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Abstract

This paper describes our entry for the MAP/MPE track of the&S€AL 2011
Probabilistic Inference Challenge, which placed first inttalee time limit cate-
gories, 20 seconds, 20 minutes, and 1 hour. Our baselinersnatzand-bound
algorithm that explores the AND/OR context-minimal seagcdiph of a graphical
model guided by a mini-bucket heuristic. Augmented withergcadvances that
convert the algorithm into an anytime scheme, that improeehteuristic power
via cost-shifting schemes, and using enhanced variabkriogischemes, it con-
stitutes one of the most powerful MAP/MPE inference methodsate.

1 Introduction

There has been a recent tendency in the graphical models woitynto dismiss traditional search
algorithms as unsuitable for combinatorial optimizatidraltenges such as MAP/MPE problems,
due to the huge search spaces inherent to these problemsstrapmications. Moreover, search
algorithms often advertise themselves as exact, the vegyaflwhich often seems hopeless for real
applications. Belief propagation and sampling schemeserother hand seem appealing due to
their modest attitude. They do not insist on an (eventuadygpuotee of optimality and therefore can
sidestep the issue of combinatorially large search spawaking them a practical alternative for
approximate inference.

However, this perception is challenged by the success otlsdrmsed solvers in competitions for
approximate reasoning [5, 6]. Success in real-world appbos such as vision has also started to
emerge [18, 19]. A more nuanced view, in which both “exactrsh and approximate components
such as message passing or sampling are used to complereartather is critical to achieving the
best performance.

In this paper we describe our search-based algorithm,ccBIROOPT, that won first place in all
categories of the PASCAL 2011 Probabilistic Inference @mage [6]. Through this algorithmic
example we demonstrate the relevance of complete anytiarets¢éo approximation algorithms.
The guarantee of an eventual proof of optimality is clearigther virtue of such schemes.

Our baseline algorithm is an AND/OR Branch and Bound schéatestxplores the AND/OR context
minimal search space of the graphical model with the aid ofra-bucket heuristic. This class of
algorithms has been developed over the last decade as simadhar a sequence of papers [12,
4, 3, 16, 17] and an implementation of it won 3rd place in th@RQAI competition [5]. The
most recent push in performance can be attributed to thregateadvances: (1) work boosting
the anytime capability of AND/OR depth-first search schef@8} combined with stochastic local
search [10]; (2) to significant improvement of the mini-betckeuristic using belief propagation and
dual decomposition views of cost-shifting [11]; and (3) anbed, highly efficient variable ordering
schemes [14].
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(a) Primal graph. (b) Indu- (c)Pseudotree. (d) AND/OR context-minimal search graph with AOBB
ced graph. pruning example.

Figure 1: Example problem with six variables, induced grafiing orderingA, B,C, D, E, F,
corresponding pseudo tree, and resulting AND/OR seargihgréth AOBB pruning example.

In the sequel we describe our different algorithmic compdmand the empirical evaluation in the
PASCAL Challenge [6].

2 Algorithm Details

We consider a MPE (Most Probable Explanation, sometimes MI&P, Maximum A Posteriori
assignment) problem over a graphical modeX, F, D, max,[[). F = {f1,..., -} is a set of
functions over variableX = { X}, ..., X,,} with discrete domain® ={D,,..., D, }, we aim to
computemaxx [[, fi, the probability of the most likely assignment. The set ofdiion scopes
implies aprimal graphand, given an ordering of the variables, iaduced graph(where, from
last to first, each node’s earlier neighbors are connectétth) avcertaininduced width Another
closely related combinatorial optimization problem is tixeighted constraint problenwhere we
aim to minimize the sum of all costs, i.e. computénx > . f;. These tasks have many practical
applications but are known to be NP-hard in general [13].

2.1 AND/OR Search Spaces

The concept 0AND/OR search spaces has recently been introduced to graphical models to better
capture the structure of the underlying graph during se@ictrhe search space is defined using a
pseudo tre®f the graph, which captures problem decomposition:

DEFINITION 1. A pseudo tre®f an undirected graplez = (X, E) is a directed, rooted tre§ =
(X, E"), such that every arc df not included inE’ is a back-arc in7 , namely it connects a node
in 7 to an ancestor itV . The arcs inE” may not all be included itf.

Given a graphical model instance with variablésand functionsF' its primal graph(X, E) , and

a pseudo tre§, the associatedND/OR search treeonsists of alternating levels of OR and AND
nodes. Its structure is based on the underlying pseuddttethe root of the AND/OR search tree
is anOR noddabeled with the root of . The children of an OR nodgX;) areAND nodedabeled
with assignment$éX;;, z;) that are consistent with the assignments along the pathtfienoot; the
children of an AND nodéX;, ;) are OR nodes labeled with the childrenXfin 7, representing
conditionally independent subproblems.

Identical subproblems, identified by their context (thetiphinstantiation that separates the sub-
problem from the rest of the network), can be merged, yigltirecontext-minimal AND/OR search
graph [3]. It was shown that, given a pseudo trgeof heighth, the size of the AND/OR search
tree based off is O(n - k"), wherek bounds the variables’ domain size. The context-minimal
AND/OR search graph has sizgn- k™) , wherew is the induced width of the problem graph along
a depth-first traversal of [3].



Example. Figure 1a shows an example problem graph with six varialflggires 1b and 1c depict
the induced graph and corresponding pseudo tree alongimgdér B, C, D, E, F', respectively.
Figure 1d shows the Resulting context-minimal AND/OR skagraph (induced width 2). Note
that the AND nodes foB have two children each, representing independent sulmrsband thus
demonstrating problem decomposition. Furthermore, thenOdRes forD (with context{ B, C})
and F' (context{B, E'}) have two edges converging from the AND level above themifsimg
caching.

Given an AND/OR search spadg-, asolution subtreeSol s, is a tree such that (1) it contains the
root of S (2) if a nonterminal AND node: € S is in Solg., then all its children are it¥ols., ;
(3) if a nonterminal OR node € St is in Solg, then exactly one of its children is iflols., .

2.2 AND/OR Branch-and-Bound

AND/OR Branch and Bound (AOBB) is a state-of-the-art algorithm for solving optiration prob-
lems such as max-product over graphical models. The edgbe &ND/OR search graph can be
annotated by weights derived from the set of cost functibria the graphical model; finding the
optimal-cost solution subtree solves the stated optincindaask.

Assuming a maximization query, AOBB traverses the weigltatdext-minimal AND/OR graph in

a depth-first manner while keeping track of the current lob@rnd on the maximal solution cost.
A noden will be pruned if this lower bound exceeds a heuristic uppmma on the solution to the
subproblem below: (cf. Section 2.2.1). The algorithm interleaves forward e@stpansion with

a backward cost revision or propagation step that updatés walues (capturing the current best
solution to the subproblem rooted at each node), until earminates and the optimal solution has
been found [16, 17].

2.2.1 Mini-bucket Heuristics

The heuristich(n) that we use in our experiments is the mini-bucket heuristis. based on mini-
bucket elimination, which is an approximate variant of ahte elimination and computes approxi-
mations to reasoning problems over graphical models [4]o#trol parametet allows a trade-off
between accuracy of the heuristic and its time and spacéreagents — higher values afyield a
more accurate heuristic but take more time and space to demipwas shown that the intermediate
functions generated by the mini-bucket algorithm MBE@n be used to derive a heuristic function
that isadmissible namely in a maximization context it overestimates theroaticost solution to a
subproblem in the AND/OR search graph [12].

Example. Figure 1d contains a simple pruning example: Assume thaé fdJ (with context

A = 1) has a current value of 0.4, as a result of exploring its leldoAND node(B, O)). Given a
heuristic estimate of 0.3 for it's right chil@B, 1), the respectice subproblem can safely be pruned,
since it can't possibly lead to a better solution (recall thia admissible heuristic value provides
upper bounds in a maximization context).

2.3 Breadth-Rotating AOBB

As a depth-first branch and bound scheme one
would expect AOBB to quickly produce a non-
optimal solution and then gradually improve upon
it, maintaining the current best one throughout the
search. However this ability is compromised in
the context of AND/OR search.

Specifically, in AND/OR search spaces depth-
first traversal of a set of independent subproblems
will solve to completion all but one subproblem
before the last one is even considered. As a co

. . processing J
sequence, the first generated overall non-optim ¥
solution contains conditionally optimal solutionSggiyeq optimally rotate
to all subproblems but the last one. Furthermoreia) Default depth-first (b) BRAOBB subprob-
subproblem processing. lem rotation.

3 Figure 2: lllustration of subproblem rotation in
Breadth-Rotating AOBB.



depending on the problem structure and the com-
plexity of the independent subproblems, the time
to return even this first non-optimal overall so-
lution can be significant, practically negating the
anytime behavior of depth-first search (DFS).

Breadth-Rotating AND/OR Branch-and-Bound (BRAOBB) presents a principled extension of
plain AOBB that addresses this issue and restores the ampiimavior over AND/OR search spaces
[20]. It combines depth-rst exploration with the notion obtating” through different subproblems

in a breadth-rst manner. Namely, node expansion still @cdepth-rst as in standard AOBB, but
the algorithm takes turns in processing independent sbhgrts, each up to a given number of
operations at a time, round-robin style.

Figure 2 illustrates this concept: In Figure 2a the two sabfams on the left need to be solved to
completion before the third subproblem is considered atlding BRAOOBB, on the other hand,
the three independent subproblems in Figure 2b contrilouteet overall solution simultaneously.

Full algorithm details and analysis are provided in [20]. éug other things, we show that the de-
sirable asymptotic memory complexity of depth-first seasctmaintained despite the breadth-first
rotation over subproblems. BRAOBB is also demonstratedréwige drastically improved any-
time performance for instances with several complex suiipro, yielding better solutions sooner —
something critically important in the context of the timeted PASCAL Inference Challenge.

2.4 Dual Decomposition and M essage Passing

The mini-bucket bounding approach is equivalent to a paleicual decompositiobound, a class
of methods that have gained considerable recent popularitye machine learning community.
Dual decomposition bounds for MAP/MPE are the dual formaiadf a class of linear programming
relaxations of the original graphical model [23, 1, 21]. ¥lean be optimized in a number of ways,
including several belief propagation-like message pasalgorithms, most notably the “message
passing linear programming” (MPLP) algorithm.

Practically speaking, the literature on mini-bucket andlalecomposition bounds are quite differ-
ent. Standard mini-bucket gives a non-iterative boundyatsmetey is typically chosen to be high
(“top-down”, as close as possible to exact inference),ltieguin a relaxation with large cliques.
In contrast, most current dual decomposition approachek wothe original graph factors [8] or
incrementally add slightly larger cliques such as cycles hottom-up” fashion [22, 15].

In our implementation, we use cliques generated using atdndini-bucket approaches, but make
use of message passing updates to improve the bound. Iraiohsatisfaction literature, these
updates are often callezbst shifting[1]. Since message passing is fastest on models with small
cligues, like existing bottom-up approaches we first passsages on the original graph, stopping
after a time limit or convergence. We then find the largeghose mini-bucket representation will fit

in memory. We create an intermediate join-graph with cligizei/2 using mini-buckets, and again
tighten the bound using message passing. Finally, we ceesitegle-pass mini-bucket heuristic of
sizei, performing a “max-marginal matching” update that is eglént to a single round of message
passing, but requires no more memory than standard mirkieb{it1].

Our approach inherits the advantage both of large
cligues (from mini-buckets) and of iterative im- 5
provements (from message passing). Many prac§ 1600 |
tical questions, however, such as the correct balg
ance between quickly identifying large cliquess
(like mini-buckets) or using energy-based heuris-2 4 ¢
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2.5 Enhanced Variable Ordering Scheme Width w

As an algorithm exploring the AND/OR contextFigure 3: Example histogram of induced widths
minimal search graph, the asympotitic time conproduced by 20,000 minfill iterations with ran-
dom tie-breaking.
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20 seconds 20 minutes 1 hour
1. MPLP on input graph 2 sec 30 sec /500 iter| 60 sec /2000 iter
2. Stochastic Local search 2x2 sec 10x6 sec 20x10 sec
3. Iterative variable ordering 3 sec /500 iter | 60 sec /10000 iter 180 sec / 30000 iter
4. MPLP on join graph 2 sec 30 sec/250iter| 60 sec/1000 iter
5. Mini-buckets + MM 1 =15, max 125MB| ¢ = 25, max 4GB | i = 35, max 4GB
6. BRAOBB to completion or until timeout

Table 1: Algorithm parameters for different time limits.ef$ are limited by execution time and
max. number of iterations (whichever comes first), or in theecof mini-buckets with momemt
matching, the largestbound that can fit within the given memory limit (4GB limitaiated by
competition environment).

plexity of AOBB (and BRAOBB) isO(n - k%),

i.e., exponential in the induced width along a

given variable ordering (cf. Section 2.1 and [16, 20]). Henltaving orderings that yield small
induced width is of central importance, yet for a given pesblinstance finding an ordering with the
lowest possible width is known to be NP-hard. One therefftenaelies on heuristics likenin-fill
andmin-degreewhich have proven to yield good results in practice.

These greedy schemes can have significant variance in téthresarderings they produce, as Figure
3 illustrates by plotting a histogram of induced widths 0287000 orderings produced by min-fill
with simple random tie-breaking for a single problem ins&falso shown is the variance in state
space size, i.e., the product of variable domain sizes &t leael in the resulting AND/OR search
graph). We thus take the approach of iteratively runningeéh@dering heuristics with the following
key enhancements [14]:

e Highly efficient implementation with optimized data struiets, to allow many times more
iterations;

o Early detection of redundant iterations with unpromisiaguits;

e Stochasticity in the greedy process, to encourage disg@fex more diverse set of order-
ings.

The last point goes beyond simple tie-breaking, but insédlad/s the algorithm to deviate from the
heuristically best choice with a certain probability thgburandom “pooling”. The details of this

scheme and its optimizations were developed in [14]. Anrestte empirical evaluation showed
impressive results, both in terms of speedup over previopgementations as well as the quality of
the orderings returned.

2.6 Stochastic Local Search

Stochastic local search (SLS) is a general, poweful panadighich in the context of optimization
problems, can can often find good solutions quickly. It cacttto exhaustive search like AOBB,
however, SLS is incomplete in the sense that it can neveemptimality. In our competition entry,
several rounds of SLS are thus used as a preprocessing steite a first solution quickly, which
is then also provided as an initial bound to BRAOBB.

In particular, we adapted open-source code by Frank Hitétiimplement&uided Local Search+
(GLS+) [9]. This particular variant of dynamic local sea@mbines greedy hill-climbing with a
penalty mechanism for local optima, to make these configuraiess desirable going forward. Its
effectiveness for MPE problem has been demonstrated eraibhyr[10].

2.7 Putting it All Together

Our competitionDAOOPT entry was comprised of a combination of all of the above camepts.
Table 1 outlines the order in which they were executed, atasetheir runtime allocation for the
three different time limits that were evaluated.



20 seconds 20 minutes 1 hour

| Category [ daoopt ficolofo| daoopt ficolofo| daoopt ficolofo
CSP -0.9123 -0.8669]| -0.8739 -0.7862[ -0.8442 -0.6958
Deep belief networks - - | -1.6286 -1.6342 | -5.0470 -5.1707
Grids -0.3403 -0.3210| -0.2437 -0.2241| -0.1721 -0.1590
Image alignment 0.0000 0.0000 -0.0006 -0.0006 -0.0006 -0.0006
Medical diagnosis -0.0028 -0.0046 | -0.0037 -0.0043 | -0.0041 -0.0043
Object detection -4.8201 -4.8287 | -4.8237 -4.8743 | -1.9368 -1.9628
Protein folding -0.0308 -0.0308 -0.1135 -0.1187 | -0.1146 -0.1183
Protein protein interaction - - 1 -0.1341 -0.1317| -0.1681 -0.1744
Relational 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Segmentation -0.0300 -0.0300 -0.0300 -0.0300 -0.0338 -0.0338
Overall -6.1364 -6.0819| -7.8519 -7.8041| -8.3214 -8.3196

Table 2: Final MPE results as reported on the competitionsitelj6]. Shown are, for each of
the three timelimits, per-domain scores (averaged acnssarices) and overall scores (sum over all
domains). Lower scores are better.

3 Overview of Results

To compare performance of different solvers in the PASCAlaliginge, each solver was run on
a variety of problem instances by the organizers, the out@s recorded, and a scoring metric
computed. For the MPE track, the score is defined as thevelmtiprovement over a common
asynchronous belief propagation baseline and a “defaaltition (chosen to maximize only the
unary functions). More specifically, denote wiiti = z7,...,z? the solution of the solver in
questionz?? = 2%, ... 2P andzef = z{¢/ ... 29/ the baseline belief propagation and default
solution, respectively, anfl(z) = — Zj log f;(«) theenergyof a given solution. The score af

is then defined as follows:

E(x®) — min{E(2'?), E(z%f)}
| min{E(z"?), E(x9/)}
Table 2 lists the final competition results as published endfficial website [6]. We include our

solverdaooptas well the runner-uficolofo, which interleaves variable neighborhood search and
exact search, limited to varying subspaces, with soft ansistency / constraint propagation [2, 7].

Score(z®) =

The results in Table 2 show that the final overall results weite close (in fact, in the final weeks of
the competition the scoreboard leaders changed sevees,tas the solvers got tweaked and bugs
got ironed out). In particular, for the 1 hour category thifedénce in overall score is only 0.0018.
In general we note that the results are somewhat balanc#dbueth solvers having a slight edge in
certain problem classes. Noteworthy, however, is the latdyantage that daoopt seems to have in
the CSP domain. Looking at the per-instance results (dleilanline), this advantage seems to be
due to only a handful of instances where daoopt returnedtiy\mster solution than ficolofo.

More detailed analysis of the results, regarding the net&l$P instances as well as other cases,
necessitates access to the actual input files. This is natvgéable but has been announced for the
future by the competition organizers.

4 Summary

We have described DAOOPT, our submission to the 2011 PASOababilistic Inference Chal-
lenge that won all three categories of the MAP/MPE track.sitscess challenges the notion that
“traditional”, complete search algorithms are of littleaptical relevance in today’s applications,
compared to dedicated approximate inference schemes.e@ottrary, the outcome of the compe-
tition indicates that powerful techniques form both endthefspectrum can be combined efficiently
to yield unrivaled performance.

Source Code. The C++ source code of BRAOBB is available under GPL licertseta p: / /
gi t hub. com' | ot t en/ daoopt .
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