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Abstract

This paper describes our entry for the MAP/MPE track of the PASCAL 2011
Probabilistic Inference Challenge, which placed first in all three time limit cate-
gories, 20 seconds, 20 minutes, and 1 hour. Our baseline is a branch-and-bound
algorithm that explores the AND/OR context-minimal searchgraph of a graphical
model guided by a mini-bucket heuristic. Augmented with recent advances that
convert the algorithm into an anytime scheme, that improve the heuristic power
via cost-shifting schemes, and using enhanced variable ordering schemes, it con-
stitutes one of the most powerful MAP/MPE inference methodsto date.

1 Introduction

There has been a recent tendency in the graphical models community to dismiss traditional search
algorithms as unsuitable for combinatorial optimization challenges such as MAP/MPE problems,
due to the huge search spaces inherent to these problems in most applications. Moreover, search
algorithms often advertise themselves as exact, the very idea of which often seems hopeless for real
applications. Belief propagation and sampling schemes on the other hand seem appealing due to
their modest attitude. They do not insist on an (eventual) guarantee of optimality and therefore can
sidestep the issue of combinatorially large search spaces,making them a practical alternative for
approximate inference.

However, this perception is challenged by the success of search-based solvers in competitions for
approximate reasoning [5, 6]. Success in real-world applications such as vision has also started to
emerge [18, 19]. A more nuanced view, in which both “exact” search and approximate components
such as message passing or sampling are used to complement one another is critical to achieving the
best performance.

In this paper we describe our search-based algorithm, called DAOOPT, that won first place in all
categories of the PASCAL 2011 Probabilistic Inference Challenge [6]. Through this algorithmic
example we demonstrate the relevance of complete anytime search to approximation algorithms.
The guarantee of an eventual proof of optimality is clearly another virtue of such schemes.

Our baseline algorithm is an AND/OR Branch and Bound scheme that explores the AND/OR context
minimal search space of the graphical model with the aid of a mini-bucket heuristic. This class of
algorithms has been developed over the last decade as summarized in a sequence of papers [12,
4, 3, 16, 17] and an implementation of it won 3rd place in the 2010 UAI competition [5]. The
most recent push in performance can be attributed to three central advances: (1) work boosting
the anytime capability of AND/OR depth-first search schemes[20], combined with stochastic local
search [10]; (2) to significant improvement of the mini-bucket heuristic using belief propagation and
dual decomposition views of cost-shifting [11]; and (3) enhanced, highly efficient variable ordering
schemes [14].
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(a) Primal graph. (b) Indu-
ced graph.

(c) Pseudotree. (d) AND/OR context-minimal search graph with AOBB
pruning example.

Figure 1: Example problem with six variables, induced graphalong orderingA,B,C,D,E, F ,
corresponding pseudo tree, and resulting AND/OR search graph with AOBB pruning example.

In the sequel we describe our different algorithmic components and the empirical evaluation in the
PASCAL Challenge [6].

2 Algorithm Details

We consider a MPE (Most Probable Explanation, sometimes also MAP, Maximum A Posteriori
assignment) problem over a graphical model,(X,F,D,max,

∏
) . F = {f1, . . . , fr} is a set of

functions over variablesX = {X1, . . . , Xn} with discrete domainsD= {D1, . . . , Dn} , we aim to
computemaxX

∏
i fi , the probability of the most likely assignment. The set of function scopes

implies aprimal graph and, given an ordering of the variables, aninduced graph(where, from
last to first, each node’s earlier neighbors are connected) with a certaininduced width. Another
closely related combinatorial optimization problem is theweighted constraint problem, where we
aim to minimize the sum of all costs, i.e. computeminX

∑
i fi . These tasks have many practical

applications but are known to be NP-hard in general [13].

2.1 AND/OR Search Spaces

The concept ofAND/OR search spaces has recently been introduced to graphical models to better
capture the structure of the underlying graph during search[3]. The search space is defined using a
pseudo treeof the graph, which captures problem decomposition:

DEFINITION 1. A pseudo treeof an undirected graphG = (X,E) is a directed, rooted treeT =
(X,E′) , such that every arc ofG not included inE′ is a back-arc inT , namely it connects a node
in T to an ancestor inT . The arcs inE′ may not all be included inE.

Given a graphical model instance with variablesX and functionsF its primal graph(X,E) , and
a pseudo treeT , the associatedAND/OR search treeconsists of alternating levels of OR and AND
nodes. Its structure is based on the underlying pseudo treeT : the root of the AND/OR search tree
is anOR nodelabeled with the root ofT . The children of an OR node〈Xi〉 areAND nodeslabeled
with assignments〈Xi, xj〉 that are consistent with the assignments along the path fromthe root; the
children of an AND node〈Xi, xj〉 are OR nodes labeled with the children ofXi in T , representing
conditionally independent subproblems.

Identical subproblems, identified by their context (the partial instantiation that separates the sub-
problem from the rest of the network), can be merged, yielding thecontext-minimal AND/OR search
graph [3]. It was shown that, given a pseudo treeT of heighth, the size of the AND/OR search
tree based onT is O(n · kh), wherek bounds the variables’ domain size. The context-minimal
AND/OR search graph has sizeO(n· kw) , wherew is the induced width of the problem graph along
a depth-first traversal ofT [3].
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Example. Figure 1a shows an example problem graph with six variables.Figures 1b and 1c depict
the induced graph and corresponding pseudo tree along ordering A,B,C,D,E, F , respectively.
Figure 1d shows the Resulting context-minimal AND/OR search graph (induced width 2). Note
that the AND nodes forB have two children each, representing independent subproblems and thus
demonstrating problem decomposition. Furthermore, the ORnodes forD (with context{B,C})
andF (context{B,E}) have two edges converging from the AND level above them, signifying
caching.

Given an AND/OR search spaceST , asolution subtreeSolST
is a tree such that (1) it contains the

root ofST ; (2) if a nonterminal AND noden∈ST is in SolST
then all its children are inSolST

;
(3) if a nonterminal OR noden∈ST is in SolST

then exactly one of its children is inSolST
.

2.2 AND/OR Branch-and-Bound

AND/OR Branch and Bound (AOBB) is a state-of-the-art algorithm for solving optimization prob-
lems such as max-product over graphical models. The edges ofthe AND/OR search graph can be
annotated by weights derived from the set of cost functionsF in the graphical model; finding the
optimal-cost solution subtree solves the stated optimization task.

Assuming a maximization query, AOBB traverses the weightedcontext-minimal AND/OR graph in
a depth-first manner while keeping track of the current lowerbound on the maximal solution cost.
A noden will be pruned if this lower bound exceeds a heuristic upper bound on the solution to the
subproblem belown (cf. Section 2.2.1). The algorithm interleaves forward node expansion with
a backward cost revision or propagation step that updates node values (capturing the current best
solution to the subproblem rooted at each node), until search terminates and the optimal solution has
been found [16, 17].

2.2.1 Mini-bucket Heuristics

The heuristich(n) that we use in our experiments is the mini-bucket heuristic.It is based on mini-
bucket elimination, which is an approximate variant of variable elimination and computes approxi-
mations to reasoning problems over graphical models [4]. A control parameteri allows a trade-off
between accuracy of the heuristic and its time and space requirements – higher values ofi yield a
more accurate heuristic but take more time and space to compute. It was shown that the intermediate
functions generated by the mini-bucket algorithm MBE(i) can be used to derive a heuristic function
that isadmissible, namely in a maximization context it overestimates the optimal cost solution to a
subproblem in the AND/OR search graph [12].

Example. Figure 1d contains a simple pruning example: Assume that node 〈B〉 (with context
A = 1) has a current value of 0.4, as a result of exploring its left child (AND node〈B,O〉). Given a
heuristic estimate of 0.3 for it’s right child〈B, 1〉, the respectice subproblem can safely be pruned,
since it can’t possibly lead to a better solution (recall that an admissible heuristic value provides
upper bounds in a maximization context).

2.3 Breadth-Rotating AOBB

(a) Default depth-first
subproblem processing.

(b) BRAOBB subprob-
lem rotation.

Figure 2: Illustration of subproblem rotation in
Breadth-Rotating AOBB.

As a depth-first branch and bound scheme one
would expect AOBB to quickly produce a non-
optimal solution and then gradually improve upon
it, maintaining the current best one throughout the
search. However this ability is compromised in
the context of AND/OR search.

Specifically, in AND/OR search spaces depth-
first traversal of a set of independent subproblems
will solve to completion all but one subproblem
before the last one is even considered. As a con-
sequence, the first generated overall non-optimal
solution contains conditionally optimal solutions
to all subproblems but the last one. Furthermore,
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depending on the problem structure and the com-
plexity of the independent subproblems, the time
to return even this first non-optimal overall so-
lution can be significant, practically negating the
anytime behavior of depth-first search (DFS).

Breadth-Rotating AND/OR Branch-and-Bound (BRAOBB) presents a principled extension of
plain AOBB that addresses this issue and restores the anytime behavior over AND/OR search spaces
[20]. It combines depth-rst exploration with the notion of “rotating” through different subproblems
in a breadth-rst manner. Namely, node expansion still occurs depth-rst as in standard AOBB, but
the algorithm takes turns in processing independent subproblems, each up to a given number of
operations at a time, round-robin style.

Figure 2 illustrates this concept: In Figure 2a the two subproblems on the left need to be solved to
completion before the third subproblem is considered at all. Using BRAOOBB, on the other hand,
the three independent subproblems in Figure 2b contribute to the overall solution simultaneously.

Full algorithm details and analysis are provided in [20]. Among other things, we show that the de-
sirable asymptotic memory complexity of depth-first searchis maintained despite the breadth-first
rotation over subproblems. BRAOBB is also demonstrated to provide drastically improved any-
time performance for instances with several complex subproblem, yielding better solutions sooner –
something critically important in the context of the time-limited PASCAL Inference Challenge.

2.4 Dual Decomposition and Message Passing

The mini-bucket bounding approach is equivalent to a particular dual decompositionbound, a class
of methods that have gained considerable recent popularityin the machine learning community.
Dual decomposition bounds for MAP/MPE are the dual formulation of a class of linear programming
relaxations of the original graphical model [23, 1, 21]. They can be optimized in a number of ways,
including several belief propagation-like message passing algorithms, most notably the “message
passing linear programming” (MPLP) algorithm.

Practically speaking, the literature on mini-bucket and dual decomposition bounds are quite differ-
ent. Standard mini-bucket gives a non-iterative bound; itsparameteri is typically chosen to be high
(“top-down”, as close as possible to exact inference), resulting in a relaxation with large cliques.
In contrast, most current dual decomposition approaches work on the original graph factors [8] or
incrementally add slightly larger cliques such as cycles ina “bottom-up” fashion [22, 15].

In our implementation, we use cliques generated using standard mini-bucket approaches, but make
use of message passing updates to improve the bound. In constraint satisfaction literature, these
updates are often calledcost shifting[1]. Since message passing is fastest on models with small
cliques, like existing bottom-up approaches we first pass messages on the original graph, stopping
after a time limit or convergence. We then find the largesti whose mini-bucket representation will fit
in memory. We create an intermediate join-graph with cliquesizei/2 using mini-buckets, and again
tighten the bound using message passing. Finally, we createa single-pass mini-bucket heuristic of
sizei, performing a “max-marginal matching” update that is equivalent to a single round of message
passing, but requires no more memory than standard mini-bucket [11].
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Figure 3: Example histogram of induced widths
produced by 20,000 minfill iterations with ran-
dom tie-breaking.

Our approach inherits the advantage both of large
cliques (from mini-buckets) and of iterative im-
provements (from message passing). Many prac-
tical questions, however, such as the correct bal-
ance between quickly identifying large cliques
(like mini-buckets) or using energy-based heuris-
tics to identify the most important cliques (like
cycle pursuit [22]) remain open.

2.5 Enhanced Variable Ordering Scheme

As an algorithm exploring the AND/OR context-
minimal search graph, the asympotitic time com-
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20 seconds 20 minutes 1 hour
1. MPLP on input graph 2 sec 30 sec / 500 iter 60 sec / 2000 iter
2. Stochastic Local search 2×2 sec 10×6 sec 20×10 sec
3. Iterative variable ordering 3 sec / 500 iter 60 sec / 10000 iter 180 sec / 30000 iter
4. MPLP on join graph 2 sec 30 sec / 250 iter 60 sec / 1000 iter
5. Mini-buckets + MM i = 15, max 125MB i = 25, max 4GB i = 35, max 4GB
6. BRAOBB to completion or until timeout

Table 1: Algorithm parameters for different time limits. Steps are limited by execution time and
max. number of iterations (whichever comes first), or in the case of mini-buckets with momemt
matching, the largesti-bound that can fit within the given memory limit (4GB limit dictated by
competition environment).

plexity of AOBB (and BRAOBB) isO(n · kw),
i.e., exponential in the induced widthw along a
given variable ordering (cf. Section 2.1 and [16, 20]). Hence, having orderings that yield small
induced width is of central importance, yet for a given problem instance finding an ordering with the
lowest possible width is known to be NP-hard. One therefore often relies on heuristics likemin-fill
andmin-degree, which have proven to yield good results in practice.

These greedy schemes can have significant variance in terms of the orderings they produce, as Figure
3 illustrates by plotting a histogram of induced widths over20,000 orderings produced by min-fill
with simple random tie-breaking for a single problem instance (also shown is the variance in state
space size, i.e., the product of variable domain sizes at each level in the resulting AND/OR search
graph). We thus take the approach of iteratively running these ordering heuristics with the following
key enhancements [14]:

• Highly efficient implementation with optimized data structures, to allow many times more
iterations;

• Early detection of redundant iterations with unpromising results;

• Stochasticity in the greedy process, to encourage discovery of a more diverse set of order-
ings.

The last point goes beyond simple tie-breaking, but insteadallows the algorithm to deviate from the
heuristically best choice with a certain probability through random “pooling”. The details of this
scheme and its optimizations were developed in [14]. An extensive empirical evaluation showed
impressive results, both in terms of speedup over previous implementations as well as the quality of
the orderings returned.

2.6 Stochastic Local Search

Stochastic local search (SLS) is a general, poweful paradigm, which in the context of optimization
problems, can can often find good solutions quickly. It contract to exhaustive search like AOBB,
however, SLS is incomplete in the sense that it can never prove optimality. In our competition entry,
several rounds of SLS are thus used as a preprocessing step toprovide a first solution quickly, which
is then also provided as an initial bound to BRAOBB.

In particular, we adapted open-source code by Frank Hutter that implementsGuided Local Search+
(GLS+) [9]. This particular variant of dynamic local searchcombines greedy hill-climbing with a
penalty mechanism for local optima, to make these configurations less desirable going forward. Its
effectiveness for MPE problem has been demonstrated empirically [10].

2.7 Putting it All Together

Our competitionDAOOPTentry was comprised of a combination of all of the above components.
Table 1 outlines the order in which they were executed, as well as their runtime allocation for the
three different time limits that were evaluated.
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20 seconds 20 minutes 1 hour
Category daoopt ficolofo daoopt ficolofo daoopt ficolofo
CSP -0.9123 -0.8669 -0.8739 -0.7862 -0.8442 -0.6958
Deep belief networks - - -1.6286 -1.6342 -5.0470 -5.1707
Grids -0.3403 -0.3210 -0.2437 -0.2241 -0.1721 -0.1590
Image alignment 0.0000 0.0000 -0.0006 -0.0006 -0.0006 -0.0006
Medical diagnosis -0.0028 -0.0046 -0.0037 -0.0043 -0.0041 -0.0043
Object detection -4.8201 -4.8287 -4.8237 -4.8743 -1.9368 -1.9628
Protein folding -0.0308 -0.0308 -0.1135 -0.1187 -0.1146 -0.1183
Protein protein interaction - - -0.1341 -0.1317 -0.1681 -0.1744
Relational 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Segmentation -0.0300 -0.0300 -0.0300 -0.0300 -0.0338 -0.0338
Overall -6.1364 -6.0819 -7.8519 -7.8041 -8.3214 -8.3196

Table 2: Final MPE results as reported on the competition website [6]. Shown are, for each of
the three timelimits, per-domain scores (averaged across instances) and overall scores (sum over all
domains). Lower scores are better.

3 Overview of Results

To compare performance of different solvers in the PASCAL Challenge, each solver was run on
a variety of problem instances by the organizers, the outputwas recorded, and a scoring metric
computed. For the MPE track, the score is defined as the relative improvement over a common
asynchronous belief propagation baseline and a “default” solution (chosen to maximize only the
unary functions). More specifically, denote withxs = xs

1
, . . . , xs

n the solution of the solver in
question,xbp = xbp

1
, . . . , xbp

n andxdef = xdef
1

, . . . , xdef
n the baseline belief propagation and default

solution, respectively, andE(x) = −
∑

j log fj(x) theenergyof a given solution. The score ofxs

is then defined as follows:

Score(xs) =
E(xs)−min{E(xbp), E(xdef )}

|min{E(xbp), E(xdef )}|

Table 2 lists the final competition results as published on the official website [6]. We include our
solverdaooptas well the runner-upficolofo, which interleaves variable neighborhood search and
exact search, limited to varying subspaces, with soft arc consistency / constraint propagation [2, 7].

The results in Table 2 show that the final overall results werequite close (in fact, in the final weeks of
the competition the scoreboard leaders changed several times, as the solvers got tweaked and bugs
got ironed out). In particular, for the 1 hour category the difference in overall score is only 0.0018.
In general we note that the results are somewhat balanced, with both solvers having a slight edge in
certain problem classes. Noteworthy, however, is the largeadvantage that daoopt seems to have in
the CSP domain. Looking at the per-instance results (available online), this advantage seems to be
due to only a handful of instances where daoopt returned a vastly better solution than ficolofo.

More detailed analysis of the results, regarding the notable CSP instances as well as other cases,
necessitates access to the actual input files. This is not yetavailable but has been announced for the
future by the competition organizers.

4 Summary

We have described DAOOPT, our submission to the 2011 PASCAL Probabilistic Inference Chal-
lenge that won all three categories of the MAP/MPE track. Itssuccess challenges the notion that
“traditional”, complete search algorithms are of little practical relevance in today’s applications,
compared to dedicated approximate inference schemes. On the contrary, the outcome of the compe-
tition indicates that powerful techniques form both ends ofthe spectrum can be combined efficiently
to yield unrivaled performance.

Source Code. The C++ source code of BRAOBB is available under GPL license at http://
github.com/lotten/daoopt .
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