
Approximate Solution Sampling (and Counting) on

AND/OR search space

Vibhav Gogate and Rina Dechter

Donald Bren School of Information and Computer Sciences

University of California, Irvine, CA 92697, USA

{vgogate,dechter}@ics.uci.edu

Abstract. In this paper, we describe a new algorithm that approximately solves the

problem of sampling solutions from a uniform distribution over the solutions of a

constraint network. Our new algorithm improves upon the Sampling/Importance

Resampling (SIR) component of our previous scheme of SampleSearch-SIR by

taking advantage of the decomposition implied by the network’s AND/OR search

space. We describe how our new scheme can be modified to approximately count

and lower bound the number of solutions of a constraint network. We demonstrate

both theoretically and empirically that on networks which have a favorable de-

composition, our new algorithm yields far better performance than competing ap-

proaches.

1 Introduction

The paper introduces a new method for approximately solving the §csp problem which

is the problem of generating solutions from a uniform distribution over the solutions

of a constraint network. As pointed out in earlier work [17, 3, 4], the §csp problem has

tremendous applications in fields such as verification and probabilistic reasoning. Our

main contribution is in improving the Sampling/Importance Resampling component of

our previous scheme of SampleSearch-SIR [7] by exploiting problem decomposition via

AND/OR search spaces for graphical models [2].

SampleSearch-SIR [7] approximately solves the §csp problem as follows. First, Sam-

pleSearch [4] is used to generate an initial set A of samples from the backtrack-free

distribution QF . Second, each sample is weighed by the reciprocal of the probability of

it being generated from QF . Third, a distribution M is formed over the initial set A by

normalizing the weights and finally a smaller set of samples B is drawn from M . The

final step is often called as the resampling step. It was shown by [12] that as the size of

the initial set A increases the distribution over the samples generated in the resampling

step (i.e. B) will converge to the uniform distribution over the solutions.

In our new scheme, called AO-SIR, the first step of generating the initial set of sam-

ples from QF (using SampleSearch) remains the same. What changes is that the initial

set A of samples is stored on an AND/OR structure. The AND/OR representation defines

a new distribution over the initial set of samples, from which samples are drawn in the

resampling step. We argue and show that the AND/OR structure imposed on the samples

will lead to a more accurate sampling scheme than the earlier one we proposed in [7]. In-

tuitively, SampleSearch-SIR is a method for learning a multi-variate distribution over the

constraint network (or any graphical model) from an initial set A of weighted samples.

SampleSearch-SIR assumes no independencies among the variables in the constraint net-

work. The AND/OR representation of the samples on the other hand captures some of the

inherent conditional independencies, yielding a more compact sample representation that

captures a larger set of virtual samples. Therefore, AO-SIR is likely to be more accurate

and have better convergence properties.

Subsequently, we derive a new unbiased estimator using the samples stored on the

AND/OR structure and show how it can be combined with SampleSearch to approxi-

mately count and lower bound the number of solutions of a constraint network, improv-

ing over our previous solution counter [5].

To evaluate whether exploiting decomposition via the AND/OR structure yields im-

proved performance in practice, we performed an empirical evaluation on a wide range of

satisfiability benchmarks . We found that on most problems our new schemes that operate

in the AND/OR space are more accurate than SampleSearch-SIR for solution sampling

while in the case of solution counting, we were able to improve upon the lower bounds

reported in [5, 8] in most cases.

The rest of the paper is organized as follows. In section 2, we present preliminaries

and previous work. In section 3, we present the AO-SIR algorithm and describe its prop-

erties. In section 4, we define a new unbiased estimator in AND/OR space. Empirical

results are presented in section 5 and we end with a brief summary in section 6.

2 Preliminaries

Definition 1 (constraint network, counting and sampling). A constraint network (CN)

is defined by a 3-tuple, R = 〈X,D,C〉, where X = {X1, . . . ,Xn} is a set of variables asso-

ciated with a set of discrete-valued domains, D = {D1, . . . ,Dn}, and C = {C1, . . . ,Cr} is

a set of constraints. Each constraint Ci is a relation RSi
defined on a subset of variables

Si⊆X. The relation denotes all compatible tuples of the cartesian product of the domains

of Si. A solution is an assignment of values to all variables x = (X1 = x1, . . . ,Xn = xn),
xi ∈Di, such that x belongs to the natural join of all constraints i.e. x ∈RS1

⊲⊳ . . . ⊲⊳ RSr
.

The constraint satisfaction problem (CSP) is to determine if a constraint network has a

solution, and if so, to find one. The primal graph (also called the constraint graph) of a

constraint network is an undirected graph that has variables as its vertices and an edge

connects any two variables involved in a constraint.

The solution counting problem #csp is the problem of counting the number of solutions

of a constraint network. The solution sampling problem §csp is the problem of sampling

solutions from a uniform distribution over the solutions of a constraint network.

2.1 AND/OR search spaces for general inference

The AND/OR search space [2] is a generic inference scheme that can be used to exactly

solve various combinatorial problems in graphical models. We can solve most combina-

torial problems by search, by systematically enumerating all the possible combinations.

In the simplest case, this process defines an OR search tree, whose nodes represent partial

variable assignments. This search space does not capture the structure of the underlying

C

B

D

A

≠

≠

≠

{1,2,3}

{1,2,3}

{1,2,3}

{1,2,3}

(a)

C

B D

A

(b)

2

B

0 1

2 1 2 0

D

0 1

D

0 1

2

A

0 2

A

0 1 0 1

A

1 2

A

0 1

A

1 2

A

1 2

A

0 2

A

0 2

C

0

B

1

D

1

A

0

2

D

2

A

1

1

B

0

D

0

A

2 10

2

D

2

A

2 0 2 0 1 0 1 1 2 0 1 1 2 1 2 0 2 0 20 1 2 10

(c)

2

B D

0 101

C

0 1

B D B D

1 2 1 202 0 2

2 0 1 1

A

1 2

A

0 2

A

0

A

1

A

2

A

0

(d)

2

B D

0 101

C

0 1

D D

1 2 0 2

1 2

2

0

B

1

A

0

2

A

1

B

0

A

2

(e)

Fig. 1. (a) A 3-coloring problem, (b) Pseudo-tree (c) AND/OR tree whose pseudo-tree is a chain

(d) AND/OR tree (e) AND/OR search graph

graphical model. To remedy this problem, [2] introduced the notion of AND/OR search

spaces for graphical models. Given a constraint network R = (X,D,C), its AND/OR

search space is driven by a pseudo tree defined below.

Definition 2 (Pseudo Tree). Given an undirected graph G = (V,E), a directed rooted

tree T = (V,E) defined on all its nodes is called pseudo tree if any arc of G which is

not included in E is a back-arc, namely it connects a node to an ancestor in T . The

pseudo-tree of a constraint network is the pseudo-tree of its constraint graph.

Definition 3 (Labeled AND/OR tree). Given a constraint network R = 〈X,D,C〉 and

a pseudo tree T , the AND/OR search tree SAOT , has alternating levels of AND and OR

nodes. The root of SAOT is an OR node labeled by the root of T . The children of an

OR node Xi are AND nodes labeled with assignment Xi = xi that are consistent with the

assignment (X1 = x1, . . . ,Xi−1 = xi−1) along the path from the root. The children of an

AND node Xi = xi are OR nodes labeled with the children of variable Xi in T . Each OR

arc, emanating from an OR node to an AND node is associated with a labeling function

which can be derived from the constraints.[2]. Each OR node and AND node is also

associated with a value that is recursively used for computing the quantity of interest. An

OR tree is an AND/OR tree whose pseudo-tree is a chain.

Definition 4 (Solution Subtree). A solution subtree of a labeled AND/OR tree contains

the root node. For every OR node it contains one of its child nodes and for each of its

AND nodes it contains all its child nodes.

Semantically, the OR states represent alternative assignments, whereas the AND states

represent problem decomposition into independent subproblems conditioned on some

value assignments, all of which need be solved. When the pseudo-tree is a chain, the

AND/OR search tree coincides with the regular OR search tree. We can count the num-

ber of solutions of a constraint network by labeling each consistent arc by 1 and each

inconsistent arc by 0. In this case, the number of solutions is equal to the number of

solution subtrees. For more details see [2].

AND/OR search graphs An AND/OR tree may contain nodes that root identical sub-

trees (i.e. their root nodes values are identical); called as unifiable nodes. When unifiable

nodes are merged, the tree becomes a graph and its size becomes smaller. Some unifiable

nodes can be identified using contexts detectable from the constraint graph as defined

below.

Definition 5 (AND Context). Given an AND/OR search tree SAOT relative to a pseudo-

tree T , the context of any AND node 〈Xi,xi〉 ∈ SAOT , denoted by context(Xi), is defined

as the set of ancestors of Xi in T , that are connected to Xi and descendants of Xi.

The context minimal AND/OR graph is obtained by merging all the context unifiable

AND nodes.

Example 1. Figure 1(a) shows a constraint network for a 3-coloring problem over 4 vari-

ables. Figure 1(d) shows the AND/OR-search tree for the constraint network based on

the Pseudo-tree in Figure 1(b). Figure 1(e) shows the AND/OR graph for the AND/OR

search tree of Figure 1(d) which is formed by merging all context unifiable nodes. Notice

that its size of the AND/OR graph is smaller than the AND/OR tree. Figure 1(c) shows

the AND/OR tree for a chain pseudo-tree which is equivalent to the traditional OR search

space.

2.2 Exact Solution to the §csp problem

In the following, we describe an approach due to Dechter et al. [3] to exactly solve the

§csp problem. We first express the uniform distribution P(x) over the solutions in a

product factored form: P(x = (x1, . . . ,xn)) = ∏n
i=1 Pi(xi|x1, . . . ,xi−1) (this follows from

standard probability theory). Here, the probability Pi(Xi = xi|x1, . . . ,xi−1) can be ob-

tained by computing the ratio between the number of solutions that the partial assignment

(x1, . . . ,xi) participates in and the number of solutions that (x1, . . . ,xi−1) participates in.

Then, we use an ordered Monte Carlo (MC) sampler (also called logic sampling [11])

to sample along the ordering O = 〈X1, . . . ,Xn〉 as described in Algorithm 1. In Example

2, we demonstrate how the ordered Monte Carlo sampler operates. Note that the ordered

Monte Carlo sampler is a general technique which can be used to sample from any dis-

tribution expressed in a product form.

Example 2. Figure 2(a) shows a complete OR search tree (the AND/OR tree whose

pseudo-tree is a chain) for the 3-coloring problem in Figure 1(a). Each arc from a parent

Xi−1 = xi−1 to a child Xi = xi in the search tree is labeled with the ratio of the number

of solutions below the child and the number of solutions below the parent which corre-

sponds to the probability Pi(Xi = xi|X1 = x1, . . . ,Xi−1 = xi−1). Given random numbers

0 2

B B

1 2 2 0 1

D

1 2

D

1 2 0

D

0 2

D

0 1

D

0 1

A

0 2

A

0 2

A

0 1

A

0 1

A

21 1

A

0 1

A

0 1

A

1 2

A

1 2

A

0 2

A

0 2

1

B

0

D

2

A

2

C
1/3

1/3
1/3

0.50.5 0.50.5 0.50.5

0.5

.5

.5 .5 .5.5 .5 .5.5

.5

.5 .5.5

.5.5 .5.5.5.5.5.5.5.5.5.5.5

.5

.5.5.5 .5 .5 .5 .5.5.5

0 2 0 2 0 1 0 1 21 1 0 1 0 1 1 2 1 2 0 2 0 22

C

0 1 2

B D B D B D

1 2 1 202 0 2 0 101

A

0 2

A

0 1

A

1 2

A

0 1

A

1 2

A

0 2

1/31/31/3

.5
.5 .5 .5.5 .5 .5

.5.5 .5.5.5 .5 .5 .5 .5
.5

.5
.5

.5
.5 .5 .5 .5

Fig. 2. Uniform distribution over the solutions of a CSP expressed in a product factored form on

(a) an OR tree (b) an AND/OR tree

{0.6,0.3,0.7,0.9}, for example, the solution highlighted in bold in Figure 2(a) will be

generated by the ordered Monte Carlo sampler.

All algorithms described in this paper are devoted to finding an approximation to this

exact probability Pi(Xi = xi|x1, . . . ,xi−1) at each branch of the search tree.

2.3 SampleSearch-SIR to solve the §csp problem

Because constructing P(x) can be quite hard [3], in [7] we proposed to use Sampling

Importance Resampling (SIR) [12] in conjunction with the SampleSearch scheme [4]

to approximate it. This scheme operates as follows. First, given a proposal distribu-

tion Q, it uses SampleSearch to draw random solution samples A = (x1, . . . ,xN) from

the backtrack-free distribution QF of Q. Second, a possibly smaller number of samples

B = (y1, . . . ,yM) are drawn from A with sample probabilities, proportional to the weights

w(xi) = 1/QF(xi) (this step is referred to as the re-sampling step). For N = 1, the distribu-

tion of solutions is same as QF . For a finite N, the distribution of solutions is somewhere

between QF and P improving as N increases and equals P as N→ ∞.

3 Sampling Importance Resampling on AND/OR search spaces

In this section, we describe the main contribution of this paper which lies in defining a

novel Sampling/Importance Resampling (SIR) scheme on AND/OR search spaces. Be-

fore providing a formal description, we describe the main intuition involved in moving

Algorithm 1 Generate sample (P = ∏n
i=1 Pi(Xi|X1, . . . ,Xn))

1: x = φ
2: for i= 1 to n do

3: Generate a random number p between 0 and 1.

4: Divide the number line between 0 and 1 into |Di| intervals such that each interval belonging

to Xi = xi is proportional to Pi(Xi = xi|x).
5: Let Xi = xi be the interval in which p lies. x = x∪ xi.

6: end for

to AND/OR space in the following example. Note that in the following, we will abuse

notation and refer to SampleSearch-SIR as SIR.

Example 3. The bold edges and nodes in Figure 1 (c) show four solution samples ar-

ranged on an OR tree (an AND/OR tree whose pseudo-tree is a chain). The bold edges

and nodes in Figures 1 (d) and 1 (e) show the same four samples arranged on an AND/OR

tree and graph respectively. Visually, we can see that the same samples achieve larger

coverage in the AND/OR space than in the OR space. One can verify that the 4 solu-

tion samples in OR-space correspond to 8 and 12 solution samples (solution sub-trees)

respectively on the AND/OR tree and AND/OR graph. Thus, the AND/OR representa-

tion yields a larger initial set of (virtual) samples. It includes for example the assignment

(C = 0,B = 2,D = 1,A = 0) which is not represented in the initial set of SIR which oper-

ates in the OR space. From SIR theory [12], we know that the accuracy of SIR increases

with the cardinality of A. Therefore, we expect that the solutions resampled from the

AND/OR tree and graph will be more accurate than conventional resampling performed

over the OR tree.

An alternative intuition is provided in the next example.

Example 4. Figure 2(a) and 2(b) present the uniform distribution over the solutions ex-

pressed on an OR tree and AND/OR tree respectively. As pointed out earlier, any ap-

proximate sampling algorithm can be understood as a method that first approximates

the probability labels on the arcs and then samples from this approximate structure. The

conventional SIR algorithm approximates the probability labels on the OR-tree (proof

appears later) using the initial set of samples while our new AO-SIR algorithm approx-

imates probability labels on the AND/OR tree. We expect AO-SIR which approximates

probability labels on the AND/OR tree to converge faster to the correct distribution than

the conventional SIR scheme which operates on the OR tree, because the AND/OR tree

is more compact than the OR tree and expresses more virtual samples.

For lack of space, we will describe the AO-SIR scheme on an AND/OR tree noting

that it can be generalized to AND/OR graphs. In AO-SIR, the process of generating the

initial set of samples from QF remains the same. What changes is the way in which we

(a) store samples, (b) define the distribution over the initial set of samples and (c) perform

the resampling step. We explain each of these modifications below. We first define the

notion of an AND/OR sample tree (and graph) which can be used to store the initial set

of samples. The arc labels on this AND/OR sample tree (or graph) are set to account for

the weights.

Definition 6 (Arc Labeled AND/OR sample tree and graph). Given (1) a constraint

network R = 〈X,D,C〉, (2) a pseudo-tree T (V,E) , (3) the backtrack-free distribution

QF = ∏n
i=1 QF

i (Xi|Anc(Xi)) such that Anc(Xi) is a subset of all ancestors of Xi in T ,

(4) a sequence of samples S (assignments) generated from QF , an arc-labeled AND/OR

sample tree SAOT is its corresponding AND/OR tree (see definition 3) from which all

assignments not in S are removed. The arc-label from an OR node Xi to an AND node

Xi = xi in SAOT is a pair 〈#,w〉 where:

– #: the frequency of the arc is the number of times (Xi = xi,anc(Xi)) is seen in S .

C

0 1

B B

1 2 20

D

1

D

2

D

0

D

2

A

0

A

1

A

2

A

0

(2,2.5) (2,2.5)

(1,1.66) (1,2.5) (1,2.5) (1,1.66)

(1,2) (1,2) (1,2)
(1,2)

(1,2) (1,2) (1,2)

2 2 2 2

2
2 2 2

4 4 4
4

(4*1.66+4*.25)/2=8.32

(4*1.66+4*.25)/2=8.32

20.8

0 1 2 0
(1,2)

(a)

C

0 1

B B

1 2 20

D

1

D

2

D

0

D

2

A

0

A

1

A

2

A

0

0.5 0.5

0.4 0.6 0.6 0.4

1

1 1 1

1 1 1

1

0 1 2 0
1

(b)

Fig. 3. (a) Computation of Value on an AND/OR sample tree (b) AND/OR sample probability tree

– w = 1

QF
i (Xi=xi|anc(Xi))

is called the weight of the arc. anc(Xi) is the assignment of

values to all variables from the node Xi to the root node of SAO.

An arc-labeled AND/OR sample graph SAOG is constructed from an AND/OR sam-

ple tree SAOT by merging all context unifiable nodes (we can show that the context based

unification is sound in this case as well). In case of AND/OR sample graph, we require

that the proposal distribution has the form: QF = ∏n
i=1 QF

i (Xi|context(Xi)).

Definition 6 describes how to store the samples generated from QF on an AND/OR

tree (or graph). The next step is to compute a distribution over the stored samples from

which we resample. Our aim is to approximate the exact distribution expressed on a

complete AND/OR tree by approximating the labels on each arc from an OR node n

to an AND node n′ with a probability value that is (approximately) proportional to the

number of solutions of the subtree rooted at n′ [3]. SIR approximates these probability

labels by a quantity that is proportional to its current estimate of the respective solution

counts. AO-SIR will do the same with respect to the AND/OR sample tree. To that end,

we define the notion of value of the node v(n) which can be semantically understood as

providing an unbiased estimate of the solution counts of the subtree rooted at n.

Definition 7 (Value of a node). The value of a node in a arc-labeled AND/OR sample

tree (see Definition 6) is defined recursively as follows. The value of leaf AND nodes is

”1” and the value of leaf OR nodes is ”0”. Let C(n) denote the child nodes of n and v(n)
denotes the value of node n. If n is an AND node then: v(n) = ∏n′∈C(n) v(n′) and if n is a

OR node then

v(n) =
∑n′∈C(n)(#(n,n′)w(n,n′)v(n′))

∑n′∈C(n) #(n,n′)
(1)

The weight contribution of an AND node n′ is equal to #(n,n′)w(n,n′)v(n′).

In the following example, we show how the value of each node on a AND/OR sample

tree and graph can be computed.

Example 5. Figure 3(a) demonstrates how to recursively compute the value of a node on

an AND/OR sample tree. The value of all leaf AND nodes is set to 1. The value of an

internal AND node is obtained by product of the values of its children. The value of an

OR node is obtained by dividing the sum of the weight contribution of the child nodes

by the sum of the frequencies on the incoming arcs. The weight contribution of a child

AND node is equal to the product of the value of the node with the frequency and the

weight of the arc.

In the following lemma, we provide the semantics of computing the value of a node on

an AND/OR sample tree.

Lemma 1. The value of a node n is an unbiased estimate of the number of solutions of

the subtree rooted at n.

Proof. Define F(x) = 1 iff the assignment x is a solution and 0 otherwise. Given the

backtrack-free distribution QF(x) = ∏n
i=1 QF

i (Xi|Anc(Xi)) which is defined only on the

solutions of the constraint network, we can express the counting problem as follows:

#csp = ∑
X1,...,Xn

F(X) = ∑
X1,...,Xn

F(X)
QF(X)

QF(X)
(2)

From AND/OR theory [2], we know that we can decompose F as a product of sev-

eral smaller functions based on the pseudo-tree T . Namely, F(x) = ∏n
i=1 Fi(Xi,Anc(Xi)).

Therefore, we can express Equation 2 as follows:

#csp = ∑
X1,...,Xn

n

∏
i=1

Fi(Xi,Anc(Xi))

QF
i (Xi|Anc(Xi))

QF
i (Xi|Anc(Xi)) (3)

By commutativity property of summation and product, we have:

#csp = ∑
X1

F1(X1)

QF
1 (X1)

QF
1 (X1)× . . .×∑

Xn

Fn(Xn,Anc(Xn))

QF
n (Xn|Anc(Xn))

QF
n (Xn|Anc(Xn)) (4)

Note that conditional expectation of a random variable A given B taken with respect
to a distribution P is defined as: EP[A|B] = ∑A A×P(A|B) while expectation is defined as:
EP[A] = ∑A A×P(A). By using the definition of expectation and conditional expectation,
Equation 4 can be written as:

#csp = E

[

F1(X1)

QF
1 (X1)

× . . .×E

[

Fn(Xn,Anc(Xn))

QF
n (Xn|Anc(Xn))

|Anc(Xn)

]]

(5)

Let Chi(Xi) be the set of children of Xi in the Pseudo-tree. In general, the conditional
expectations at a node Xi in Equation 5 given an assignment anc(xi) is given by:

V (Xi|anc(Xi)) = E





Fi(Xi,anc(Xi))

QF
i (Xi|anc(Xi))

∏
X j∈Chi(Xi)

V (X j|anc(X j))|Anc(Xi)



 (6)

Note that by definition, V (Xi|anc(Xi)) is equal to the number of solutions that the

assignment anc(Xi) participates in. Because all samples generated from QF
i (Xi|Anc(Xi))

are solutions, we have Fi(Xi,Anc(Xi)) = 1 for all the generated samples. Therefore, we

can ignore this quantity.

Given samples generated from QF , we can estimate V (Xi|anc(Xi)) as follows. Let k
be the domain size of Xi and let #(Xi = xi,anc(Xi)) be the number of times the assignment
(Xi = xi,anc(Xi)) is sampled and let w(Xi = xi,anc(Xi)) = 1/QF(Xi = xi|anc(Xi)) be the
weight of this assignment. From standard sampling theory [13], we have the following
estimate v(Xi|anc(Xi)) of V (Xi|anc(Xi)):

v(Xi|anc(Xi)) =
∑k

i=1 #(Xi = xk
i ,anc(Xi))w(Xi = xk

i ,anc(Xi))∏X j∈Chi(Xi) v(X j|Xi = xk
i ,anc(Xi))

∑k
i=1 #(Xi = xk

i ,anc(Xi))
(7)

Because in the expectation, the value of an OR node, v(Xi|anc(Xi)) is equal to the num-

ber of solutions that the assignment anc(Xi) participates in, we have an unbiased estima-

tor. ⊓⊔

From Lemma 1, we see that the value v(n) of a node in the AND/OR sample tree

stores the average weight (which provides an unbiased estimate of the solution counts)

of the subproblem rooted at n, subject to the current variable instantiation along the path

from the root to n. As described earlier, the distribution over the initial set of samples in

SIR is obtained by simply normalizing the weights. We can replicate the same process

on a AND/OR tree (or graph) by just normalizing the weight contributions at each OR

node to yield a probability distribution over the AND/OR tree. We now define the no-

tion of AND/OR sample probability trees (and graphs) which correspond to a graphical

representation of the probability distribution over the initial set of samples.

Definition 8 (AND/OR sample probability tree and graph). Given an arc labeled
AND/OR sample tree (or graph) SAOT , an AND/OR sample probability tree (or graph)
has the same structure as SAOT and the arc-label p(n,n′) from an OR-node n to an AND
node n′ is defined as follows. Let C(n) denote the child nodes and v(n) denote the value
of node n.

p(n,n′) =
v(n′)w(n,n′)#(n,n′)

∑n′′∈C(n)(#(n,n′′)w(n,n′′)v(n′′))
(8)

Example 6. Figure 3(b) shows an AND/OR sample probability tree constructed from the

arc-labeled AND/OR sample tree of Figure 3(a).

The AND/OR sample probability tree represents the sampling distribution used for

resampling. We can generate samples from it in the usual way using the ordered Monte

Carlo sampler described in section 2.2.

We now have the required definitions to formally present algorithm AO-SIR (see

Algorithm 2). Here, we first generate samples in the usual way from QF . We then store

these samples on an arc labeled AND/OR sample tree or a graph. The AND/OR sample

tree or graph is then converted to a AND/OR sample probability tree (or graph) (Steps

3− 9). Finally, the required M solution samples are generated by sampling from the

AND/OR sample probability tree (or graph). We can prove that:

Theorem 1. As N → ∞, the samples generated by AO-SIR will consist of independent

draws from the uniform distribution over the solutions.

Proof. Below we provide a sketch of the proof. Let M(X1, . . . ,Xn)= ∏n
i=1 Mi(Xi|Anc(Xi))

be the sampling distribution defined by the AND/OR sample probability tree.

Algorithm 2 AO−SIR(R,QF ,N,M)

1: Generate N i.i.d. samples A = {x1, . . . ,xN} from QF

2: Store the N solution samples on an AND/OR sample tree SAOT or a graph and label it using

definition 6.

3: FOR all leaf nodes i of SAOT do

4: IF And-node v(i)= 1 ELSE v(i)=0

5: For every node n from leaves to the root do

6: Let C(n) denote the child nodes of node n

7: IF n = 〈X ,x〉 is a AND node, then v(n) = ∏n′∈C(n) v(n′)
8: ELSE if n = X is a OR node then (from Definition 7)

v(n) =
∑n′∈C(n)(#(n,n′)w(n,n′)v(n′))

∑n′∈C(n) #(n,n′)
.

9: Construct the AND/OR sample probability tree PAOT from SAOT by labeling each arc from an

OR node to an AND node in PAOT as:

p(n,n′) =
v(n′)w(n,n′)#(n,n′)

∑n′′∈C(n)(#(n,n′′)w(n,n′′)v(n′′))

10: Return M solution samples generated from PAOT by using the ordered Monte Carlo sampler.

Let P(X1, . . . ,Xn) = ∏n
i=1 Pi(Xi|Anc(Xi)) be the uniform distribution over the so-

lutions. Note that given an assignment to the ancestors of Xi, it was proved in [3] that
P(Xi|Anc(Xi) = anc(Xi)) is proportional to the number of solutions that anc(Xi) partici-
pates in. Using the notation from the proof of Lemma 1, we have:

Pi(Xi|anc(Xi)) ∝ V (Xi|anc(Xi)) (9)

From the definition of AND/OR sample probability tree, Mi(Xi|Anc(Xi) = anc(Xi)) is
proportional to the value of the corresponding OR node. Therefore,:

Mi(Xi|anc(Xi)) ∝ v(Xi|anc(Xi)) (10)

From sampling theory [13], we know that the unbiased estimate v(Xi|Anc(Xi)= anc(Xi))
would converge to V (Xi|Anc(Xi) = anc(Xi)) as N → ∞. Therefore, the quantities pro-
portional to the two estimate v and the exact value V will be equal in the limit. That
is,

lim
N→∞

Mi(Xi|anc(Xi)) = Pi(Xi|anc(Xi)) (11)

⊓⊔

Note that when the pseudo-tree is a chain, that is when the AND/OR sample tree

is equivalent to the OR sample tree, AO-SIR is same as conventional SIR. This result

follows trivially from the analysis presented in Lemma 1 and Theorem 2.

Corollary 1. When the pseudo-tree is a chain, the solution samples output by AO-SIR

will have the same distribution as those output by conventional SIR.

Theorem 2 shows that AO-SIR has the same properties of convergence in the limit

as conventional SIR. However, as pointed out in [12, 15], when the number of samples is

finite, the performance of SIR is highly dependent on the size of the initial set A in that

the accuracy of SIR increases with the cardinality of A. Since, the AND/OR sample tree

represents a larger initial set of virtual samples, we expect AO-SIR to be more accurate

than conventional SIR. In summary,

Theorem 2. Asymptotically, AO-SIR generates solution samples from a distribution that

may have lower error than conventional SIR.

Clearly, when the number of solution subtrees in AO-SIR is equal to the size of the

initial set, AO-SIR will yield the same sampling distribution as SIR. Namely, after the

required samples are drawn, we can provide a stronger condition for testing whether the

distribution of AO-SIR will coincide with the distribution of SIR. In summary,

Theorem 3. If the number of solution subtrees of AO-SIR is equal to the size of the initial

set of conventional SIR, then the samples output by AO-SIR have the same distribution

as those output by SIR.

In the following theorem, we address the complexity of storing and resampling samples

on a AND/OR tree.

Theorem 4. Given N samples and n variables (with constant domain size), the time

and space complexity of computing AND/OR sample probability tree is O(nN) (same as

conventional SIR). The time complexity of resampling M samples in AO-SIR is O(nM)
(the complexity of resampling of SIR is O(Mlog(N))).

In the next section, we discuss how AO-SIR can be modified to count and lower

bound the number of solutions of a constraint network.

4 Approximate Counting on AND/OR search spaces

From Lemma 1, we know that the value of each OR node n is an unbiased estimate of the

number of solutions admitted by the subtree rooted at n. Therefore, it is easy to see that:

Proposition 1. The value of the root node of the AND/OR sample tree or graph is an

unbiased estimate of the number of solutions of the CSP.

In our previous work[5], we derived an unbiased estimate based on importance sampling

for computing the solution counts. This unbiased estimate is equivalent to the unbiased

estimate derived on an AND/OR sample tree whose pseudo-tree is a chain (i.e. an OR

space estimator). Namely,

Proposition 2. If the pseudo-tree is a chain then the value of root node of the AND/OR

sample tree is equal to the conventional importance sampling based unbiased estimator.

The main virtue of using the AND/OR space estimator over the OR space estimator

is that the former may have lower variance (and therefore likely to have better accuracy)

than the latter as we described in the following theorem:

Theorem 5. The variance of the AND/OR space estimator (used for solution counting)

is less than or equal to the variance of the conventional OR space estimator of [5].

Algorithm 3 AO−LB(R,QF ,N,k,α > 1)

1: minCount← ∞

2: for i = 1 to k do

3: Execute Steps 1-8 of Algorithm 2.

4: estimate = v(root−node)
5: IF minCount > estimate THEN minCount = estimate

6: end for

7: Return minCount
α

Table 1. Results for Solution Sampling

Problem #Var #Cl SampleSearch SampleSearch-SIR AO-SIR SampleSat

KL KL KL KL

Pebbling

grid-pbl-10 110 191 0.08 0.002 0.00008 0.110

grid-pbl-15 240 436 0.12 0.017 0.00010 0.127

grid-pbl-20 420 781 0.10 0.008 0.00110 0.153

grid-pbl-25 650 1226 0.13 0.027 0.00600 0.138

grid-pbl-30 930 1771 0.15 0.040 0.00170 0.154

Circuit

2bitcomp 5 125 310 0.03 0.003 0.00100 0.033

2bitmax 6 252 766 0.11 0.006 0.00100 0.039

ssa7552-158 1363 3034 0.06 0.006 0.00072 0.130

ssa7552-159 1363 3032 0.06 0.003 0.00450 0.130

Logistics

log-1 939 3785 0.08 0.011 0.00800 0.051

log-2 1337 24777 0.12 0.270 0.11000 0.203

log-3 1413 29487 0.20 0.128 0.07000 0.176

log-4 2303 20963 0.21 0.183 0.01393 0.290

log-5 2701 29534 0.22 0.270 0.18900 0.260

Coloring

Flat-100 300 1117 0.08 0.001 0.00190 0.020

Flat-200 600 2237 0.11 0.016 0.00800 0.030

Proof. See [6] for a proof.

Following [8, 5], we can easily combine the unbiased AND/OR space estimator with

the Markov inequality to obtain a lower bound on the solution count. For completeness

sake, we provide a pseudo-code (see Algorithm 3) for this scheme called AO-LB which

yields a probabilistic lower bound on solution counts with a given confidence 1−αk.

AO-LB first generates an estimate of the solution counts by performing computations

on an AND/OR tree (Steps 1-7 of Algorithm 2). It then returns the minimum estimate

divided by α (minCount in Algorithm 3) over the k iterations. We can show that:

Theorem 6. [5][8] With probability of at least 1− 1/αk, AO-LB computes a lower

bound on the number of solutions of the constraint network R.

5 Experimental Evaluation

The main focus of our empirical study is to evaluate the performance of our new schemes

of AO-SIR and AO-LB which operate on AND/OR space relative to the SampleSearch-

SIR and SampleSearch-LB schemes which operate on OR space. For comparison, we

also include the SampleSat [17]scheme for solution sampling and the SampleCount scheme

[8] for solution counting 1. Following previous work [17], we set the parameters SA and

cuto f f of SampleSat to 50% and ∞ respectively. In all our experiments for lower bound-

ing the solution counts using SampleCount, SampleSearch-LB and AO-LB, we set k = 7

and α = 2 giving us a correctness confidence of 99% on our lower bound. For the Sam-

pleCount scheme we set the #samples parameter to 50. Also following previous work, we

use minisat [16] as an underlying search procedure for SampleSearch while the proposal

distribution Q is computed using the output of a generalized belief propagation algorithm

called Iterative Join Graph Propagation.

We experimented primarily with satisfiability problems because of the relative easy

availability of exact solution counting algorithms such as cachet[14] for these problems.

Note that in case of solution sampling, we need an exact counting algorithm in order to

evaluate the accuracy of the competing sampling schemes. Another use of cachet is that

when it is terminated after a specific time bound, it achieves a lower bound on the number

of solutions; thereby acting as a competing scheme for solution counting.

5.1 Results for solution sampling

We evaluate the quality of various algorithms by computing the average KL distance be-

tween the exact marginal distribution Pe(xi) and the approximate marginal distribution

Pa(xi) of each variable (KL = Pe(xi)ln(Pe(xi)/Pa(xi))). The exact marginal for each vari-

able Xi can be computed as: Pe(Xi = xi) = |Sxi
|/|S| where Sxi

is the set of solutions that

the assignment Xi = xi participates in and S is the set of all solutions. The number of

solutions for the SAT problems were computed using Cachet [14]. After running various

sampling algorithms, we get a set of solution samples φ from which we compute the

approximate marginal distribution as: Pa(Xi = xi) = φ(xi)/|φ | where φ(xi) is the number

of solutions in the set φ in which Xi = xi.

We experimented with four sets of benchmarks (see Table 1): (a) the grid pebbling

problems, (b) the logistics planning instances, (c) circuit instances and (d) flat graph

coloring instances available from Satlib [10]. The first three benchmarks were used to

evaluate Cachet [14]. Note that we used SAT problems whose solutions can be counted

in relatively small amount of time because to compute the KL distance we have to count

solutions to n+1 SAT problems for each formula having n variables.

Table 1 summarizes the results of running each algorithm for exactly 1 hr on various

benchmarks. The second and the third column report the number of variables and clauses

respectively of each benchmark. For each sampling algorithm, we report the average

KL distance. Note that lower the KL distance the more accurate the sampling algorithm

is. From Table 1, we can see that our new scheme of AO-SIR is more accurate than

SampleSearch-SIR on most benchmarks. Also the SIR-type methods are more accurate

than pure SampleSearch and SampleSat.

5.2 Results for Solution Counting

Table 2 summarizes our results for lower bounding solution counts on various benchmark

problems using the following competing schemes (a) Cachet [14](b) SampleCount [8],

1 In future, we hope to achieve a comparison with the recently proposed XorSample scheme [9].

Table 2. Results on benchmarks. A Timeout of 12 hrs is used. The best results for lower-bounding

(except for cachet) are highlighted in each row. A ’-’ in the exact count column indicates that the

solution count is not known.

Instances #Vars Exact Count Cachet SampleCount SampleSearch-LB AO-LB

If known Count Time LB Time LB Time LB Time

Circuit

2bitcomp6 252 2.10E+29 2.10E+29 10s 6.50E+28 9s 7.79E+28 5s 8.00E+28 5s

apex7-w5(sat-02) 1983 - 3.00E+39 12hrs 4.40E+86 28min 3.45E+86 35min 1.94E+87 35min

k-cnfs

wff-3-3.5 150 1.40E+14 1.40E+14 6min 1.60E+13 4min 2.32E+13 5s 4.79E+13 5s

wff-3.1.5 100 1.80E+21 1.80E+21 3hrs 1.00E+20 4min 1.55E+20 20s 9E+20 20s

wff-4.5.0 100 8.00E+12 12hrs 8.00E+15 2min 2.30E+16 28s 3.50E+16 28s

4-coloring

100-200 400 - 4.92E+24 12hrs 8.77E+32 1min 9.34E+36 28s 1.94E+37 29s

100-250 400 - 2.72E+23 12hrs 4.43E+26 30s 3.38E+29 29s 1.37E+30 29s

200-400 800 - 1.50E+33 12hrs 3.14E+68 2min 6.27E+72 2min 2.02E+73 2min

200-500 800 - 3.07E+35 12hrs 2.48E+57 3min 5.75E+63 2min 5.33E+64 2min

300-600 1200 - 4.48E+37 12hrs 4.40E+92 3min 5.68E+98 5min 2.00E+100 5min

300-750 1200 - 4.59E+35 12hrs 9.83E+84 5min 1.48E+89 5min 2.72E+91 5min

Langford

Langford-20-2 1600 2.60E+12 1.90E+04 12hrs 5.80E+09 1hr 6.90E+11 15min 6.90E+11 15min

Langford-23-2 2116 3.70E+15 1.75E+05 12hrs 1.60E+11 1.5hr 1.50E+14 25min 1.50E+14 25min

Langford-24-2 2304 - 1.20E+05 12hrs 4.10E+13 1.5hr 9.80E+14 30min 9.80E+14 30min

Langford-27-2 2916 - 9.80E+03 12hrs 5.20E+14 2hr 1.50E+16 20min 1.50E+16 20min

Langford-28-2 3136 - 1.20E+04 12hrs 4.00E+14 2hr 3.40E+16 1hr 3.40E+16 1hr

(c) SampleSearch-LB [5] and (d) the AO-LB scheme. All algorithms except cachet are

probabilistic in that the lower bounds may be incorrect with a probability < 1%. Each

algorithm was terminated after 12 hrs if it did not terminate earlier. We experimented

with 4 sets of benchmarks (a) Circuit benchmarks available from satlib [10] (b) Flat

Graph coloring instances generated using Joseph Culberson’s flat coloring generator [1],

(c) Random k-cnf benchmarks and (d) Langford instances available from [8].

We can see that on the circuit, k-cnf and graph coloring benchmarks, AO-LB yields

far better lower bounds than other competing schemes as highlighted by bold in Table 1.

On the langford instances (and latin square instances which are not shown due to lack of

space) however, we notice that the lower bounds output by SampleSearch-LB and AO-

LB are identical. The reason for this is Theorem 3 in that AND/OR estimates are equal

to OR estimates because the number of solution subtrees in the AND/OR space is equal

to the number of samples in the OR space. From AND/OR theory [2], we can show that

this condition would not occur if the constraint graph of the problem has at least one or

more small separators 2. The langford and latin square instances however have constraint

graphs which have large cliques and consequently large separators. Note however that

as already proved, the AND/OR estimates are likely to be as good or better than OR

estimates and the two have the same time complexity. Therefore AND/OR estimators

should always be preferred over OR estimators.

2 Separators are a set of nodes which separate the primal graph of a constraint network into two

or more independent components

6 Conclusion

We introduced a new Sampling/Importance Resampling (SIR) algorithm which uses an

AND/OR tree (or graph) to take advantage of problem decomposition. The main virtue

of the AO-SIR scheme is that it is likely to have lower error than the conventional SIR

algorithm which operates on an OR tree. We showed how the AO-SIR scheme can be

combined with SampleSearch to generate solutions that converge in the limit to the uni-

form distribution. We also derived a new importance sampling based unbiased estimator

and Markov inequality based lower bounding schemes for solution counts. Our experi-

ments are preliminary but promising in that on most instances our new statistical schemes

which operate in the AND/OR space have better performance than conventional statisti-

cal schemes that operate in the OR space.

References

1. Joseph Culberson. Flat graph coloring generator. http://www.cs.ualberta.ca/∼joe/Coloring/.

2. R. Dechter and R. Mateescu. AND/OR search spaces for graphical models. Artificial Intelli-

gence, 171(2-3):73–106, 2007.

3. Rina Dechter, Kalev Kask, Eyal Bin, and Roy Emek. Generating random solutions for con-

straint satisfaction problems. In AAAI, pages 15–21, 2002.

4. Vibhav Gogate and Rina Dechter. A new algorithm for sampling csp solutions uniformly at

random. CP, 2006.

5. Vibhav Gogate and Rina Dechter. Approximate counting by sampling the backtrack-free

search space. In AAAI, pages 198–203, 2007.

6. Vibhav Gogate and Rina Dechter. And/or importance sampling. Under Review, 2008.

7. Vibhav Gogate and Rina Dechter. Studies in solution sampling. 2008.

8. Carla Gomes, Jeorg Hoffmann, Ashish Sabharwal, and Bart Selman. From sampling to model

counting. IJCAI, 2007.

9. Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Near-uniform sampling of combinatorial

spaces using xor constraints. In NIPS. 2007.

10. Holger H. Hoos and Thomas Stützle. SATLIB: An Online Resource for Research on SAT.

pages 283–292.

11. J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

12. Donald B. Rubin. The calculation of posterior distributions by data augmentation. Jornal of

the American Statistical Association, 82, 1987.

13. Reuven Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley & Sons, Inc.,

New York, NY, USA, 1981.

14. Tian Sang, Paul Beame, and Henry A. Kautz. Heuristics for fast exact model counting. In

SAT, pages 226–240, 2005.

15. A. F. M. Smith and A. E. Gelfand. Bayesian statistics without tears: A sampling–resampling

perspective. 46(2):84–88, May 1992.

16. Niklas Sorensson and Niklas Een. Minisat v1.13-a sat solver with conflict-clause minimiza-

tion. In SAT, 2005.

17. Wei Wei, Jordan Erenrich, and Bart Selman. Towards efficient sampling: Exploiting random

walk strategies. In AAAI, 2004.

