
Improving Secure Server Performance by Re-balancing SSL/TLS Handshakes

Claude Castelluccia
INRIA

Zirst - 655 avenue de l’Europe
38334 Saint Ismier Cedex

France
Claude.Castelluccia@inria.fr

Einar Mykletun, Gene Tsudik
Computer Science

University of California, Irvine
Irvine, CA 92697-3425

USA
{mykletun,gts}@ics.uci.edu

ABSTRACT
Much of today’s distributed computing takes place in a client
/server model. Despite advances in fault tolerance – in par-
ticular, replication and load distribution – server overload
remains to be a major problem. In the Web context, one
of the main overload factors is the direct consequence of ex-
pensive Public Key operations performed by servers as part
of each SSL handshake. Since most SSL-enabled servers
use RSA, the burden of performing many costly decryption
operations can be very detrimental to server performance.
This paper examines a promising technique for re-balancing
RSA-based client/server handshakes. This technique facil-
itates more favorable load distribution by requiring clients
to perform more work (as part of encryption) and servers to
perform commensurately less work, thus resulting in better
SSL throughput. Proposed techniques are based on careful
adaptation of variants of Server-Aided RSA originally
constructed by Matsumoto, et al. [1]. Experimental re-
sults demonstrate that suggested methods (termed Client-
Aided RSA) can speed up processing of RSA private key
operations by a factor of between 11 to 19, depending on the
RSA key size. This represents a considerable improvement.
Furthermore, proposed techniques can be a useful compan-
ion tool for SSL Client Puzzles in defense against DoS and
DDoS attacks.

Keywords: Load-balancing, Server-Aided RSA, Denial-of-
Service, Server-Aided Secure Computation, Client Puzzles,
Hardware Accelerators

1. INTRODUCTION
Much of today’s distributed computing takes place in a

client/server setting. Server overload, whether due to an
on-slaught of legitimate client requests or a Denial-of-Service
(DoS) attack, is common occurrence in modern client/server
environments, such as the Web. Typically, a server becomes
swamped under a flood of simultaneous or closely spaced
requests, each requiring it to perform some costly computa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’06, March 21–24, 2006, Taipei, Taiwan.
Copyright 2006 ACM 1-59593-272-0/06/0003 ...$5.00.

tion, e.g., decrypt a key purportedly encrypted by a client.
Techniques for graceful service degradation have been stud-

ied in the past and implemented in real-world servers. Traf-
fic management and congestion control literature offers nu-
merous methods for mitigating traffic spikes in routers. Also,
advances in fault tolerance – in particular, replication and
load distribution – have been very beneficial to Web servers.
However, DoS attacks are not thwarted by such measures
since their central goal is to deny service to legitimate clients.
Moreover, server overload can occur for reasons other than
hostile attacks, e.g., a large number of concurrent benign
client requests can still overwhelm a popular server. This
can result in server crashes or in denial-of-service to clients
who are literally left hanging or presented with a familiar
“server busy” message.

Scope of Paper: In this paper, we explore one possible ap-
proach to alleviating server load in the Web setting. Specif-
ically, we target SSL/TLS client-server handshakes and fo-
cus on altering the computational balance (and burden) be-
tween SSL clients and servers. This paper makes a con-
tribution by investigating so-called Server-Aided RSA (SA-
RSA) techniques as a way of reducing server overload1. SA-
RSA was originally proposed as a way to reduce load on
small devices (primarily smartcards) by farming out some
heavy-weight cryptographic computation to more powerful
servers – host computers equipped with smartcard readers.
We adapt SA-RSA to the SSL/TLS setting by re-assigning
the roles: SSL clients become “servers” in SA-RSA par-
lance and overloaded SSL servers become “weak clients”.
The resultant Client-Aided RSA (CA-RSA) turns out to be
very effective, achieving private-key computation speed-ups
of between 11 and 19 times over plain RSA, for RSA mod-
uli varying between 1024 and 2048 bits, resulting in SSL
speed-ups of between 2.12 and 2.22, respectively.

From the outset, we note that there are alternative tech-
niques for speeding up, or reducing load on, SSL/TLS servers,
such as employing Elliptic Curve-based cryptosystems. How-
ever, we believe that, in the near future, the well-known
and time-tested RSA cryptosystem will continue to domi-
nate in SSL/TLS handshake protocol. Therefore, this pa-
per focuses on improving SSL/TLS performance assuming
the use of RSA. (Other relevant approaches and techniques,
e.g., cryptographic hardware accelerators, are discussed in
Section 5.)

1Contrary to “popular belief”, our proposed solution is not
subject to the meet-in-the-middle attack proposed in [2]

Client SSL Server

rc, cipher-specs client hello

−−−−−−−−−−−−−−−−−→

server hello rs, cipherspecs

←−−−−−−−−−−−−−−−−

x ∈R {0, 1}48

k = f(x, rc, rs)
y = xe (mod n) client key exchange

−−−−−−−−−−−−−−−−→

x = yd (mod n)
k = f(x, rc, rs)

server finish

←−−−−−−−−−−−−−−−−

Figure 1: The SSL handshake

Organization of Paper: The rest of the paper is orga-
nized as follows. Section 2 overviews SSL/TLS and mo-
tivates our work. Section 3 describes our SSL extension,
Client-Aided RSA, for speeding up performance of secure
servers and presents performance results. Section 4 extends
our protocol to protect against DoS attacks. Related work
is reviewed in section 5 and section 6 concludes the paper.

2. OVERVIEW OF SSL/TLS
This section describes the SSL/TLS handshake protocol

[3]. In the remainder of the paper, the term“SSL” is used
to refer to both SSL and TLS standards. SSL is the most
widely used protocol to ensure secure communication over
the Internet. It is typically employed by web servers to pro-
tect electronic transactions. SSL uses the RSA cryptosys-
tem during an initial client/server handshake to establish a
shared symmetric key for use during an SSL session2.

2.1 SSL Handshake Protocol Description
The simplest version of the SSL handshake (key-establishment)

protocol is shown in figure 1 and consists of two communi-
cation rounds that contain the following messages and com-
putations:

1. Client sends a “client hello” message to server. This
indicates that client wants to initialize a SSL/TLS ses-
sion and the message includes the cipher suites client
supports and a random nonce rc.

2. Server responds with a “server hello” message that
includes server’s public-key certificate and a random
nonce rs. It also specifies server’s choice of cipher suite
from among client’s candidates.

3. Client chooses a secret random 48-byte3 pre-master
secret x and computes the shared master secret k by
inputting values x, rc, rs into hash function f . It then

2Diffie-Hellman is also supported, at least, according to SSL
specifications. However, neither Microsoft nor Netscape of-
fer browser support for non-RSA certificates [4].
3Actually, only 46 of the 48 bytes are random. The other 2
bytes contain the SSL version number.

encrypts x with the server’s RSA public key and at-
taches the ciphertext to a “client key exchange” mes-
sage that is sent to server.

4. Server decrypts the pre-master secret using its private
RSA key, and uses it to compute the shared master se-
cret as f(x, rc, rs). To conclude the handshake, server
sends a “server finished” message that includes a keyed
hash of all handshake messages.

The most computationally expensive step in the SSL hand-
shake protocol is the server’s RSA private-key decryption.
Critical web servers often employ expensive cryptographic
hardware to speed-up the decryption process, enabling them
to handle more simultaneous SSL handshake requests, and,
thereby, more SSL connections. Hardware accelerators and
other techniques for speeding up RSA decryptions are dis-
cussed in section 5.

2.2 Computational Imbalance
As noted above, the goal of the SSL/TLS handshake is

the establishment of a shared client-server key. The most
important component of this process is the client’s encryp-
tion of a (randomly selected) key under the server’s RSA
public key. The ciphertext is then transmitted to the server
which decrypts it and extracts the key. The core of the
over-exertion problem is the RSA decryption operation.

RSA is a mature, well-studied and nearly ubiquitous pub-
lic key encryption method [5]. However, many (perhaps
even most) implementations of RSA encryption are compu-
tationally lopsided: they use small public exponents, such
as: 3, 17, and 216 + 1. As a result, RSA encryption is
relatively cheap, requiring only a few modular multiplica-
tions, whereas, corresponding decryption is expensive as it
requires a full-blown exponentiation with the private expo-
nent (d). We note that decryption remains expensive even
if the well-known CRT (Chinese Remainder Theorem) tech-
nique is used to speed it up. This imbalanced arrangement
is clearly beneficial for computationally challenged clients,
however, it is detrimental to server’s connection throughput
and general availability.

One possible solution to correct the imbalance is to select
the private exponent d to be small, thereby speeding up de-
cryption. However, choosing too small of a value leads to

RSA becoming insecure, as shown in [6]. Therefore the per-
formance improvement provided by this solution is limited.

A more drastic approach is to alter the underlying key
establishment protocol to have the server generate and en-
crypt the session key, thus shifting the decryption burden
to the client. Besides being a radical change, this would ne-
cessitate a client first supplying an RSA public key to the
server. If the client’s public key is uncertified, the server
would need to perform a public key encryption without ver-
ifying the supplied public key. This, once again, presents an
opportunity for DoS attacks. To require all clients’ public
keys to be certified is a major burden for clients. Moreover,
the server would need to verify a certificate chain for each
connection which is an expensive proposition.

However, the main problem with the above approach is
that the server would still need to be authenticated. Recall
that the key establishment in SSL/TLS serves a dual pur-
pose: in addition to securely transporting a client-selected
key to the server, the protocol implicitly authenticates the
server. The latter would be lost if the server encrypts the
session key for the client; unless, of course, the server signs
something which brings us right back to the computational
imbalance issue.

3. CLIENT-AIDED RSA
The purpose of the above discussion is to motivate tech-

niques for re-balancing the lopsidedness of RSA decryption
and, as a result, speeding up decryption operations on the
server side. To do so, we focus on the well-known general
technique of Server-Aided Secret Computation (SASC) and
Server-Aided RSA (SA-RSA), in particular. The original
idea of Server-Aided RSA is due to Matsumoto, et al. [1].
Its prime motivation is to off-load expensive RSA signature
computation from a weak device (such as a smartcard) to a
powerful-but-untrusted server, without exposing any infor-
mation about the device’s private exponent.

In this paper, we flip SA-RSA around to obtain Client-
Aided RSA (CA-RSA). The main idea is to shift some
computational burden from the server to the clients. Specif-
ically, we want the clients to perform the bulk of the work in
RSA decryption, thereby allowing the server to accept and
process more incoming requests.

3.1 Protocol Description
We now describe the CA-RSA algorithm. We first intro-

duce the basic version and then extend it to obtain CA-RSA.

3.1.1 Basic Version
We begin by representing the server’s private exponent as

d = f1d1 + f2d2 + ... + fkdk (mod φ(n)), where the fi’s and
di’s are random vector elements of c and |n| bits, respec-
tively.

The following process take place when a server wants to
offload the computation xd (mod n) to a client:

1. Server sends vector D = (d1, d2, ..., dk) to client.

2. Client computes vector Z = (z1, z2, ..., zk), where zi =
xdi (mod n), and sends it back to server.

3. Finally, server computes
Qk

i=1 z
fi

i =
Qk

i=1 xfidi = xd

(mod n)

The choice of parameters: k, c, and the fi’s is discussed
in section 3.4. Note that, assuming that it is computation-
ally difficult to “break” RSA, parameter selection should not
introduce any attacks that compromise the security of the
above computation by the server, namely xd (mod n). An
attacker can attempt to exhaust all possible vector values fi

thereby deriving d. Thus, a minimal requirement for c and
k is that a brute force attack (which requires 2c×k steps)
should be as difficult as breaking underlying RSA4.

3.1.2 CA-RSA
CA-RSA improves upon the performance of the basic scheme

by taking advantage of the Chinese Remainder Theorem
(CRT). Quisquater and Couvreur [7] demonstrated how RSA
secret key exponentiations could be sped up with CRT.
The technique works as follows: Let dp = d mod (p − 1)
and dq = d mod (q − 1). For Mp = Mdp (mod p) and
Mq = Mdq (mod q), we have Md = Mp × np + Mq × nq

(mod n), where np = q × (q−1 (mod p)) and nq = p × (p−1

(mod q)). Because np and nq can be pre-computed, and,
since exponentiations mod p or q are more efficient to com-
pute than those mod n, we can expect an approximate factor
of 4 speed-up of private-key operations [8] when using the
CRT.

In CA-RSA, the server initially pre-computes dp, dq, np

and nq , where np and nq are derived as described above:

dp =
k

X

i=1

fidi mod (p − 1), dq =
k

X

i=1

gidi mod (q − 1)

All fi’s and gi’s are random c-bit values.
The following takes place when a server wants to offload

the computation of xd (mod n) to a client:

1. Server sends vector D = (d1, d2, ..., dk) to the Client.

2. Client computes vector Z = (z1, z2, ..., zk), where zi =
xdi (mod n), and sends it back to server.

3. Server computes intermediary values Mp =
Qk

i=1 z
fi

i

(mod p) and Mq =
Qk

i=1 z
gi

i (mod q). Finally, xd =
Mpnp + Mqnq (mod n).

3.2 Incorporating CA-RSA into the SSL Hand-
shake

We now describe the modifications to the SSL Handshake
protocol necessary to incorporate CA-RSA. The client hello
and server hello messages remain unchanged, although the
server’s certificate (which is sent as part of the server hello
message) now includes the vector D = (d1, d2, ..., dk). The
client chooses a random value x, which is then used to derive
the SSL session key, and uses the server’s public exponent
to encrypt it: y = xe (mod n). Next, the client uses D

to construct a vector Z by computing the individual vector
elements zi = ydi (mod n), for 1 ≤ i ≤ k. This vector
is included in the client key exchange message. The server,
upon receiving this message, performs its CRT computations
and derives yd = (xe)d = x (mod n). The remainder of the
handshake remains unchanged. Figure 2 shows the modified
protocol.

4Actually, only 2c×k/2 steps are needed to break this ba-
sic scheme via the classical meet-in-the-middle attack [2].
However, the attack in [2] does not apply to the CA-RSA
protocol described in the following section.

Client SSL Server

rc, cipher-specs client hello

−−−−−−−−−−−−−−−−−−−−−−−→

server hello rs, cipherspecs

←−−−−−−−−−−−−−−−−−−−−−−

x ∈R {0, 1}48

k = f(x, rc, rs)
y = xe (mod n)
zi = ydi (mod n)
Z = (z1, ..., zk)

client key exchange

−−−−−−−−−−−−−−−−−−−−−−−→

Mp =
Qk

i=1 z
fi

i (mod p)

Mq =
Qk

i=1 z
gi

i (mod q)
x = yd = Mpnp + Mqnq (mod n)

k = f(x, rc, rs)
server finish

←−−−−−−−−−−−−−−−−−−−−−−

Figure 2: Incorporating CA-RSA into the SSL handshake protocol

3.3 Security and Parameter Selection
This section discusses security considerations and param-

eter selection issues for CA-RSA.
Two Server-Aided RSA schemes were originally proposed

by Matsumoto et al. [1]: RSA-S1 and RSA-S2. They cor-
respond to “Simple CA-RSA” and CA-RSA algorithms, re-
spectively. In fact, CA-RSA is almost identical to RSA-S2,
except the roles of the client and server are reversed.

Initially, RSA-S1 and RSA-S2 used binary exponent val-
ues for fi and gi. These versions of Server-Aided RSA were
soon subject to attacks. Recall that, in RSA-S1, the private
exponent d is represented as d =

Pk
i=1 fidi (mod φ(n)),

where the fi’s are randomly selected c-bit elements (c = 1
when binary exponents are used). Once vector D = (d1, d2, ..., dk)
is sent to the client (as part of the protocol), the secrecy of
private exponent d relies upon the secrecy of the fi’s. Us-
ing binary values for the fi’s allows for simple, but effective,
attacks [9, 10].

Subsequent incarnations (RSA-S1M and RSA-S2M) by
Matsumoto, et al. [11] were also attacked by Lim and Lee
[12]. This led to the development of parameter selection
guidelines for RSA-S1 and RSA-S2 [13, 14]. The goals of
these guidelines were to protect against known vulnerabili-
ties and to suggest parameter values that would withstand
brute force attacks aimed at finding the server’s private RSA
exponent d. In summary, when used together with the sug-
gested parameter guidelines, CA-RSA (i.e., RSA-S2) has not
been successfully attacked.5

For CA-RSA, the guidelines required for it to be infea-
sible to deduce values dp or dq via brute force, since an
attacker with knowledge of either one would be able to
factor modulus n and thereby break RSA. Given a vector
D = (d1, d2, ..., dk), a search through all possible values of F

(respectively G) would reveal dp (respectively dq). Because

5Certain other variations of Server-Aided RSA [15, 16] were
later found suspectible to lattice reduction attacks [17, 18].

there are k c-bit vector elements, the guidelines mandated
that the search space of 2c×k values be large enough to pre-
vent such an exhaustive search.

When choosing CA-RSA parameters, we specifically se-
lected the values c and k such as to meet the requirements
set forth in the guidelines while making the difficulty of ex-
hausting the resulting search space at least equivalent to (or
harder than) breaking the underlying RSA cryptosystem.
As is well-known, the strength of the RSA cryptosystem,
when correctly instantiated, depends upon the key (mod-
ulus) size. Currently, 1024-bit keys are common, however,
based upon projected advances in computing power, experts
in the cryptography research community recommend using
larger values for longer-term security.

Exhaustive search of 2c×k values is equivalent to search-
ing for all possible keys in a symmetric-key cryptosystem
(for example DES, AES or Blowfish). Thus, based upon the
RSA key size used, we need to determine symmetric key size
that would provide equivalent security. Lenstra and Verheul
give formulas for determining such keys in their well-known
work on cryptographic key size selection [19]. They use his-
torical cryptanalysis developments and projected computing
powers to develop hypotheses and create formulas for choos-
ing cryptographic key sizes, depending upon how far into the
future the cryptosystems are to remain secure. Since their
formulas cover both symmetric and asymmetric cryptosys-
tems, the results are applicable for our purposes. Based on
their formulas, RSA with 1024- and 1536-bit keys would be
roughly equal in strength to a symmetric-key cryptosystem
with 72- and 80-bit keys, respectively.

3.4 Performance
This subsection describes our experimental results

3.4.1 Experiment set-up
We measured the speedup in the execution time of RSA

decryptions when using CA-RSA instead of plain RSA (with

CRT). As noted in section 2, the most computationally
expensive operation in the SSL handshake protocol is the
server’s private key decryption. Therefore, we determine an
upper bound on the number of SSL requests by measuring
the number of RSA decryptions a server can perform within
a given time frame. Our hardware platform was a 1.7 Ghz
Intel Celeron with 256 MB RAM running Red Hat 9.0 Linux.
The scripts were written using the OpenSSL cryptographic
library (version 0.9.7). RSA keys of 1024, 1536 and 2048
bits were used so as to test CA-RSA performance with both
current and future security parameters.

3.4.2 Results
Table 1 lists the average decryption time (in msecs) for

the three moduli with both plain RSA and CA-RSA.

Table 1: Average decryption time (msec):
Key size RSA CA-RSA c × k Improvement

1024 7.05 0.62 72 11.33
1536 19.79 1.25 80 15.76
2048 44.22 2.31 88 19.12

These results show CA-RSA speedups of 11.3, 15.8 and
19.1 times (as opposed to plain RSA) for 1024-, 1536- and
2048-bit keys, respectively. Expected theoretical speed-ups
are 13, 17.8 and 21.7, respectively. These results compare
favorably with another technique aimed at speeding up RSA
decryptions – SSL batching proposed by Shacham and Boneh
[20] – which achieves a factor of 2.5 speed-up for 1024-bit
RSA keys.

As described in section 3.3, the CA-RSA values c and k

were selected based upon key size formulas in [19], such that
c×k corresponds to a symmetric key comparable in strength
to the corresponding RSA key. Specifically, for 1024-, 1536-
and 2048-bit keys, c×k was set to 72, 80 and 88 bits, respec-
tively. The results mean that a server with a 1024-bit RSA
key can perform approximately 11 times as many decryption
operations per second. A secure web server achieving such
speedups (of one order in magnitude) becomes comparable
to hardware-accelerated SSL servers when using CA-RSA as
opposed to plain RSA.

For CA-RSA, the optimal parameter selection strategy
is to minimize k and thereby maximize c. The parameter
selection guidelines (section 3.3) specify the smallest possible
value of k to be 2, and c is therefore set to 36, 40 and 44 bits
for the 72, 80 and 88 bit keys, respectively. Figure 3 shows
how decryption time varies depending on the distribution
of bits between parameters c and k, while maintaining the
property that c × k = 72, 80 and 88 for the RSA keys of
equivalent strength.

3.5 Discussion
It is important to understand the effect of the CA-RSA

speedup technique in terms of improvement in the number
of SSL transactions that can be handled by a secure web
server. In [21] Coarfa et al. dissected SSL transactions such
as to measure the influence of the individual computations
involved. These include, amongst others, operations such as
the RSA private-key computation, hash function evaluation
and bulk encryption of payload data with symmetric key
algorithms. One aspect that stands out is that the impor-

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 D
ec

ry
pt

io
n

Ti
m

e
(m

se
c)

RSA-CA2 parameter k

1024 RSA, c*k=144
1536 RSA, c*k=160
2048 RSA, c*k=176

Figure 3: CA-RSA decryption time (msec) when
varying parameters c and k

tance of these operations heavily depends upon the type of
workload processed by the SSL server. For example, large
workloads place greater importance upon the server’s CPU
(as large data payloads are encrypted) while the significance
of expensive RSA computations is reduced.

We choose to focus on the Amazon web server workload
described in [21], which models the behavior of popular e-
commerce sites whereby only the final web pages contain-
ing billing and shipping information are encrypted. The
relatively small workload of 7 KB places a significant im-
portance upon the cost of the RSA private-key operation,
which in this case accounts for approximately 58% of the
overall handshake computational load. Depending on the
speedup of RSA decryptions, one can measure the maximum
achievable gain in terms of SSL transactions per second. If
there existed an infinitely fast RSA processor that spent
zero time on decryptions, one could obtain an improvement
factor of 2.38 (1

0.42
) in the number of SSL transactions that

can be processed per second by a web server for the specified
workload. As for the RSA speed-ups of 11.3, 15.8 and 19.1
achieved through the use of CA-RSA for 1024-, 1056- and
2048-bit moduli, the expected factor of improvement in SSL
transactions is 2.12, 2.19 and 2.22, respectively.

Although CA-RSA reduces the computation load at the
server, it introduces certain computation and bandwidth
costs at the clients.

• Computation: A client with a computing environ-
ment described in section 3.4.1 would incur added com-
putational costs of approximately 21.9, 66 and 150.9
msecs when computing the elements of vector Z for
1024-, 1536- and 2048-bit RSA keys, respectively. We
believe that this added computation cost is negligible
and acceptable for most clients. For weak computa-
tional devices off-loading techniques such as the one
described in [22] could be used.

• Bandwidth: The bandwidth overhead associated with
the client key exchange message now includes the vec-
tor Z. It contains k |n|-bit elements, where n is the
RSA modulus. Recall that, with plain RSA, the client
only sends y = xe (mod n). Therefore, with k = 2
(chosen for optimal performance), the resulting extra

bandwidth translates into |n| bits. This corresponds
to less than one ethernet frame (1500 bytes)6. Fur-
thermore, adding such a small number of bits in the
SSL handshake does not have a significant impact on
performance. In fact, as shown in [21], SSL is purely
CPU bounded and optimizations intended to reduce
network bandwidth have little effect on server through-
put.

Note that one reasonable strategy is to use our re-balancing
technique only when the server gets overloaded, and use reg-
ular SSL otherwise. In this case, the previously described
extra computation and bandwidth costs only occurs occa-
sionally.

4. SSL SPEEDUP AND DOS PROTECTION
Server overload is either due to an on-slaught of legit-

imate client requests or a Denial-of-Service (DoS) attack.
A server can become swamped under a flood of simultane-
ous of closely spaced requests, each requiring it to perform
some costly computation, e.g., decrypt a key purportedly en-
crypted by a client. This makes SSL servers prime targets
of DoS and DDoS attacks.

The protocol described in section 3 increases the num-
ber of SSL connections that the server can handle by re-
balancing the computations between the server and client.
This makes the job of a potential DoS attacker more dif-
ficult, but a resourceful attacker can still achieve his goal
by increasing his resources accordingly. In addition to CA-
RSA, which helps the server by reducing its computational
load, we need a mechanism that that also makes the job of
the attackers more difficult.

We view the DoS menace as being two-fold: (1) the ad-
versary overwhelms the server with a sheer number of gra-
tuitous service requests and, (2) the adversary over-exerts
the server by forcing it to perform many heavy-weight cryp-
tographic operations. Although client puzzles alleviate both
problems (see section 4.1), they do not completely solve ei-
ther. Arguably, there might be simply no way to solve the
former since a determined and resourceful adversary will al-
ways be able to flood the server with a storm of requests
(even if they are quickly filtered out). On the other hand, a
computationally powerful adversary can efficiently dispense
with the minor “inconvenience” posed by puzzles and simi-
lar techniques; such an adversary can still force the server to
perform many expensive cryptographic operations and thus
render the server unavailable to legitimate clients.

An attacker who attempts to incapacitate a secure web
server needs only to initiate as many SSL handshake re-
quests per second as the number of RSA decryptions the
server can perform per second. (For example, on our test
server, one RSA decryption takes approximately 7 msec,
thus, it can perform at most 142 decryptions per second.
However, higher-end web servers can perform up to 4, 400
RSA decryptions per second [23].) The feasibility of such
DoS attacks is partly because a client can request the server
to perform many RSA decryptions without performing any
significant amount of work itself. A possible remedy is to:
(1) ask the client to perform a certain amount of additional
work prior to triggering the server to decrypt, and/or (2)

6On a related note, the vector D needs to be added to the
server’s public-key certificate. This can be achieved by in-
cluding it as an extension field in X.509v3 format.

speed up the decryption operation on the server side such
that a DoS attack requires greater resources. Our solution
combines the above two properties: it requires a client to
perform additional computation which then lessens the load
on the server, thus allowing it to perform more RSA decryp-
tions and accept/process more incoming connections.

4.1 Client Puzzles and SSL
Juels and Brainard introduced the use of client puzzles

as a cryptographic countermeasure to protect against DoS
attacks [24]. Dean and Stubblefield subsequently proposed
using client puzzles to specifically defend web servers run-
ning the SSL protocol [25]. Their scheme requires a client
to solve a given puzzle before being able to establish an SSL
session with a server. This forces the client to perform a
certain amount of computational work prior to requesting
the server to carry out expensive operations (such as RSA
decryptions). That way, a DoS attack becomes more com-
putationally demanding to execute as clients can no longer
freely trigger RSA decryptions. The type of client puzzle
they use consists of inverting a hash function when given
the hash digest and a certain portion of the pre-image.

The addition of client puzzles does not alter the message
flow in the SSL handshake protocol, but does require two
of the messages to be extended. After the client has sent
its client hello message, the server chooses a random a-bit
value s and inputs it to a cryptograhic hash function. It
then includes the hash digest t = hash(s) along with the b

first bits of s (where b < a) to the client in the server hello
message. Using these b bits, the client solves the “client
puzzle” via brute-force and finds a value s’ that hashes to the
desired t. With knowledge of the first b pre-image bits, the
client only needs to attempt approximately 2a−b candidate
values before finding a valid solution s’ that satisfies t =
hash(s’).

The client then includes s’ in its client key exchange mes-
sage. Only if s’ verifies - i.e, it is of correct length and its
hash output is t - will the server proceed with the SSL hand-
shake and decrypt the encrypted session key submitted by
the client.

The computational cost of a hash computation is almost
negligible when compared to an RSA decryption (a hash
is about 3 to 4 orders of magnitude faster to compute), so
the addition of puzzle verification step adds a very minor
server side overhead. The amount of work needed to be
done by the client in order to solve the puzzle depends upon
its computing resources and, more importantly, the number
of unknown bits in the pre-image value sent by the server.

The addition of client puzzles to the SSL handshake pro-
tocol has the advantage of making DoS attacks more elabo-
rate to carry out. A single client machine is no longer able
to easily overload an SSL server by sending consecutive SSL
initiation requests, as it would need to solve the appropriate
client puzzles, thereby limiting the number of valid requests
it could send per second. A more noticeable side effect of
utilizing client-puzzles is that client browser software needs
to be modified to make it work with the puzzles during the
SSL handshake protocol.

4.2 Combining Client Puzzles and CA-RSA
We now sketch out a way of combining client puzzles and

CA-RSA. When a client initiates a session with a secure
web server, it receives di values (included in the server’s

Client SSL Server

rc, cipher-specs client hello

−−−−−−−−−−−−−−−−−−−−−−−→

rs, cipherspecs
s ∈R {0, 1}a, t = hash(s)

server hello rs, t, s(b), cipherspecs

←−−−−−−−−−−−−−−−−−−−−−−

s′ s.t. t = h(s′)
x ∈R {0, 1}48

k = f(x, rc, rs)
y = xe (mod n)
zi = ydi (mod n)
Z = (z1, ..., zk), s′

client key exchange

−−−−−−−−−−−−−−−−−−−−−−−→

verify t = h(s′)

Mp =
Qk

i=1 z
fi

i (mod p)

Mq =
Qk

i=1 z
gi

i (mod q)
x = yd = Mpnp + Mqnq (mod n)

k = f(x, rc, rs)
server finish

←−−−−−−−−−−−−−−−−−−−−−−

Figure 4: Incorporating CA-RSA together with Client Puzzles into the SSL handshake protocol

certificate) and a puzzle as part of the SSL handshake. The
client solves the puzzle, computes zi as required by CA-RSA
and returns these values, along with the puzzle solution,
to the server. If the server successfully verifies the puzzle
solution, it performs the CA-RSA partial decryption needed
to compute the session key. Figure 4 gives an overview of
the protocol. The notation s(b) refers to the first b bits of the
pre-image value s. A client response without a valid puzzle
solution is simply ignored.

 1

 10

 100

 1000

 10000

 10 12 14 16 18 20

tim
e

(m
se

c)

puzzle size (b)

Client Puzzle
CA-RSA

Figure 5: Comparing client computational cost of
client puzzles and CA-RSA

Of course, a malicious client can solve the puzzle and
still send bogus zi’s to the server. However, the amount
of wasted effort is much less – 11 times smaller for 1024-bit
RSA keys – than in case when only client puzzles are used

(as in [25]).
Furthermore, the extra work resulting from CA-RSA by

the client effectively adds to the cost of solving the puzzle,
but does not affect an adversary since he can skip the CA-
RSA step and only work on the puzzle. However, as shown in
figure 5, the CA-RSA cost quickly becomes negligible com-
pared to client puzzle cost as the puzzle size increases. More
precisely, when the attack is not severe, and therefore the
puzzle size is small, the added cost to a legitimate client is
very small. But when the intensity of the attack increases,
and subsequently the puzzle size increases, the extra cost of
CA-RSA fades away.

Both the client puzzle and our CA-RSA mechanisms aim
at solving the problem of server overload in different but
complementary ways:

• Puzzles slow DoS attacks by forcing attackers to per-
form some work before the server commits resources.

• CA-RSA reduces server load by outsourcing some of
the its computation to the clients, allowing the server
to accommodate more SSL requests.

In summary, the combination of client puzzles and CA-
RSA offers an effective countermeasure to server overload
and DoS/DDoS attacks.

5. RELATED WORK
Techniques for speeding up SSL transactions typically aim

to accelerate RSA decryptions and can be classified into two
categories: dedicated cryptographic hardware accelerators
and non-standard RSA decryption techniques.

5.1 Hardware Accelerators

SSL hardware accelerators are dedicated modular arith-
metic processing units aimed at speeding up RSA compu-
tations. One example of a hardware accelerator is the Son-
icWALL SSL-RX [23] which is claimed to achieve up to 4,400
RSA decryptions per second, and comes with a price tag of
around $14,000.

Accelerators range widely in both speed and price. They
also often give a smaller than expected increase in SSL
throughput. In [21], Coarfa, et al. analyze the performance
of SSL and conclude that hardware accelerators are not as
effective as originally thought: : depending on the workload,
one might only achieve a factor of 2 speedup. Specifically,
when session re-use is high, resulting in few full SSL hand-
shakes, only a modest gain in SSL throughput is actually
achieved: approximately a factor of 2 speedup. Authors
suggest that, instead of purchasing a relatively expensive
cryptographic accelerator, a better choice would be to invest
in a faster CPU to better handle encryption of application
data during SSL sessions. This conclusion is inline with our
work that does not require any specific hardware but would
benefit from a more powerful CPU.

Berson, et al. [26] propose offering cryptographic opera-
tions, such as modular exponentiations, as a network service.
A so-called cryptoserver would be equipped with a multi-
ple hardware accelerators and its services would be shared
amongst many clients. Although trust is a major concern in
this model, there are some application settings where the
cryptoserver might be in the same security perimeter as
its users (e.g., web servers). An example would be a cryp-
toserver supporting SSL for a group of secure web servers
that are all part of the same organization. A similar idea is
due to Mraz [22] where certain portions of the SSL protocol
– RSA processing and bulk encryption – are offloaded to an
array of special-purpose (SSL handshake-optimized) servers.

5.2 RSA Speedup Techniques
Another approach to speeding up SSL handshakes in-

volves techniques for accelerating RSA decryptions without
the use of specialized hardware. We begin by describing the
seminal work by Shacham and Boneh which proposes three
methods for faster RSA decryptions [20, 27]. From an en-
cryptor’s (i.e., an SSL client’s) perspective, all three meth-
ods are backward compatible with standard RSA. Also, all
speedups discussed below are based on 1024-bit RSA and are
relative to the cost of performing plain RSA decryptions.

The first technique is based on multi-factor RSA mod-
uli. Specifically, the RSA setting is that of multi-prime and
multi-power moduli, where n = pqr or n = p2q (instead of
the usual n = pq), and decryption is performed using CRT
and Hensel lifting [28], respectively. One can expect theo-
retical speedups of around 2.25 with n = pqr and 3.38 for
n = p2q. Experiments show real speedups to be around 1.73
and 2.3, respectively.

Similar to CA-RSA, the second method – rebalanced RSA
– shifts the workload to the encryptor. It is a variant of
an earlier technique by Weiner [29]. Specifically, d is cho-
sen to be close to n such that both d mod (p − 1) and d

mod (q − 1) are small integers. The resulting public expo-
nent e also becomes close to n, which is much larger than
typical values (i.e., e = 3, 17, or 65537). It is in fact so large
that Microsoft Internet Explorer (IE) cannot accept it; IE
allots a maximum of 32 bits for the public exponent e. Re-
balanced RSA offers the theoretical speedup of 3.6 but the

actual speedup is 3.2.
The third technique – batch RSA – is based on Fiat’s

Batch RSA which, in turn, relies on simultaneous exponen-
tiations [30]. This technique offers the speedup factor of
2.5. Batch RSA uses a batching parameter b that defines
the number of ciphertexts needed in order to batch-decrypt.
(Typically, b is set to 4 for optimal performance.) Each SSL
server needs b RSA public key certificates, each with iden-
tical modulus but different public and private keys. When
it receives b pending SSL handshake requests, each based
upon one of the certificates, the server takes advantage of
the batching technique and performs b decryptions in less
time than if it executed them sequentially. A heavily loaded
web server using a round-robin strategy when sending certifi-
cates to clients would incur minimal latency before receiving
4 SSL handshake requests with distinct certificates.

We now mention one other technique for speeding up RSA
computations. In [31], Lim and Lee discuss using RSA
precomputations in order to speed up modular exponen-
tiation. A tradeoff is made between storage space (com-
mitted to precomputed values) and computation time, with
more pre-computations resulting in more efficient exponenti-
ations. This technique outperforms other modular exponen-
tiation algorithms such as Square-and-Multiply and BGMW
methods [8].

5.3 Elliptic Curve Cryptography
Elliptic Curve Cryptography (ECC) has been gaining at-

tention as an attractive alternative to more traditional public-
key cryptosystems. ECC offers certain advantages, notably,
it can provide an equivalent level of security as other public
key methods with smaller key sizes and faster computation.
Currently, one of the main reasons hindering wider accep-
tance of ECC is the existence of multiple patents.

In [32] Gupta, et al. analyze achievable performance gains
when using ECC to speed up SSL. Their results show that
the performance gain of ECC over RSA increases for larger
key sizes. In comparison with currently common 1024-bit
RSA setting, they measure a speedup factor of the server
RSA decryption time of 2.4 when using 160-bit ECC keys
which offers equivalent level of security. Since our scheme
provides a performance gain of about 11 compared to the
regular RSA setting, it would outperform ECC’s perfor-
mance by a ratio of 4. In order words, ECC benefits, such
as short keys, do not help to solve our problem of server
overload.

6. CONCLUSION
We proposed a variation of Server-Aided RSA for re-balancing

RSA-based client/server handshakes, specifically targeting
SSL/TLS. Clients are required to perform “useful” work,
thereby freeing up the server’s resources and allowing it to
perform commensurately less work, thus resulting in better
throughput. We stress that our approach is not an alterna-
tive, but a supplement, to client puzzles in defense against
DoS and DDoS attacks. Experimental results demonstrate
that our Client-Aided RSA solution achieves substantial per-
formance improvements over the basic RSA (with CRT) de-
cryption algorithm, namely speedups of between 11 and 19,
depending on the RSA key size. A secure web server achiev-
ing software-speedups of one order in magnitude becomes
competitive with hardware-accelerated SSL servers.

7. ACKNOWLEDGMENTS
The authors would like to thank the ASIACCS anony-

mous referees for their reviews. We are also grateful towards
Dough Whiting and David Wagner for useful discussions,
and Michael Sirivianos for his technical contributions.

8. REFERENCES
[1] T. Matsumoto, K. Kato, and H. Imai, “Speeding up

Secret Computations with Insecure Auxiliary
Devices,” Proceedings of Crypto ’88, pp. 497–506,
1988.

[2] Private communication, “Private communication with
D. Wagner,” 2005.

[3] Network Working Group, “RFC 2246 - The TLS
Protocol Version 1.0,” Internet RFC/STD/FYI/BCP
Archives, 1999,
http://www.faqs.org/rfcs/rfc2246.html.

[4] BEA WebLogic, “BEA WebLogic Server Frequently
Asked Questions,” http:

//e-docs.bea.com/wls/docs60/faq/security.html.

[5] R. L. Rivest, A. Shamir, and L. M. Adleman, “A
Method for Obtaining Digital Signatures and
Public-Key Cryptosystems,” Communications of the
ACM, vol. 21, pp. 120–126, 1978.

[6] D. Boneh and G. Durfee, “Cryptanalysis of RSA with
Private Key d Less than n0.292,” IEEE Transactions
on Information Theory, vol. 46, pp. 1339–1349, 2000.

[7] J. Quisquater and C. Couvreur, “Fast decipherment
algorithm for RSA public-key cryptosystem,”
Electronic Letters, vol. 18, pp. 1905–907, 1982.

[8] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone,
“Handbook of Applied Cryptography,” The CRC
Press series on discrete mathematics and its
applications, 1997.

[9] B. Pfitzmann and M. Waidner, “Attacks on Protocols
for Server-Aided RSA Computations,” Proceedings of
Eurocrypt ’92, pp. 153–162, 1992.

[10] R. J. Anderson, “Attack on Server Assisted
Authentication Protocols,” Electronic Letters, vol. 28,
pp. 1473, 1992.

[11] T. Matsumoto, H. Imai, C. S. Laih, and S. M. Yen,
“On verifiable implicit asking protocols for RSA
computation,” Advances in Cryptology - Proceedings
of Auscrypt ’92, vol. 718, pp. 296–307, 1992.

[12] C. H. Lim and P. J. Lee, “Security and performance of
server-aided RSA computation protocols,” Advances
in Cryptology - CRYPTO ’95, pp. 70–83, 1995.

[13] J. Burns and C. Mitchell, “Parameter Selection for
Server-Aided RSA Computation Schemes,” IEEE
Transactions on Computing, vol. 43, pp. 163–174,
1994.

[14] C. Laih and F. Tu, “Remarks on Parameter Selection
for Server-Aided Secret RSA Computation Schemes,”
International Workshops on Parallel Processing, pp.
167–173, 1999.

[15] P. Béguin and J.J. Quisquater, “Fast Server-Aided
RSA Signatures Secure Against Active Attacks,”
Advances in Cryptology - CRYPTO ’95, pp. 57–69,
1995.

[16] S. Hong, J. Shin, and H. Lee-Kwang, “A new
approach to server-aided secret computation,”

International Conference on Information Security and
Cryptology, pp. 33–45, 1998.

[17] J. Merkle, “Multi-round passive attacks on
server-aided RSA protocols,” Proceedings of the 7th
ACM conference on Computer end Communications
security, pp. 102–107, 2000.

[18] P. Nguyen and I. Shparlinski, “On the insecurity of a
server-aided RSA protocol,” Proceedings of Asiacrypt
’01, vol. 2248, pp. 21–35, 2001.

[19] A. K. Lenstra and E. R. Verheul, “Selecting
cryptographic key sizes,” Journal of Cryptology: the
journal of the International Association for
Cryptologic Research, vol. 14, no. 4, pp. 255–293, 2001.

[20] H. Shacham and D. Boneh, “Improving SSL
Handshake Performance via Batching,” Proceedings of
RSA 2001, vol. 2020, pp. 28–43, 2001.

[21] C. Coarfa, P. Druschel and D. S. Wallach,
“Performance Analysis of TLS Web Servers,” 9th
Network and Systems Security Symposium, pp.
553–558, 2002.

[22] R. Mraz, “Secure Blue: An Architecture for a High
Volume SSL Internet Server,” 17th Annual Computer
Security Applications Conference, 2001.

[23] SonicWALL, “SonicWALLE SSL-RX,”
http://www.sonicwall.com/products/sslrx.html.

[24] A. Juels and J. Brainard, “Client Puzzles: A
Cryptographic Defense Against Connection
Depletion,” 5th Network and Systems Security
Symposium, pp. 151–165, 1999.

[25] D. Dean and A. Stubblefield, “Using Client Puzzles to
Protect TLS,” Proceedings of the USENIX Security
Symposium, 2001.

[26] T. Berson, D. Dean, M. Franklin, D. Smetters, and
M. Spreitzer, “Cryptography as a Network Service,”
7th Network and Systems Security Symposium, 2001.

[27] D. Boneh and H. Shacham, “Fast Variants of RSA,”
CryptoBytes (RSA Laboratories), vol. 5, pp. 1–9, 2002.

[28] H. Cohen, “A Course in Computational Algebraic
Number Theory,” Graduate Texts in Mathematics,
vol. 138, pp. 6, 1996.

[29] M. Weiner, “Cryptanalysis of Short RSA Secret
Exponents,” IEEE Transactions on Information
Theory, vol. 36(3), pp. 553–558, 1990.

[30] A. Fiat, “Batch RSA,” Proceedings of Crypto ’89, pp.
175–185, 1989.

[31] C. H. Lim and P. J. Lee, “More Flexible
Exponentiation with Precomputation,” Advances in
Cryptology - CRYPTO ’94, pp. 95–107, 1994.

[32] V. Gupta and D. Stebila and S. Fung, “Speeding Up
Secure Web Transactions Using Elliptic Curve
Cryptgraphy,” 11th Network and Systems Security
Symposium, pp. 231–239, 2004.

