Processing Boolean queries over Belief networks

Rina Dechter and Padhraic Smyth

Department of Information and Computer Science
University of California, Irvine, CA 92697-3425
{dechter,smyth}@ics.uci.edu

Abstract

The paper presents a variable elimination
method for computing the probability of a
cnf query over a belief network. We present
a bucket-elimination algorithm whose com-
plexity is controlled by the induced-width of
the moral graph combined with the interac-
tion graph of the cnf. We show that the al-
gorithm can be easily extended to answer a
host of additional cnf-related queries such as
finding the most probable model of the cnf
theory, or finding the most probable tuple
satisfying the cnf theory, as well as belief as-
sessment conditioned on disjunctive type ob-
servations.

1 Introduction and related work

The paper presents an algorithm for computing the
probability of a Boolean query in conjunctive normal
form (cnf) over a probability distribution expressed by
a belief network. The algorithm belongs to the class of
bucket-elimination algorithms. Although such queries
can be handled by modeling the cnf query as part of
the belief network, the proposed method can benefit
from keeping the query distinct from the knowledge-
base (the belief network) in several ways. Compu-
tationally, by facilitating constraint propagation (e.g.,
arc-consistency or unit resolution) that proved essen-
tial for efficient processing of Boolean and constraint
expressions [Dechter, 1999b]. Furthermore, belief net-
works can stand for physical causal mechanisms hav-
ing semantical significance beyond the pure numerical
function they express [Pearl, 2000].

Consider the simple belief network over three proposi-
tional variables A, B, defined by the graph in Figure
la. The joint probability associated with this network
is:

P(A, B,C) = P(C|A)P(B|A)P(A)

i

@ 0)

Figure 1: A three variable belief network (a), augment-
ing the query with a query subnetwork (b)

Let’s consider the query ¢ = (-BVA)A(mAVC)AB.
The task is to determine P(¢p).

One approach for handling such queries described in
[Pearl, 1988], is the modeling approach, namely ex-
pressing each clause as a conditional probability ta-
ble (CPT) between the clause’s variables and a new
hidden variable. In our example this requires adding
two hidden variables Uy = =BV A and Us = -AV (),
expressed explicitly in the network (see Figure 1b).
Subsequently, a standard inference algorithm for con-
junctive queries (e.g., variable elimination) can be ap-
plied to the augmented network (Figure 1b) to evalu-
ate P(Uy,Us, B). The alternative approach we pro-
pose here maintains a distinction between the deter-
ministic cnf query and the CPTs of the belief network,
and applies a specialized bucket-elimination algorithm
for this task.

Assume we order the variables d = (C, A, B). Our
algorithm partitions both the CPTs and the clauses
into buckets (the rationale is given later ) and pro-
cess the buckets from last to first. In each bucket,
instead of computing a simple sum over the prod-
uct of the CPTs (as in Elim-Bel ??), we compute



restricted sums. For example, in bucket B we com-
pute AP(A) = 37 5 pvayaB=truey P(Bl4). The
resulting function is placed in bucket A.  Next
we compute the sum over tuples satisfying the
clauses appearing in bucket A, namely M (C) =
Z{AK—'AVC):true} P(C|A)P(A)AB(A) and so on. The
resulting bucket configuration is:

bucket(B): P(BJA), (-BV A), B

bucket(A): P(C|A)P(A), (=AV C) ||\B(A)
bucket(C): ||[A(C)

The A functions are the new functions, and they are
denoted to the right of the bar in each bucket.

Going back to the modeling approach, there exists an
ordering of the variables (e.g., C, A, B,U;,Us) that,
when applying Elim-Bel, yields a similar performance.
However, aside from the annoying aspect of having to
introduce hidden variables for each clause, the mod-
eling approach hides the prospect of exploiting con-
straint propagation algorithms. For example, using
our algorithm, instead of proceeding mechanically as
above, we can apply unit resolution in bucket B and
infer the unit clause A. This will be placed in the
bucket of A and will trigger unit resolution in bucket
A as well, inferring the unit clause C', to be placed in
bucket C'. Since each bucket contains a unit clause,
computing the probability of this tuple (4, B, C') can
be accomplished in linear time.

Extending the bucket-elimination approach to an-
swering cnf queries over probabilistic database,
has the additional advantage of sharing a wvari-
ety of improvements that are applicable to this
class of algorithms, such as trading space for time
[El-Fattah and Dechter, 1996], as well as the mini-
bucket approximation [Dechter and Rish, 1997].  Fi-
nally, we show that simple modifications elegantly
yield methods for processing a variety of additional
cnf-related queries.

An alternative approach for answering cnf queries is by
stochastic simulation [Pearl, 1988]. These algorithms
use the belief network to generate tuples from the dis-
tribution, and then answer any query by treating the
colletion of tuples produced as the probability distri-
bution. These methods, however, are incomplete and
is likely to be very ineffective for formulas having a
small number of models.

Following Motivations (Section 2) and Background
(Section 3), Section 4 presents the general bucket-
elimination algorithm for assessing the probability of
cnf queries and analyzes its performance. In particu-
lar, we show that when the query’s interaction graph
is subsumed by the belief network’s moral graph, the
complexity of evaluating the probability of a cnf in
the same as belief assessment of singleton propositions.

Section 5 discusses additional cnf-related queries and
section 6 concludes.

2 Motivation

The problem of computing cnf-queries using belief net-
works has a direct application to query answering
in massive databases. Relational database technol-
ogy has been very successful commercially now for a
number of years, particularly for efficient storage, ac-
cess, and management of large-volumes of operational
transaction data (e.g., in the banking, airline, and re-
tail industries). A more recent trend is leveraging this
operational data for decision-support purposes (e.g.,
data-mining or exploratory data analysis). Typically
this requires a somewhat different style of human-
database interface than traditional batch query pro-
cessing such as SQL. In particular, for massive data
archives, the generation of approximate answers to
queries in real-time is of significant practical interest
[Vitter and Wang, 1999, Pavlov el al., ]. An approx-
imate solution which is obtained quickly may be far
more useful to the data analyst than an exact solution
which requires a time-consuming complete linear scan
of the entire data archive.

A general solution in this context is to construct an ap-
proximate model of the data offline using a belief net-
work, and then to answer real-time queries using the
approximate model (without recourse to the original
data) [Pavlov et al., ]. Animportant open question in
this context is how to answer arbitrary Boolean queries
from a probabilistic model such as a belief network. In
traditional query optimization work in databases there
has been significant amount of research on answering
arbitrary Boolean queries exactly (based on the data)
in as efficient a manner as possible. Here we are focus-
ing on equivalent research questions where the queries
are being posed to an approximate model (the belief
network) rather than to the data directly.

As an example, one of the authors (PS) is working
with a retail data analysis company on techniques for
analyzing large retail transaction data sets. One such
data set contains over a million transactions involving
several hundred product categories. Each attribute
indicates whether a customer purchased a particular
product category or not. Examples of these product
attributes are sports-coat, rain-coat, dress-shirt, tie, etc.
Marketing analysts are interested in posing queries
such as “how many customers purchased a coat and
a shirt and a tie?” In Boolean terms this can be ex-
pressed (for example) as the cnf-query (sports-coat V
rain-coat) A (dress-shirt V casual-shirt) A tie. A query
expressed as a conjunction of such clauses represents a
particular type of prototypical transaction (particular



combination of items) and the focus is on discover-
ing more information about customers who had such
a combination of transactions. In [Pavlov et al. ] the
use of belief network models to support fast conjunc-
tive queries for this and other similar types of trans-
action data sets, is described. One immediate appli-
cation of the techniques proposed here is to support
general cnf queries for such models.

3 Preliminaries and background

3.1 Belief networks

Belief networks provide a formalism for reasoning
about partial beliefs under conditions of uncertainty.

Let X = {Xy,...,X,} be a set of random variables
over multi-valued domains, D1, ..., Dy, respectively. A
belief network is a pair (G, P) where G = (X, F)
is a directed acyclic graph over the variables, and
P = {P;}, where P; denotes conditional probability
matrices P; = {P(X;|pa;)}, where pa; is the set of
parents nodes pointing to X; in the graph. The family
of X;, F;, includes X; and its parent variables. The be-
lief network represents a probability distribution over
X having the product form

P(x1,....,xn) = I P(25|2pa,)

where an assignment (X7 = #q, ..., X;, = @) is abbre-
viated to # = (#1,...,2,) and where xg denotes the
restriction of a tuple z over a subset of variables 5.
An evidence set e is an instantiated subset of vari-
We use upper case letters for variables and
nodes in a graph and lower case letters for values in a
variable’s domain. We also call X; U pa; the scope of
P;. The moral graph of a directed graph is the undi-
rected graph obtained by connecting the parent nodes
of each variable and eliminating direction. We define
i = (1, ...,x;) and & = (x, Tig1, ..., ¥;).

ables.

Example 3.1 The network in Figure 2a can express
the causal relationship between ‘Season’ (A), ‘The con-
figuration of an automatic sprinkler system’ (B), ‘The
amount of rain expected’ (C'), ‘The wetness of the
pavement’ (F ), ‘Whether or not the pavement is slip-
pery’ (G ) and Tthe amount of manual watering neces-

sary’ (D). The belief-network is defined by
Va,b,c,d,f,g, P(gafadacabaa):
P(glf)P(fle,b)P(d[b,a)P(bla)P(c|a)P(a).
In this case, pa(F) = {B,C}. The moral graph is
given wn Figure 2b.

Propositional variables, which take only two values
{true, false} or “17 and “0” are denoted by upper-
case letters P, R. Propositional literals (i.e., P, P)

R
/

@ Rain
W

Automated

sprinkler

et

Manual
watagrlijng @ Slippery
@ (b
Figure  2: Belief  network  P(yg, f,d, ¢, b,a)

= P(glf)P(fle,b)P(d|b, a) P(bla) P(c|a) P(a)

stand for P = “true’” or P = “false,” and disjunctions
of literals, or clauses, are denoted by «, 3, .... For in-
stance, « = (P V @V R) is a clause. A unit clause
is a clause of size 1. The resolution operation over
two clauses (a VvV Q) and (F V Q) results in a clause
(aVg), thus eliminating Q. A formula ¢ in conjunctive
normal form (enf) is a set of clauses ¢ = {ay, ..., 04}
that denotes their conjunction. The set of models or
solutions of a formula ¢, denoted models(yp) is the set
of all truth assignments to all its symbols that do not
violate any clause.

Queries. The primary query over belief networks is
belief updating Given a set of observations, computes
the posterior probability of each proposition. In this
paper we address queries that use Boolean formulas to
express deterministic restrictions on the set of propo-
sitions of interest. Given a belief network defined over
a set of propositional variables X = {Xy,..., X,,} and
given a cnf query ¢ over a subset @@ C X, we define
the following queries:

o Cnf Probability FEvaluation (CPE): finding the
probability P(y). (generalizing Belief assess-
ment).

o Cnf Max Probability Evaluation (CMPE): find-
ing the most likely complete tuple that satisfies
¢ (generalizing M PFE task [Pearl, 1988]). for ex-
ample, given the set of customers who have satisfy
the predicate ¢, what is their most likely “com-
plete profile” in terms of the their purchasing pat-
terns, i.e., what is the most likely assignment of
the other product attributes for customers who
satisfy ¢.

o Finding the most likely model (CMAP): assessing
the most likely assignment to the models of ¢,
(generalizing MAP).



e Belief assessment condition on enf updating the
belief in a proposition conditioned on knowing ¢,
(generalizes the notion of observation.) For ex-
ample, given that a customer purchased a coat, a
shirt, but did not buy a tie, what is the probabil-
ity that they will also purchase shoes? This type
of query is very valuable for predictive modeling,
e.g., “cross-sell” applications where we determine
which other products a customer is likely to pur-
chase.

3.2 Bucket-elimination

Bucket elimination is a unifying
algorithmic framework for dynamic programming al-
gorithms applicable to probabilistic and deterministic
reasoning [Bertele and Brioschi, 1972, Dechter, 1996,
Dechter, 1999a].

The input to a bucket-elimination algorithm consists
of a collection of functions or relations (e.g., clauses
for propositional satisfiability, constraints, or condi-
tional probability matrices for belief networks). Given
a variable ordering, the algorithm partitions the func-
tions into buckets, where a function is placed in the
bucket of its latest argument in the ordering. The al-
gorithm processes each bucket, from the last variable
to the first, by a variable elimination procedure that
computes a new function that is placed in an earlier
(lower) bucket. For belief assessment, the bucket pro-
cedure generates the product of all probability matri-
ces and sums over the values of the bucket’s variable.
Figure 3 shows Elim-Bel, the bucket-elimination algo-
rithm for belief assessment. [Dechter, 1996].

An ordered graph is a pair (G, d) where G is an undi-
rected graph and d = X3, ..., X, is an ordering of the
nodes. The width of a node in an ordered graph is the
number of the node’s neighbors that precede it in the
ordering. The width of an ordering d, denoted w(d), is
the maximum width over all nodes. The induced width
of an ordered graph, w*(d), is the width of the induced
ordered graph obtained as follows: nodes are processed
from last to first; when node X is processed, all its pre-
ceding neighbors are connected. The induced width of
a graph, wx, is the minimal induced width over all its
orderings. The tree-width of a graph is the minimal
induced width [Arnborg, 1985]. Tt was shown that,

THEOREM 3.2 [Dechter, 1996] The time and space
complexity of the algorithm Elim-Bel is exponential in
the induced width w*(d) of the network’s ordered moral
graph along the ordering d. O

Algorithm Elim-Bel

Input: A belief network BN = {Pi,...,P,}; an or-
dering of the variables, d; observations e.

Output: The belief P(X;|e).

1. Initialize: Partition BN into bucket, ..., bucket,,
where bucket; contains all matrices whose latest (high—
est) variable is X;. Put each observed variable into its
appropriate bucket. Let S, ...,.S; be the subset of vari-
ables in the processed bucket on which matrices (new
or old) are defined.

Call all the functions n a bucket by h;.

2. Backward: For p + n downto 1, do

for A1, Az, ..., Aj in bucket,, do

o If bucket, contains X, = %, assign X, = z, to each
Ai and put each resulting function into its appropriate
bucket.

e Else, generate the functions AP:

AP = ZX,, I_ A

Add AP to the bucket of the latest variable in U, +
Uzzl Si — {XP}

3. Return P(X,|e) by normalizing the product in the
first bucket.

Figure 3: Algorithm Elim-Bel

4 Bucket-elimination for CPE

There are two primary approaches for the CPE task.
One 1s based on search, namely, on enumerating all the
models of the cnf formula, then assessing the belief of
each model (by evaluating conjunctive queries over the
BN and accumulating the sum.). The second approach
1s the variable elimination approach on which we focus.

The following paragraph derive the algorithm. Given
a belief network and a cnf formula ¢, the CPE task is
to compute the sum:

Ple)y= >

TgEmodels(p)

P(zq).
Using the belief-network product form we get:

> I1 P(zilepa,)

{z|Zq Emodels(p)} i=1

Plp) =

For derivation purpose, we next assume that X,, is one
of the query variables, and we separate the summation
over X, and X — {X,,}. We denote by =, the set of
all clauses that are defined on X,, and by 3, all the
rest of the clauses. The scope of 4, is denoted @,
Sp, = X — @y and U, is the set of all variables in the
scopes of CPTs and clauses that are defined over X, .
We get:

P(p) =

> , > 1 P(eilepa)

{Zrn_1|Zs, Emodels(Br)} {zx|Tq, Emodels(vy,)}i=1



Denoting by ¢,, the indices of functions in the product
that do not mention X,, and by [,, = {1,...n} — t,, we

get:
P(p) = > II 7
{Zn_1|ZTs, Emodels(Br)} JELn
> 117
{2a|Zq, Emodels(vn)} j€ln
Therefore:

Plp) = > (IT P - A%

{Zn_1|ZTs, Emodels(8r)} JELn

where M is defined over U,, — {X,}, by

AXn = > II 7 (1)

{z.|Zq, Emodels(ay)} j€ln

Therefore, in the bucket of X,, we should compute
AX» . We need to place all CPTs and clauses men-
tioning X,, and then compute the function in EQ. (
1). The computation of the rest of the expression pro-
ceeds with X, _1 in the same manner. This yields al-
gorithm Elim-CPE, described in Figure 4. The elim-
ination operation is denoted by the general operator
symbol ® that instantiate to summation for the cur-
rent query. Thus, for every ordering of the proposi-
tions, once all the CPTs and clauses are partitioned
(each clause and CPT is placed in the latest bucket
of their scope), we process the buckets from last to
first, in each applying the following operation. Let
A1, ... At be the probabilistic functions in bucket P over
scopes S1, ..., Sy and a7, ...a, be the clauses over scopes
@1, ...,Qr. The algorithm computes a new function
M over U, = SUQ — {X,} where S = U;S;, and
Q = U;Q;, defined by:

AP = >
{zp|Tg€models(ay,...,ar)

JIRY
} g

)

Example 4.1 Consider the belief network in Figure 2
and the query ¢ = (BV C) A(GV D) A (=D V —B).
The initial partitioning into buckets along the ordering
d=A,C,B,D, F .G, as well as the output buckets are
given wn Figure 6. In bucket G we compute:

/\G(f’ d) = Z{g|gvd:t7‘ue} P(g|f)

In bucket F:

/\F(b’ ¢, d) = Zf P(f|b, C)/\G(fa d)

In bucket D:

AP (a,b,c) = Z{d|—|dv—|b:true} P(d|a, b)/\F(b’ ¢, d)

In bucket B:

AP (a,c) = Z{b|ch:t7‘ue} P(b|a)/\D(a’ b, C)/\F(b’ ¢)

In bucket C':

XC(a) = 5, P(cla)AB(a,

Algorithm Elim-CPE

Input: A belief network BN = {Pi, ..., Pn}; A cnf for-
mula on k propositions ¢ = {ai,...amn} defined over k
propositions, an ordering of the variables, d

Output: The belief P(¢p).

1. Initialize: Place buckets with unit clauses last in
the ordering (to be processed first). Partition the BN
and ¢ into buckety, ..., bucket,,, where bucket; con-
tains all matrices and clauses whose highest variable
is X;. Put each observed variable into its appropri-
ate bucket. Let Si,...,S; be the scopes of CPTs, and
Q1, ...Qr be the scopes of clauses. (We denote proba-
bilistic functions as As and clauses by as).

2. Backward: Process from last to first.

Let P be the current bucket.

For A1, ..., Aj, a1, ..., ar in bucket,, do

e Process-bucket, (>, (A1, ..., \;), (a1, ..., ar))

3. Return P(¢) as the results of the elimination func-
tion in the first bucket.

Figure 4: Algorithm Elim-CPE

Process-bucketp(®, (A1, ..., A;), (a1, ..., ar))

o If bucket, contains X, = zp,

1. Assign X, = z, to each A; and put each resulting
function into its appropriate earlier bucket.

2. Resolve each «; with the unit clause, put non-
tautology resolvents in lower buckets and move any
bucket with unit clause to top of processing.

o Else, generate \F:

J

P
A= ><{.rp|:EUpGmodels(al,...,ar)} | | A

=1

Add M? to the bucket of the largest-index variable in
Up + U?:l S U;=1 Qi —{Xp}.

Figure 5: Process-bucket procedure

G: P(G|F) (Gor D)
A G
F:  P(FIB,C) /)\ (F.D)
—_ |:
D: P(D|A,B) (~D or ~B) A\ (D,B,C)
\ 5
B: P®BJA) (BorC) A (A,B,C)
c (CJH\)\B/
: P(C|A A,C
\B (A.C)
A P(A) )\ (A)

A

Figure 6: Bucket elimination execution of elim-CPE



G: PGIF) (Gor D) ~G

G
A (A
(~Dor =

.

(Bor C)

F: P(F|B,C)

D: P(DIAB)

B:  P(BIA)

Figure 7: bucket elimination execution of elim-bel-cnf

In bucket A:
M =37, P(a)A(a)
P(p) = A4

Notice that algorithm Elim-CPE also includes a unit
resolution step whenever possible (in step 2) and a dy-
namic reordering of the buckets that prefer processing
buckets that include unit clauses. This may have a
significant impact on efficiency because treating ob-
servations (namely unit clauses) specially can avoid
creating new dependencies. In fact, any level of pair-
wise resolution in each bucket would be valid (but not
necessarily more efficient).

Example 4.2 Let’s now extend the example by adding
=G to the query. This will place =G in the bucket
of G. When processing bucket G, unit resolution
creates the unit clause D, whichis then placed in bucket
D. Next, processing bucket I creates a probabilistic
function on the two variables B and C. Processing
bucket D that now contains a unit clause will assign
the value D to the CPT in that bucket and apply unit
resolution, generating the unit clause =B that is placed
i bucket B. Subsequently, in bucket B we can apply
unit resolution again, generating C' placed in bucket C,
and so on. In other words, aside from bucket F', we
were able to process all buckets as observed buckets, by
propagating the observations. (See Figure 7.)

The algorithm in Figure 4 exploits unit resolution
even further by allowing dynamic ordering always pro-
cessing unit buckets (those containing unit clauses)
first. (This same heuristic was proposed in the origi-
nal Davis-Putnam algorithm for satisfiability). To in-
corporate this feature, after processing bucket G, we
should move bucket D to the top (since it has a unit
clause). Then, following its processing, we should pro-
cess bucket B and then bucket C', then F' and finally
A.

Figure 8: The induced augmented graph

4.1 Complexity

As usual, the complexity of bucket elimination algo-
rithms is related to the number of variables appearing
in each bucket, both in the scope of probability func-
tions as well as in the scopes of clauses. The worst-
case complexity is time and space exponential in the
size of the maximal bucket, which i1s captured by the
induced-width of the relevant graph. For the task at
hand, the relevant graph is the belief network’s moral
graph combined with the cnf interaction graph. In the
interaction graph of a cnf, every two nodes appearing
in the same clause are connected.

DEFINITION 4.1 (augmented graph) Given a belief
network and a cnf query, the augmented graph of the
network is the moral graph with additional arcs between
each two variables appearing in the same clause of the

cnf.

Consider now the computation inside a bucket. In
general, if yp is the cnf theory in bucket P defined over
Q and Aq,....A; are the probability functions whose
union of scopes is S, we compute:

A= Z H A (2)

{zp|Tqg€models(yp)} 1

defined over U = QU S — {X,}. A brute force compu-
tation of this expression enumerates each tuple z of U,
tests if it satisfies vp, computes the product and ac-
cumulates the sum. This approach is time and space
exp(|U]+1). (Some special improvements are feasible
using search methods for finding the models of a cnf
formula.)

Clearly, the complexity of Elim-CPE is O(n-exp(w*)),
where w* is the induced width of the augmented or-
dered graph. In Figure 8 we see that while the induced
width of the moral graph is just 2 (Figure 8a), the in-
duced width of the augmented graph is 3 (Figure 8b).



To capture the simplification associated with observed
variables or unit clauses, we use the notion of an ad-
gusted induced graph. The adjusted induced graph is
created by processing the variables from last to first in
the given ordering. Only parents of each non-observed
variable are connected. The adjusted induced width
is the width of the adjusted induced-graph. Figure 8c
shows the adjusted induced-graph relative to the evi-
dence in =G'. We see that the induced width, adjusted
for the observation, is just 2 (Figure 8c).

In summary,

THEOREM 4.3 Giwen a belief network over n wvari-
ables, a cnf and an ordering o, algorithm Elim-CPE
is time and space O(n -exp(w*(0)), where w*(o) is the
width along o of the adjusted augmented induced graph.

Since unit resolution increases the number of buckets
having unit clauses, and since those are processed in
linear time, it can improve performance substantially.
Such buckets can be identified a priori by applying unit
resolution on the cnf formula.

Corollary: When the the augmented graph is iden-
tical to the moral graph, the complexity of Elim-CPE
does not increase beyond the complexity of standard
inference. Moreover, unit resolution may sometime
cause exponential speedup.

4.2 Conditional belief

Frequently we want to evaluate the probability of a cnf
formula given a set of observations e, namely to com-
pute P(ple). This can be done by computing P(p Ae)
and subsequently computing P(e) using two execu-
tions of the bucket-elimination algorithm.

5 Related queries

Algorithm Elim-CPE can be easily extended to com-
pute CMPE and CM AP as well as belief conditioned
on ¢. Furthermore the algorithm can be generalized
for relational constraints in a simple manner.

5.1 Computing CMPE

Given a belief network and a cnf formula over a subset
of the propositions, @, the C'M P FE task is to compute
a tuple z° s.t.

P(z%) = P Li|Tpa,;
( ) {x|xQEmodels H | P
Clearly, following the derivation for Elim-CPE, we can
observe that the only change is that the summation op-

eration is replaced by maximization, as is shown in the

Algorithm Elim-CMPE
Input: A belief network BN = {Pi, ..., P, }; a cnf for-
mula ¢ = {ai,...am} defined over k propositions, an
ordering of the variables, d

Output: A CMPE tuple.

1. Initialize: (same as Elim-CPE).

2. Backward: Process from last to first. P is the

current bucket. For A1, A2, ..., Aj, a1, ..., @, In bucketp,
do

Process-bucket,(max, (A1, ..., ), (a1, ..., ay))

3. The CMPE is obtained by the product

in bucket;. A maximizing tuple is obtained
by assigning values in the ordering d consulting
recorded functions in each bucket: given the as-
signment © = (z1,...,%2i—1) choose z; st z; =

argmar iz |aA,....,Aap=true}

{\j€bucket;|e=(z1,...,x;_1)

Figure 9: Algorithm Elim-CMPE

process-bucket procedure that uses ® = max. Accord-
ingly, algorithm Elim-MCPFEis identical to Elim-CPE,
except that summation is replaced by maximization.
The algorithm is given in Figure 9.

5.2 Computing CMAP

The task of the CMAP is to compute:

P(xg°) = max

Pz
TgEmodels(p) ( Q)

where the formula ¢ is defined over a subset of propo-
sitions, ). Let @ = Xy, ..., Xz. Then,

Z HP Zi|Zpa,)

l‘

P(z%) =

{zgl|zg Emodels

Using the usual derivation for eliminating the last vari-
able X, there is a need to distinguish the two cases of
summation and maximization. Variables that appear
in ¢ should be processed by maximization (They cor-
respond to hypothesis variables in the regular MAP
task.) Furthermore, the normal restriction on variable
orderings in MAP tasks applies here, too. Variables in
¢ should initiate the ordering. This yields algorithm
Elim — CM AP that is identical to algorithm FElim-
CMPE or Elim-CPE except that the bucket operation
is summation or maximization (see Figure 10).

5.3 Belief updating conditioning on a cnf

It is possible to assume that sometimes evidence may
be uncertain and will come in the form of disjunc-
tive information(for example, a ppatient has measles
or chickenpox, and ). Thus, we can can generalize
the form of evidence to a cnf formula ¢ and compute



Algorithm Elim-CMAP

Input: A belief network BN = {Pi,...,P.}; A cnf
formula ¢ = {a1,...am} defined over Q@ = Xy, ..., Xk,
an ordering d that starts with Q.

Output: A CMAP tuple over Q.

1. Initialize: (same as Elim-Bel-Cnf).

2. Backward: Process from last to first. Let P be the
current bucket. For A1, A2, ..., Aj, a1, ..., @, In bucketp,
do

If X, not in @ then,
Process-bucket, (3, (A1, ... o))

Else

Process-bucket,(max, (A1, ..., ), (a1, ..., ay))

3. Assign values to @ in the ordering d = X1, ..., Xx,
using the information recorded in each bucket.

7)\]), (ozl,

Figure 10: Algorithm Elim-CMAP

P(X1]g). Since,

P(X1,9)
P(p)

we can compute both numinator and denominator by
one run of Elim-CPE as follows: if we place X; as the
first in the ordering (it will be processed last) and now
apply Elim-CPE as usual, the algorithm computes the
numinator, and then arrives at the conditioned for-
mula by normalization in the first bucket (as in Elim-

Bel).

P(Xilp) =

6 Discussion and conclusions

The nice property of the bucket-elimination algorithms
is that their complexity is not dependent on the num-
ber of models in the cnf formula. Clearly, all the
tasks addressed here could be also solved by condi-
tioning search or by some combination of search and
inference. However, the analysis of all these algorithm
would have to be related to the number of models or
solutions of the formula in question. There is no good
way to evaluate the number of models in advance, and
frequently there are many models. Nevertheless, such
search methods would avoid the space complexity of
bucket elimination and may work well in practice. A
brute-force search approach can generate each model,
one by one, and for each compute the probability of
the resulting model using belief network algorithms
for conjunctive queries. Clearly, a variety of improve-
ments can be utilized using general constraint satisfac-
tion methods [Dechter, 1999b]. However, the benefits
of each proposal should be evaluated empirically. This
is outside the scope of the current paper.

The bucket-elimination methods presented here show
the power of this scheme in solving a variety of queries,
thus making the study of this algorithmic framework

even more significant. In particular, approximation

schemes and methods that combine inference with
search for exact and anytime computations are im-
mediately applicable. This would be very useful in
practice in real-time approximate query answering.

References

[Arnborg, 1985] S. A. Arnborg. Efficient algorithms
for combinatorial problems on graphs with bounded
decomposability - a survey. BIT, 25:2-23, 1985.

[Bertele and Brioschi, 1972] U. Bertele
and F. Brioschi. Nonserial Dynamic Programming.
Academic Press, 1972.

[Dechter and Rish, 1997] R. Dechter and I. Rish. A
scheme for approximating probabilistic inference. In
Proceedings of Uncertainty in Artificial Intelligence
(UAI’97), pages 132-141, 1997.

[Dechter, 1996] R. Dechter. Bucket elimination: A
unifying framework for probabilistic inference al-
gorithms. In Uncertainty in Artificial Intelligence

(UAI'96), pages 211-219, 1996.

[Dechter, 1999a] R. Dechter. Bucket elimination: A
unifying framework for reasoning. Artificial Intelli-

gence, 113:41-85, 1999.

[Dechter, 1999b] R. Dechter. Constraint satisfaction.
In The MIT FEncyclopedia of Cognitive Sciences
(MITECS), pages 195-197, 1999.

[El-Fattah and Dechter, 1996]
Y. El-Fattah and R. Dechter. An evaluation of struc-
tural parameters for probabilistic reasoning: results
on benchmark circuits. In Uncertainty in Artificial

Intelligence (UAI’96), pages 244-251, 1996.

[Pavlov et al., ] D. Pavlov, H. Mannila, and P. Smyth.
Probabilistic models for query approximation with

20 large sparse binary data sets. In Submaitted to
UAI2000.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in In-
telligent Systems. Morgan Kaufmann, 1988.

[Pearl, 2000] J. Pearl. Ausality: Models, Reasoning
and Inference. Cambridge Press, 2000.

[Vitter and Wang, 1999] J. Vitter and W. Wang. Ap-
proximate computation of multidimensional aggre-
gates of sparse data using wavelets. In Proceedings

of SIGMOD, pages 193-204, 1999.



