made use of the University of Toronto DSP Benchmark Suite, UTDSP.

References

1. Schmitz, M.T., Al-Hashimi, B.M., Eles, P.: System-Level Design Techniques for
Energy-Efficient Embedded Systems. Kluwer Academic Publishers (2004)

2. Mahadevan, S., Virk, K., Madsen, J.: ARTS: A SystemC-based framework for
multiprocessor systems-on-chip modelling. Des Autom Embed Syst 11(4) (2007)

3. Gries, M.: Methods for evaluating and covering the design space during early
design development. Integr. VLSI J. 38(2) (2004)

4. Sinnen, O.: Task Scheduling for Parallel Systems. Wiley-Interscience (May 2007)
5. Adve, V.S., Sakellariou, R.: Compiler synthesis of task graphs for parallel program

performance prediction. In: Proceedings of LCPC ’00
6. Cosnard, M., Loi, M.: Automatic task graph generation techniques. In: Proceedings

of HICSS ’95
7. Vallerio, K.S., Jha, N.K.: Task graph extraction for embedded system synthesis.

In: Proceedings of VLSID’03
8. Liu, A.H., Dick, R.P.: Automatic run-time extraction of communication graphs

from multithreaded applications. In: Proceedings of CODES+ISSS ’06, ACM
9. Ahmad, I., Kwok, Y.K., Wu, M.Y., Shu, W.: Casch: A tool for computer-aided

scheduling. IEEE Concurrency 8(4) (2000)
10. OpenMP Architecture Review Board: OpenMP application program interface,

version 3.0. Technical report (2008)
11. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming.

Addison-Wesley (2004)
12. Sarkar, V.: Partitioning and Scheduling Parallel Programs for Multiprocessors.

MIT Press (1989)
13. Yang, T., Gerasoulis, A.: DSC: Scheduling parallel tasks on an unbounded number

of processors. IEEE Trans. Parallel Distrib. Syst. 5(9) (1994)
14. Ahmad, I., Kwok, Y.K.: On parallelizing the multiprocessor scheduling problem.

IEEE Trans. Parallel Distrib. Syst. 10(4) (1999)
15. El-Rewini, H., Lewis, T.G.: Scheduling parallel program tasks onto arbitrary target

machines. J. Parallel Distrib. Comput. 9(2) (1990)
16. Larsen, P., Karlsson, S., Madsen, J.: Identifying inter-task communication in shared

memory programming models. In: Proceedings of IWOMP ’09
17. Snir, M., et al.: MPI – The Complete Reference, Vol. 1, The MPI Core, 2nd ed.

The MIT Press, Cambridge, MA, USA (1998)
18. Ha, S.: Model-based programming environment of embedded software for MPSoC.

In: Proceedings of ASP-DAC ’07
19. Bertels, K., et al.: HARTES toolchain early evaluation: Profiling, compilation and

HDL generation. In: Proceedings of FPL ’07
20. Bouchebaba, Y., et al.: MPSoC memory optimization for digital camera applica-

tions. In: Proceedings of DSD ’07
21. Li, J.S.J., Randhawa, S.: High order extrapolation using taylor series for color

filter array demosaicing. In: ICIAR ’05, Springer
22. Lee, C.G., et al.: UTDSP benchmark suite. http://www.eecg.toronto.edu/ corin-

na/DSP/infrastructure/UTDSP.html (1998) Date accessed: July 4th 2009.
23. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern

Anal. Mach. Intell. 8(6) (November 1986)

