
Refined Bounds for Instance-Based Search Complexity
of Counting and Other #P Problems

Lars Otten and Rina Dechter

Bren School of Information and Computer Sciences
University of California, Irvine, CA 92697-3425, U.S.A.

{lotten,dechter}@ics.uci.edu

Abstract. This paper presents measures for upper and lower bounding the instance-
based complexity of AND/OR search algorithms for solution counting and related
#P problems. This can be of utmost importance in selecting the right set of pa-
rameters for fitting an algorithm to a problem instance and in devising heuristics
during execution. To this end we estimate the size of the search space, with spe-
cial consideration given to the impact of determinism in a problem. The resulting
schemes are evaluated empirically on a variety of problem instances; in many
cases relatively tight bounds are obtained, far better than those implied bythe
tree width or hypertree width. Specific results are provided detailing how these
measures can be useful for discriminating between variable orderings.

1 Introduction

This paper develops measures for upper and lower bounding the performance of search
algorithms for solution counting in constraint networks and other related#P problems.
It has been known for a while that the complexity of inferencealgorithms (e.g., join-
tree clustering, variable elimination) is exponentially bounded by the tree width of the
constraint problem’s underlying graph structure. The baseof the exponent is often taken
to be the maximum domain size.

More accurate bounds were derived by looking at the respective domain sizes and
their product in each cluster of a tree decomposition of the underlying graph [8]. These
tighter bounds were used in selecting “good” variable orderings, for example. It was
recently shown that these bounds are also applicable to search algorithms that explore
the context-minimal AND/OR search graph [2].

The shortcoming of these bounds is that they are completely blind to context-
sensitivity hidden in the relations and functions of the constraint network and espe-
cially determinism: When a problem possesses high levels of determinism, its tree width
bound can be large while its search space can be extremely pruned, due to propagation
and inconsistencies across relations.

Part of this shortcoming in worst-case complexity bounds isaddressed by the more
recent concept of hypertree decompositions [5]. It was shown that the maximum number
of relations in the clusters of a hypertree decomposition (the hypertree width) exponen-
tially bounds the problem complexity for constraint inference, a result that was extended
to general graphical model inference in [7]. The base of the exponent in this case is the

2

relation tightness, thus allowing the notion of determinism to play a role. However, in
practice this bound often turns out to be far worse than the tree width bound.

We recently introduced a more informed upper-bounding scheme, that selectively
takes determinism into account by greedily covering variables with relations. We demon-
strated its effectiveness empirically over a set of Bayesian networks and showed that
the bounds it provides can in some cases be better by orders ofmagnitude [12]. These
tighter bounds are desirable for a number of reasons:

1. We can better predict parameters of algorithms ahead of time (primarily the variable
ordering for search), fitting the algorithm to the problem.

2. If we can dynamically adjust the estimates to reflect the current conditioning dur-
ing search, it allows us to update parameters on the fly, e.g.,for dynamic variable
orderings.

3. In a distributed setup, search can often be implemented ascentralized conditioning
followed by independent solving of the conditioned subproblems on different ma-
chines. Better, adaptive bounds can help in balancing thesetwo phases by means of
selecting the central conditioning set dynamically and balancing distributed work-
loads [14].

In this paper we extend our earlier work in four ways. First, we refine the bound-
ing scheme, which further improves the upper bounds we obtain: We “reuse” relations
during the estimation process, projecting their scope downto the currently relevant vari-
ables and partially determining the impact of early deadends. This can also be viewed
as a simple form of information propagation down the search graph. Secondly, we in-
troduce a simple scheme for lower bounding, that uses a sampling-based SAT solution
counting algorithm. Thirdly, we show that these schemes areapplicable to constraint
networks by presenting experiments on various sets of constraint problem instances.
Finally, picking up on the issue of predicting algorithm parameters, we then investigate
our bounds’ ability to discriminate between different variable orderings and demon-
strate that they are indeed informative in this respect. In general we obtain good results
and in some cases our bounds can be shown to be very tight.

Section 2 gives definitions and some background. Section 3 motivates and describes
our more refined bounding schemes. We present general empirical results in Section
4, while Section 5 focuses on the impact of different orderings on the computations.
Section 6 concludes.

2 Preliminaries

We will assume agraphical model, given as a set of variablesX = {x1, . . . , xn}, their
finite domainsD = {D1, . . . ,Dn}, a set of functions or relationsR = {r1, . . . , rm},
each of which is defined over a subset ofX, and a combination operator (join, sum or
product) over all functions. If we also have a marginalization operator such asminX
andmaxX and obtain aoptimization problem.

The special cases of reasoning tasks that we have in mind are constraint satisfaction
problems (CSPs), using join as their combination operator.Given a CSP, we aim to find
an assignment to all variables such that all constraints, typically expressed as relations,

3

are satisfied; alternatively we want to determine the the overall number of distinct solu-
tions. An extension of CSPs are MAX-CSPs, where one wants to satisfy as many of the
given constraints as possible, or weighted CSPs that have weights attached to violating
constraints and call for minimizing the sum of these violation costs.

In the same way we can reason about Bayesian networks, where the primary tasks
are belief updating and finding the most probable explanation. They are often specified
using conditional probability functions defined on each variable and its parents in a
given directed acyclic graph and use multiplication and summation or maximization as
the combination and marginalization operators.

2.1 Problem Solving with Search

Two principal methods exist to solve CSPs and other reasoning problems: search (e.g.,
depth-first branch-and-bound, best-first search) and inference (e.g., variable elimina-
tion, join-tree clustering). Both can be shown to be time andspace exponential in the
problem instance’s tree widthw∗ [1, 2, 7, 9], with a dominant factor ofkw

∗

, wherek
denotes the maximum domain size of the problem variables.

Search-based algorithms traverse the problemsearch space. Given a variable or-
deringd, the simplest way to perform search is to instantiate variables one at a time.
This will define a search tree, where each node represents a state in the space of partial
assignments. Leaf nodes signify either full solutions or dead ends. Standard depth-first
algorithms typically have time complexity exponential in the number of variables and
linear space complexity. If memory is available, one can apply caching to traversed
nodes and retrieve their values when “similar” nodes are encountered, thereby trading
space for time.

These traditional search spaces, however, don’t fully capture the structure of the
underlying graphical model. IntroducingAND nodes into the search space can exploit
independence of subproblems by effectively conditioning on values, thus avoiding some
redundant computation. Since the size of theAND/OR search treemay be exponentially
smaller than the traditional OR search one, any algorithm exploring the AND/OR space
enjoys a better computational bound.

We can equally apply caching techniques to an algorithm exploring the AND/OR
search tree. As a result this algorithm will effectively explore theAND/OR search graph.
With caching, identical subproblems are recognized based on their context, which is a
graphical model parameter that denotes the part of the search tree above that is relevant
to the subproblem below [2].

Example 1.Assume a binary CSP with the primal graph in Figure 1(a) over variables
X = {A,B,C,D,E, F}. We pick the orderingd = A,B,C,D,E, F . AND/OR
search with caching will explore the search space depicted in Figure 1(b). We point
out two things:

1. The AND nodes at the level of variableB have two children each. This denotes
the fact that the problem decomposes at this point: After instantiatingA andB, the
subproblems over{C,D} and{E,F} are independent.

4

(a) (b) (c)

Fig. 1: Example primal graph, the AND/OR search graph along orderingd = A, B, C, D, E, F ,
and the corresponding bucket tree decomposition.

2. The OR nodes forD andF each have two ancestors. This “merge” is the effect
of caching and symbolizes the fact that the subproblem is only dependent on some
part of the search tree above – in this case the value ofA is not relevant.

Obviously, the use of caching will avoid some redundant computations, thus re-
ducing time complexity, at the cost of increased memory requirements. Assuming full
caching, AND/OR search has been shown to exhibit both time and space complexity
exponential in the problem’s tree width [2].

2.2 Expressing Structure

If one wants to analyze the complexity of a given problem instance, it has proven useful
to look at the underlying structure of interactions betweenvariables. Given a constraint
problem or graphical model in general, we will assume the usual definitions of the
problem’sprimal, dual, andhypergraph.

It is well-known that a problem whose underlying graph exhibits tree structure can
be solved efficiently [10, 13]. If this is not the case, we can aim to transform the problem
into an equivalent one that exhibits tree structure [1, 7, 9]. Intuitively, we do this by
clustering variables and the relations over them into groups, such that the set resulting
clusters can be arranged into a tree:

Definition 1. LetX,D,R be the variables, domains and relations of a constraint prob-
lemP. A tree decompositionof P is a triple 〈T, χ, ψ〉, whereT = (V,E) is a tree
andχ andψ are labeling functions that associate with each vertexv ∈ V two sets,
χ(v) ⊆ X andψ(v) ⊆ R, that satisfy the following conditions:

1. For eachri ∈ R, there is at least one vertexv ∈ V such thatri ∈ ψ(v).
2. If ri ∈ ψ(v), thenscope(ri) ⊆ χ(v).
3. For each variablexi ∈ X, the set{v ∈ V |xi ∈ χ(v)} induces a connected subtree

of T . This is also called the running intersection or theconnectedness property.

The tree width of a tree decomposition〈T, χ, ψ〉 is w = maxv|χ(v)| − 1. The tree
widthw∗ of P is the minimum tree width over all its tree decompositions.

5

The problem of finding a tree decomposition of minimal tree width is known to be
NP-complete. To obtain tree decompositions in practice, one can apply a triangulation
algorithm to the problem’s primal graph along an ordering and then construct thebucket
treeby extracting and connecting the cliques for each variable,as described for instance
in [13]. The ordering to use as the basis for the triangulation algorithm is often computed
heuristically.

Example 2.Going back to Example 1, if we triangulate the problem’s primal graph and
extract each variable’sbucketwe obtain the tree decomposition shown in Figure 1(c),
thebucket tree decomposition.

As it becomes evident already from Example 1, tree decompositions and AND/OR
search (with caching) are very closely related; in particular, each cluster of the bucket
tree decomposition corresponds to the layer of one variablein the search graph. In fact,
it has been shown that in the absence of determinism both methods perform the same
amount of work [11].

2.3 Problem Determinism

Many interesting practical problems, however, exhibit a significant degree of determin-
ism. Search algorithms detect the resulting inconsistencies early in the search process
and prune the respective portion of the search space. This can often lead to significant
speedups, but it is not reflected in the standard, asymptoticworst-case boundn · kw for
the size of the AND/OR search graph. In order to take determinism into account for
bounding, we define the following:

Definition 2. The tightness tj of a constraint or relationrj of a CSP is the number
of allowed tuples in the relation. (Similarly, for a conditional probability table of a
Bayesian network, the tightness is the number of tuples withnonzero probability.) We
denote witht = maxj tj the maximum tightness of the relations in a problem instance.

The motivation behind this notion is that we can store and process the relationrj
in a “compressed” form, with only thetj revelavant tuples. Based on this we are able
to exploit determinism through the concept of (generalized) hypertree decompositions,
which was introduced for constraint networks in [5] and extended to general graphical
models in [7]. As a subclass of tree decompositions, it was shown that it provides a
stronger indicator of tractability than the tree width, while accounting for determinism
to some extent.

Definition 3. LetT = 〈T, χ, ψ〉, whereT = (V,E) be a tree decomposition of a con-
straint problemP with variablesX, their domainsD and relationsR. T is ahypertree
decompositionof P if the following additional condition is satisfied:

4. For eachv ∈ V , χ(v)⊆
⋃
rj∈ψ(v) scope(rj) .

Thehypertree width of a hypertree decomposition ishw = maxv |ψ(v)|. The hyper-
tree widthhw∗ of P is the minimum hypertree width over all its hypertree decomposi-
tions.

6

Similar to tree decompositions discussed above, finding a hypertree decomposition
of minimal hypertree width is NP-complete in general, so oneresorts to heuristic meth-
ods [3]. For a given decomposition it has been shown that the complexity of processing
it to solve a constraint satisfaction problem is exponential in hw, with a dominant factor
of thw, which accounts for determinism via the baset.

However, on practical problem instances the asymptotic bounds obtained from hy-
pertree decompositions have been shown to be often far inferior to asymptotic bounds
obtained from plain tree decompositions. Yet, the idea of using determinism when com-
puting bounds remains promising. In the following we will therefore use this underlying
principle – i.e., looking at the tightness of relations instead of the domain sizes of the
problem variables – to derive better instance-based complexity bounds for search.

3 Search Space Estimation

Specifically, we will aim to estimate or bound the size of the AND/OR search graph
explored by AND/OR search with caching, as depicted in Section 2.1.

Assume that a variable orderingd = x1, . . . , xn is fixed and that search instantiates
variables first to last (while inference would proceed last to first). We note that the way
the search space is decomposed by AND/OR search with cachingcan be represented
by the bucket tree decomposition along the same ordering, because of the way it is
constructed. For details we refer to [11], to illustrate we revisit our previous example:

Example 3.Consider the AND/OR search graph in Figure 1(b) and the bucket tree
decomposition in Figure 1(c). It is easy to see that the decomposition clusters can be
related to the “layers” of the search graph, i.e., the nodes associated with a variable
and its values, as indicated within the search graph. For instance, the cluster{B,C,D}
represents the search layer for variableD and the fact that the subproblem only depends
onB andC – and notA.

Based on this observation, we can equally partition the search space into “clusters”
or “buckets”, according to the corresponding bucket tree decomposition. Our approach
of estimating the size of the entire search space will then beto estimate the portion of
the search space in each cluster, subsequently summing overall clusters.

In the following we focus on a single cluster/layer of the search graph. To reiter-
ate, this cluster will contain the search layer’s variable,all of the already instantiated
variables that are relevant to it, and zero or more relationsover these variables.

We will discuss two methods, one that upper-bounds the number of search nodes,
and one that computes a lower bound. Note that for simplicitywe consider only the
AND nodes of the search space, since OR nodes are actually notimplemented as such
in practice.

3.1 Upper-Bounding Cluster Size in Search

A straightforward upper bound is obtained by multiplying the domain sizes of all vari-
ables in the cluster [8]. If the set of clusters is given byC = {C1, . . . , Cn} with cluster
Ck containing variablesXk ⊆ X, we can formally define:

7

Algorithm GreedyCovering
Input: Set of variablesX = {x1, . . . , xr} and set of relationsR = {r1, . . . , rs}, with xi having
domain size|Di| andrj having tightnesstj

Output: A subset ofR (that forms a partial covering ofX)
Init: Uncov:= X, Covering:= ∅
(1) Findj∗ that minimizesqj = tj/

∏
xk∈Ij

|Dk|, whereIj = Uncov∩ scope(rj).

(2) If qj∗ ≥ 1 , terminate and returnCovering.
(3) Addrj∗ to Coveringand setUncov:= Uncov\ scope(rj∗).
(4) If Uncov= ∅ , terminate and returnCovering.
(5) Goto (1).

Fig. 2: Greedy covering algorithm

twb :=
n∑

k=1

∏

xi∈Xk

|Di| ,

where|Di| is the domain size of variablexi.
Note that this is closely related to the worst case complexity, since the tree width

is just the maximum number of variables in any cluster of the decomposition minus 1.
This, however, does not take determinism into account.

If all variables in a cluster are covered by the scopes of the relations in that cluster,
we can take the product of the relations’ tightnesses as an upper bound on the number
of nodes, accounting for the maximum number of valid nodes – this is equivalent to the
complexity analysis of processing hypertree decompositions from Section 2.3. If some
variables are not covered, we multiply the tightness product by the domain sizes of the
uncovered variables (thereby accounting for all possible combined instantiations).

However, since the scopes of the different relations in a cluster can overlap, this
bound will typically be worse than the simple “product of domain sizes” boundtwb.
Consequentially, we use the latter as a starting point and exploit tight relations to im-
prove upon it (this can be seen as combining the concept of tree and hypertree decom-
positions). In particular we want to find a (partial) covering of the variables by a subset
of the relations which minimizes the bound we obtain, i.e. the product of the chosen
relations’ tightnesses multiplied by the domain sizes of the uncovered variables.

In essence this can be seen as a weighted, multiplicative variant of the well-known
SET COVER problem, where one aims to cover a set or vertices byas few as possi-
ble subsets from a set of given subsets of the variables. The problem is generally NP-
complete, but simple greedy approximations exist [6], which give rise to our method:

Initially we start with an empty covering (if we stop at this point, we get exactly the
boundtwb, i.e. the product of the variables’ domain sizes). Then, foreach relationrj in
the cluster, we compute thecoverage ratioqj as follows: Divide the relation’s tightness
tj by the product over the domain sizes of the variables that have not yet been covered
and are in the scope ofrj . We pick the relation for which the coverage ratio is the lowest
and add it to the covering. We repeat this for as long as we can still find a relation with
a coverage ratio less than 1. A formal description of the algorithm is given in Figure 2.

This will produce a set of relations as the covering, which might leave some vari-
ables uncovered. We can then multiply the tightness of the relations in the covering and

8

Algorithm Compute-hwb
Input: A bucket tree decomposition with clustersC1, . . . , Cn, where clusterCk contains vari-
ablesXk ⊆ X and relationsRk ⊆ R
Output: The boundhwb on the size of the search space
Init: hwb := 0
(1) for i = 1 to n:
(2) R := Rk.
(3) For every relevant relationr from the ancestral buckets, project it ontoscope(r) ∩ Xk and

add it toR with updated tightnesst′r.
(4) Cov := GreedyCovering(Xk, R).
(5) hwb := hwb +

∏
rj∈Cov

tj ·
∏

xi∈Xk\Cov
|Di|.

(6) end for.
(7) Returnhwb.

Fig. 3: Procedure to compute the overall upper boundhwb.

the domain sizes of the uncovered variables to obtain an upper bound on the number of
nodes in the cluster [12].

Propagating Cluster Size Downwards.Computing this covering in each cluster inde-
pendently does not take into account the propagation of determinism down the search
tree, since the number of valid nodes in a cluster impacts thenumber of valid nodes
in its child clusters. Fully incorporating this propagation is computationally expensive,
but we can account for it mildly, as we describe next.

When assembling the covering in a cluster, we can consider anyrelation from the
ancestral clusters higher up in the rooted tree decomposition (since their scope will have
been fully instantiated at this point of the search). However, we can further improve
upon this scheme: As we noted, during search only nodes representing valid assign-
ments will be expanded and have their child nodes in the childcluster considered.

Therefore, when collecting the relations from all ancestral buckets as candidates for
the covering of the current cluster, we project them down to the current clusters’s scope.
This will typically result in a relation with a smaller number of valid tuples (note that in
practice we don’t need to store the full relation but only theprojected tightness). Since
this projection will consider exactly those variables thata parent and child cluster share,
it can be interpreted as propagation of information down thesearch tree. In practice, we
found that for some problem instances this will decrease thebound by up to 30%.

Example 4.Assume we have a cluster containing 3 variablesX, Y , Z, each with do-
main size 4, and 2 relationsr1(X,Y) andr2(Y,Z) with tightnesst1 = 9 andt2 = 13.
Furthermore, assume we find that relationr3(W,X) with t3 = 10 from the parent clus-
ter is relevant. We projectr3 down toX and find the new tightness ist′3 = 3. The
worst case bound on the number of nodes is clearly43 = 64. In the first iteration of
theGreedyCoveringalgorithm the coverage ratios ofr1, r2, andr3 will be computed as
q1 = 9

16 , q2 = 13
16 , andq3 = 3

4 , respectively. Thereforer1 will be added to the covering,
leaving onlyZ uncovered. The next coverage ratio ofr2 andr3 will be computed as
13
4 and 3

1 (since the scope ofr3 is fully covered already). This is both greater than 1,
therefore the algorithm terminates andr2 andr3 will not be part of the covering. The
bound for this cluster will then bet1 · |DZ | = 9 · 4 = 36.

9

Proposition 1 (Overall Upper Bound). Computing the bound for each cluster of the
tree decomposition and summing up over the clusters yields an upper bound on the total
number of nodes in the AND/OR search graph, which we denotehwb.

The corresponding algorithm is given in Figure 3, its complexity is easily analyzed:

Theorem 1 (Complexity).Given a constraint problem withn variables andm rela-
tions with maximal tightnesst. If the bucket tree decomposition along a given variable
orderingd has tree widthw, the time complexity ofCompute-hwbisO(n ·m · (t+w))
and the space complexity isO(m+ t).

Proof. Collecting and projecting (at the same time computing the tightness) of all rele-
vant relations for a cluster takes timeO(m · t), the space needed for projecting relations
and storing the resulting tightness values isO(t + m). The time complexity of the
GreedyCoveringprocedure is linear both in the number of variables and the number of
relations considered, i.e. it is worst-case bounded byO(w · m); the procedure keeps
track of the covering ratio for each relation, therefore space isO(m). Iterating over all
of then clusters produces the stated overall complexity bounds.

3.2 Lower-Bounding Cluster Size

To obtain lower bounds on the the number of nodes in a cluster we employ a different
scheme: In each cluster, we generate a SAT formula from all relevant relations (i.e.,
from within the current cluster and ancestral ones) and feedit to the sampling-based
SAT solution counting algorithm SampleSearch-LB [4].

Internally, SampleSearch-LB first generates a set of biasedsolution samples from
the backtrack-free distribution using the recently introduced sampling scheme Sam-
pleSearch and then corrects the bias using importance sampling to yield an unbiased
estimate of the number of solutions. The Markov inequality is then used to convert the
unbiased estimate to a lower bound on the solution counts with a required degree of
confidenceα. (Note that the bounds achieved are probabilistic in the sense that with
probability1 − α they are not valid.) Empirical study in [4] shows that on manyprob-
lems SampleSearch-LB yields tight lower bounds in practicewith high probability.

Since we encode the invalid tuples of each relevant relationas the nogoods of the
SAT formula, the number of solutions of the SAT problem will correspond to the num-
ber of valid nodes in the cluster.

Proposition 2 (Overall Lower Bound). It is then easy to see that the sum of lower
bounds on the solution counts in each cluster will be a lower bound on the size of the
search graph explored by AND/OR search with caching; we callit satb.

4 Experimental results

We ran a variety of empirical tests on a large set of differentproblem instances from
various domains. For the most part, we experimented on problem instances from the
repository of the CP’06 competition1.

1 http://www.cril.univ-artois.fr/∼lecoutre/research/benchmarks/benchmarks.html

10

For every instance, we report the number of variablesn, the number of relationsm,
the maximum variable domain sizek, and the maximum relation arityr. To quantify
the degree of determinism in a problem, we report the median tightness ratiotr over all
its relations, defined as the ratio of valid tuples in a (full)relation table (i.e., in a relation
with a tightness ratio of 66%, two thirds of the tuples are valid).

We build a bucket tree decomposition of the problem along a minfill ordering and
report the tree widthw. We then compute and report our boundstwb, hwb, andsatb.
We also try to compute the exact size of the AND/OR search graph, denoted#cm, by
exploring it fully using a brute-force depth-first search scheme with no look-ahead or
propagation. This can be seen as equivalent to the space explored by a brute-force count-
ing algorithm. Note that computing this number is not alwaysfeasible due to limited
computational resources (this case is denoted by “n/a” in the tables). To make compar-
ing the values easier, we report the ratiosQt = twb

#cm ,Qh = hwb
#cm , andQs = satb

#cm .

Time. The time to computetwb andhwb is only a few milliseconds for all of the
reported instances. To computesatb, the SAT sampler is ran with 1000 samples for
each cluster: the runtime for the full problem instance on a 2.66GHz CPU ranges from
several milliseconds for small instances to three seconds for the instance ssa-7552-038.
We note again that the#cm value is directly proportional to the runtime of the exact
algorithm; for example, on instance ssa-0432-003, runningon a 2.66 GHz CPU, the
brute-force algorithm generates around 43,000 nodes per second.

Results.Table 1 presents results on smallDuboisinstances (from the DIMACS problem
set), twoPret instances that encode graph coloring problems, and severalSSAproblem
instances derived from circuit fault analysis problems. Table 2 shows statistics on DI-
MACS AIM instances (3-SAT problems with 50 or 100 variables).

In Table 1 we also include a set of results that we obtained on randomly generated
partial k-trees, which we adapted from Bayesian networks from the UAI’06 evalua-
tion repository2. These instances had a certain degree of determinism enforced upon
generating their tables and should therefore lend themselves nicely to our approach.

We also ran the bounding scheme on other instances that have avery low level of
determinism (not reported here), and as one would expecttwb andhwb as well as#cm
are all very close to each other in these cases, if not the same.

4.1 Analysis of Results

Bound Improvements under Determinism.If we just want to analyze the effect of
incorporating determinism into the bound, we can comparetwb to hwb. Looking at Ta-
bles 1 and 2 we can see that the improvement is significant. Forthe small, less complex
Duboisinstances the decrease is around 40%, for thePret instances it is roughly 28%.
On theSSAproblems the improvement ranges from close to 20%, for instance on in-
stance ssa-7552-158, to over 60% on instance ssa-7552-038.On theAIM instances the
bound decreases between 18% (instance aim-50-1-6-sat-1) to over 70% on aim-50-3-4-
sat-4. The partialk-trees (BN instances) that have been created with enforced determin-

2 http://ssli.ee.washington.edu/∼bilmes/uai06InferenceEvaluation/

11

instance n m k r w tr twb hwb satb #cm Qt Qh Qs

dubois-20 60 40 2 3 3 0.50 774 466 95 458 1.69 1.02 0.21
dubois-21 63 42 2 3 3 0.50 814 490 99 482 1.69 1.02 0.21
dubois-22 66 44 2 3 3 0.50 854 518 108 510 1.67 1.02 0.21
dubois-23 69 46 2 3 3 0.50 894 542 111 534 1.67 1.01 0.21
dubois-24 72 48 2 3 3 0.50 934 566 115 558 1.67 1.01 0.21
dubois-25 75 50 2 3 3 0.50 974 586 115 578 1.69 1.01 0.20
dubois-26 78 52 2 3 3 0.50 1,014 610 119 301 1.68 1.01 0.20
dubois-27 81 54 2 3 3 0.50 1,054 634 123 626 1.68 1.01 0.20
dubois-28 84 56 2 3 3 0.50 1,094 658 128 650 1.68 1.01 0.20
dubois-29 87 58 2 3 3 0.50 1,134 686 135 678 1.67 1.01 0.20
dubois-30 90 60 2 3 3 0.50 1,174 710 140 702 1.67 1.01 0.20
dubois-50 150 100 2 3 3 0.50 1,974 1,190 220 1,182 1.67 1.01 0.19
dubois-100 300 200 2 3 3 0.50 3,974 2,390 420 2,382 1.67 1.00 0.18
pret-60 60 40 2 3 4 0.50 1,534 1,102 839 998 1.51 1.10 0.89
pret-150 150 100 2 3 4 0.50 3,934 2,862 2,303 2,598 1.54 1.10 0.84
ssa-0432-003 435 738 2 5 31 0.75 4,244,330 2,059,616 1,116,6691,868,283 2.27 1.10 0.60
ssa-2670-1301359 2366 2 5 31 0.75160,631,566 123,388,312 104,689,598106,638,207 1.51 1.16 0.98
ssa-7552-0381501 2444 2 6 63 0.75308,861,278 115,499,146 6,815,14036,718,327 8.41 3.15 0.19
ssa-7552-1581363 1985 2 5 31 0.50 90,702 74,406 56,863 69,365 1.31 1.07 0.82
ssa-7552-1591363 1983 2 5 31 0.50 92,238 73,586 48,929 68,694 1.34 1.07 0.71
BN 105 40 44 2 21 18 0.62 2,477,054 363 69 131 18909 2.77 0.53
BN 107 40 46 2 21 21 0.62 29,983,742 1,643 191 272 110234 6.04 0.70
BN 109 40 46 2 20 20 0.62 13,054,974 4,052 1,309 2,531 5158 1.60 0.52
BN 111 40 45 2 20 19 0.62 8,406,270 2,299 465 979 8587 2.35 0.47
BN 113 40 47 2 21 21 0.62 18,916,350 2,752 336 630 30026 4.37 0.53

Table 1: Results forDubois, Pret, SSA, andBN instances.

ism, are as expected very amenable to our approach and see an improvement of three to
four orders of magnitude when going fromtwb to hwb by exploiting determinism.

Quality of hwb Bound. We now compare the upper boundhwb to the true size of the
search space#cm. On the smallDuboisandPret instances, the bound is pretty tight,
getting within 1-2% and 10% of the true size, respectively. For theSSAinstances the
bound is around 10-15% off, with the exception of the ssa-7552-038 instance, where
hwb is about three times the size of the true search space size.

Looking at theAIM instances, the picture is equally mixed: For the first, relatively
simple instances with lowerw, the boundhwb is within 10-20% of#cm, but as the
instances grow more complex andw increases, the bounds move farther away, to within
60-70% of the true value for the aim-50-2-0-sat class. For the most complex problem
class aim-50-3-4-sat, thetwb bound is even two orders of magnitude off.

On the partialk-trees BN105-113, where our bound produced significant improve-
ments overtwb, hwb is not really close to#cm but, with six times the true size for
BN 107 as the worst case, also not orders of magnitude off.

Quality of satb Bound. The results forsatb, however, are less impressive at this point.
While we indeed obtain lower bounds in practice, their quality is mostly not quite satis-
factory; for many instancessatb is 50% or more smaller than#cm, in a few cases one
order of magnitude. But even though these lower bounds are often inaccurate, they are
still somewhat informative and can set the stage for future improvements. For example,
on instance aim-100-1-6-sat-3 the interval[satb, hwb] is definitely more informative
thenhwb alone.

12

instance n m k r w twb hwb satb #cm Qt Qh Qs

aim-50-1-6-sat-1 50 77 2 3 18 2,517,118 2,053,046 931,4921,813,906 1.39 1.13 0.51
aim-50-1-6-sat-2 50 76 2 3 16 767,678 626,955 73,180 551,659 1.39 1.14 0.13
aim-50-1-6-sat-3 50 78 2 3 20 4,742,590 3,859,278 2,023,4653,848,835 1.23 1.00 0.53
aim-50-1-6-sat-4 50 77 2 3 19 3,615,166 2,616,824 2,079,7522,532,968 1.43 1.03 0.82
aim-50-1-6-unsat-1 50 69 2 3 15 377,502 256,482 26,806 211,168 1.79 1.21 0.13
aim-50-1-6-unsat-2 50 77 2 3 19 3,484,734 2,551,090 16,9951,908,441 1.83 1.34 0.01
aim-50-1-6-unsat-3 50 70 2 3 17 1,190,910 971,254 43,382 685,060 1.74 1.42 0.06
aim-50-1-6-unsat-4 50 76 2 3 20 7,236,702 5,195,870 2,386,8933,873,236 1.87 1.34 0.62
aim-50-2-0-sat-1 50 94 2 3 23 90,365,054 69,403,118 1,414,457 n/a – – –
aim-50-2-0-sat-2 50 96 2 3 22 65,452,670 48,755,950 1,391,19231,342,985 2.09 1.56 0.04
aim-50-2-0-sat-3 50 96 2 3 23 54,422,654 32,724,286 12,682,13519,291,682 2.82 1.70 0.66
aim-50-2-0-sat-4 50 94 2 3 20 8,241,790 6,630,594 160,2643,861,750 2.13 1.72 0.04
aim-50-2-0-unsat-1 50 97 2 3 26 606,571,518 433,412,038 6,546,400 n/a – – –
aim-50-2-0-unsat-2 50 94 2 3 25 303,318,014 168,365,286 20,545,846 n/a – – –
aim-50-2-0-unsat-3 50 92 2 3 24 170,571,646 116,379,982 7,669,688 n/a – – –
aim-50-2-0-unsat-4 50 95 2 3 22 74,731,070 47,225,310 372,30810,832,484 6.90 4.36 0.03
aim-50-3-4-sat-1 50 156 2 3 31 19,768,541,182 5,932,509,032 38,056,597 n/a – – –
aim-50-3-4-sat-2 50 161 2 3 31 14,305,816,574 4,451,610,286 76,8869,056,2821580 492 0.01
aim-50-3-4-sat-3 50 161 2 3 29 7,761,709,054 3,734,762,630 1,906,662 n/a – – –
aim-50-3-4-sat-4 50 159 2 3 31 19,749,318,654 5,467,090,270 348,26513,478,0541465 406 0.03
aim-100-1-6-sat-1 100 154 2 3 35210,325,162,494 163,853,989,863 47,152,799,695 n/a – – –
aim-100-1-6-sat-2 100 156 2 3 33 85,955,535,454 67,679,948,226 24,266,372,351 n/a – – –
aim-100-1-6-sat-3 100 156 2 3 35350,209,736,830 241,765,634,544 97,931,906,010 n/a – – –

Table 2: Results forAIM benchmark instances. All problems have a median tightness ratio of
tr = 0.875.

5 Impact of Orderings

In a separate experimental setup we wanted to investigate the power of our new bounds
in predicting good orderings. We therefore looked at a handful of problem instances
and evaluated the impact that the variable ordering for search can have on the bounds
we compute, as well as on the true search space size.

To that end we processed the instances 50 times along a randomized minfill ordering
(where ties are broken at random). Each time we computed thetwb andhwb bound and
solved the problem exactly, as described before.

In particular we examined four instances from theAIM class and fourSSAcircuit
analysis instances. The results are plotted in Figure 4. Each vertical bar represents a
single randomized run: the white top indicates the value oftwb and the grey middle
part denoteshwb, while the black bottom gives the true search space size#cm (if
the grey part is not visible,hwb is very close to or the same as#cm). In addition we
record, against a different scale on the right hand side of the figures, the tree width of
each ordering.

It is immediately obvious that both bounds provide a much better indicator of the
quality of orderings than the plain tree width. For example,on the aim-50-1-6-sat-1
instance the tree width is 18 for most of the orderings, yet the values of#cm vary
condiderably in these cases – but this variation is indeed captured by both thetwb and
hwb bound. Furthermore, some orderings havew = 19 and slightly increasedtwb value
(columns 9 and 14, for instance), yet the search space size#cm is actually smaller than
it is for many of the orderings with tree width 18 – a fact that is captured by a lower
hwb bound.

Similar observations hold for other instances, for exampleaim-50-1-6-sat-3, where
most orderings have the same tree width, but wheretwb andhwb are more informative

13

0

500000

1000000

1500000

2000000

2500000

3000000

 0 10 20 30 40 50
 0

 5

 10

 15

 20

 25
N

um
be

r
of

 A
N

D
 n

od
es

T
re

ew
id

th
 o

f r
an

do
m

iz
ed

 o
rd

er
in

g

(a) aim-50-1-6-sat-1

0

500000

1000000

1500000

2000000

2500000

 0 10 20 30 40 50
 0

 5

 10

 15

 20

 25

N
um

be
r

of
 A

N
D

 n
od

es

T
re

ew
id

th
 o

f r
an

do
m

iz
ed

 o
rd

er
in

gtwb
 hwb
#cm

w

(b) aim-50-1-6-sat-2

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

 0 10 20 30 40 50
 0

 5

 10

 15

 20

 25

N
um

be
r

of
 A

N
D

 n
od

es

T
re

ew
id

th
 o

f r
an

do
m

iz
ed

 o
rd

er
in

g

(c) aim-50-1-6-sat-3

0

1000000

2000000

3000000

4000000

5000000

6000000

 0 10 20 30 40 50
 0

 5

 10

 15

 20

 25

N
um

be
r

of
 A

N
D

 n
od

es

T
re

ew
id

th
 o

f r
an

do
m

iz
ed

 o
rd

er
in

g

(d) aim-50-1-6-sat-4

0

20000

40000

60000

80000

100000

120000

 0 10 20 30 40 50
 0

 2

 4

 6

 8

 10

 12

 14

N
um

be
r

of
 A

N
D

 n
od

es

T
re

ew
id

th
 o

f r
an

do
m

iz
ed

 o
rd

er
in

g

(e) ssa-7552-158

0

20000

40000

60000

80000

100000

120000

 0 10 20 30 40 50
 0

 2

 4

 6

 8

 10

 12

 14

N
um

be
r

of
 A

N
D

 n
od

es

T
re

ew
id

th
 o

f r
an

do
m

iz
ed

 o
rd

er
in

g
(f) ssa-7552-159

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

 0 10 20 30 40 50
 0

 5

 10

 15

 20

 25

N
um

be
r

of
 A

N
D

 n
od

es

T
re

ew
id

th
 o

f r
an

do
m

iz
ed

 o
rd

er
in

g

(g) ssa-0432-003

0

200000000

400000000

600000000

800000000

1000000000

 0 10 20 30 40 50
 0

 5

 10

 15

 20

 25

 30

N
u
m

b
e
r

o
f
A

N
D

 n
o
d
e
s

T
re

e
w

id
th

 o
f
ra

n
d
o
m

iz
e
d
 o

rd
e
ri
n
g

(h) ssa-7552-038

Fig. 4: Plots of thetwb and hwb bounds versus the true search space size#cm on various
problem instances, each over 50 randomized minfill variable orderings. Also shown is the tree
width w for the each ordering, which is plotted against a separate scale on the right.

14

in determining “good” variable orderings. On aim-50-1-6-sat-4twb is nearly the same
for all orderings with tree width 19, yethwb characterizes the distribution of different
#cm values very well. For instance ssa-0432-003, iterations 38-41, neither the tree
width nor thetwb bound correctly identify the lowest#cm, whereashwb does.

Moreover, the diagrams once again exemplify the general improvement of thehwb
bound over thetwb one, as observed already in Section 4. It is also worth notingthat
hwb is a very tight bound in many of the cases in Figure 4.

6 Summary & Future Work

In this paper we describe schemes for upper and lower bounding the instance-based
complexity of AND/OR search algorithms for solution counting and related#P prob-
lems. The typical asymptotic bound is exponential in the problem’s tree width. While
this can give a rough idea about problem hardness, it is oftendesirable to obtain a
tighter, more fine-grained bound. As it has previously been shown, this can be accom-
plished by looking at a suitable tree decomposition of the problem’s underlying graph
structure and the domains of variables in the decompositionclusters. But this is blind
to determinism in the problem, which can greatly prune the search space in practice.

The notion of determinism is, however, very prominent in theframework of hy-
pertree decompositions which allows for exploiting tight relation representations; in
practice, though, the bounds one obtains with this approach, exponential in hypertree
width, are mostly not competitive and worse than those provided by the tree width.

To overcome this we initiate an effort in this paper and in an earlier one (under re-
view) to develop more refined bounding methods that selectively exploit determinism in
the relation specification. We demonstrated the potential of our first version of an upper
bounding scheme on probabilistic networks for queries suchas finding the probability
of evidence. The contribution of the current paper is in:

1. Extending the upper bounding scheme to account not only for a determinism in
each cluster independently, but also consider propagationof determinism that oc-
curs when moving down the search tree, which has improved ourbounds by 30%
in some cases,

2. Developing a new approach for lower bounding the search space size,
3. A new set of empirical demonstrations of the power of both bounding schemes over

a significant number of constraint network benchmarks, and
4. Demonstrating the ability of the bounds to discriminate between variable orderings

for search, which can affect the performance substantially.

We believe that the current version of our upper bounding scheme can be further
improved by incorporating a stronger form of propagation down the bucket tree, across
clusters. Well-known consistency methods of varying complexity should be applicable
for this. For optimization tasks and for approximating branch-and-bound and best-first
search algorithms we hope to accomplish further tighteningof the search space using
the cost function itself. Finally, recent advances in sampling-based counting should
allow us to improve the quality of the lower bounds we compute.

15

On a higher level, we also plan to extend our scheme to allow for flexible bound
adaptation to reflect conditioning during search, which forexample allows for dynam-
ically updating the variable ordering; eventually we intend to deploy our scheme for
parallelizing search algorithms over a network of many machines (e.g., grids and clus-
ters), where the load balancing in partitioning the tasks can take advantage of a good
estimate of each partition’s workload.

References

1. R. Dechter and J. Pearl: Tree Clustering for Constraint Networks.Artificial Intelligence38
(1989): 353–366.

2. R. Dechter and R. Mateescu: AND/OR search spaces for graphicalmodels. InArtificial
Intelligence171(2007): 73–106.

3. A. Dermaku, T. Ganzow, G. Gottlob, B. McMahan, N. Musliu, M. Samer: Heuristic Methods
for Hypertree Decompositions.Technical Report DBAI-TR-2005-53, Vienna University of
Technology, 2005

4. V. Gogate and R. Dechter: Approximate Counting by Sampling the Backtrack-free Search
Space. InProceedings of AAAI’07.

5. G. Gottlob, N. Leone, and F. Scarcello: A comparison of structural CSP decomposition meth-
ods.Artificial Intelligence124(2000): 243–282.

6. D. S. Johnson: Approximation algorithms for combinatorial problems. In Proceedings of
STOC’73: 38–49.

7. K. Kask, R. Dechter, J. Larrosa, and A. Dechter: Unifying tree decompositions for reasoning
in graphical models.Artificial Intelligence166(2005): 165–193.

8. U. Kjærulff: Triangulation of Graphs – Algorithms Giving Small Total State Space.Research
Report R-90-09, Dept. of Mathematics and Computer Science, Aalborg University 1990.

9. S. L. Lauritzen and D. J. Spiegelhalter: Local Computations with Probabilities on Graphical
Structures and Their Application to Expert Systems.Journal of the Royal Statistical Society.
Series B50(2)(1988): 157–224.

10. A. K. Mackworth and E. C. Freuder: The Complexity of Some Polynomial Network Consis-
tency Algorithms for Constraint Satisfaction Problems.Artificial Intelligence25(1) (1985):
65–74.

11. R. Mateescu and R. Dechter: The Relationship Between AND/OR Search Spaces and Vari-
able Elimination. InProceedings of UAI’05: 380–387.

12. L. Otten and R. Dechter: Bounding Search Space Size via (Hyper)tree Decompositions. Un-
der review.

13. J. Pearl: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
14. M. Silberstein, A. Tzemach, N. Dovgolevskiy, M. Fishelson, A. Schuster, D. Geiger: Online

system for faster linkage analysis via parallel execution on thousands ofpersonal computers.
American Journal of Human Genetics, 2006.

