Refined Bounds for Instance-Based Search Complexity
of Counting and Other #P Problems

Lars Otten and Rina Dechter

Bren School of Information and Computer Sciences
University of California, Irvine, CA 92697-3425, U.S.A.
{l otten, dechter }@cs. uci . edu

Abstract. This paper presents measures for upper and lower bounding theciestan
based complexity of AND/OR search algorithms for solution counting datke

P problems. This can be of utmost importance in selecting the right set of pa
rameters for fitting an algorithm to a problem instance and in devising hearistic
during execution. To this end we estimate the size of the search spacepw®sth s
cial consideration given to the impact of determinism in a problem. Thétieg
schemes are evaluated empirically on a variety of problem instances;np ma
cases relatively tight bounds are obtained, far better than those implidteby
tree width or hypertree width. Specific results are provided detailing hosethe
measures can be useful for discriminating between variable orderings

1 Introduction

This paper develops measures for upper and lower boundingettiormance of search
algorithms for solution counting in constraint networksl ather relatedt P problems.
It has been known for a while that the complexity of infereatgorithms (e.g., join-
tree clustering, variable elimination) is exponentialbubded by the tree width of the
constraint problem’s underlying graph structure. The lodigiee exponent is often taken
to be the maximum domain size.

More accurate bounds were derived by looking at the resedtimain sizes and
their product in each cluster of a tree decomposition of tiaedying graph [8]. These
tighter bounds were used in selecting “good” variable drdgs; for example. It was
recently shown that these bounds are also applicable tolsalgorithms that explore
the context-minimal AND/OR search graph [2].

The shortcoming of these bounds is that they are completietgd bo context-
sensitivity hidden in the relations and functions of the staint network and espe-
cially determinism: When a problem possesses high levelstefohinism, its tree width
bound can be large while its search space can be extremeigerdue to propagation
and inconsistencies across relations.

Part of this shortcoming in worst-case complexity boundsdidressed by the more
recent concept of hypertree decompositions [5]. It was sttt the maximum number
of relations in the clusters of a hypertree decompositibe (typertree width) exponen-
tially bounds the problem complexity for constraint infiece, a result that was extended
to general graphical model inference in [7]. The base of #gp@eent in this case is the

relation tightness, thus allowing the notion of determimi® play a role. However, in
practice this bound often turns out to be far worse than #gewidth bound.

We recently introduced a more informed upper-bounding mehdhat selectively
takes determinism into account by greedily covering vaestwith relations. We demon-
strated its effectiveness empirically over a set of Bayesietworks and showed that
the bounds it provides can in some cases be better by orderagiitude [12]. These
tighter bounds are desirable for a number of reasons:

1. We can better predict parameters of algorithms aheachef(fprimarily the variable
ordering for search), fitting the algorithm to the problem.

2. If we can dynamically adjust the estimates to reflect theeci conditioning dur-
ing search, it allows us to update parameters on the fly, fergdynamic variable
orderings.

3. Inadistributed setup, search can often be implementedrdsalized conditioning
followed by independent solving of the conditioned subpeots on different ma-
chines. Better, adaptive bounds can help in balancing thesphases by means of
selecting the central conditioning set dynamically andibaing distributed work-
loads [14].

In this paper we extend our earlier work in four ways. First, nefine the bound-
ing scheme, which further improves the upper bounds we béee “reuse” relations
during the estimation process, projecting their scope dowine currently relevant vari-
ables and partially determining the impact of early deadeitlis can also be viewed
as a simple form of information propagation down the searelply Secondly, we in-
troduce a simple scheme for lower bounding, that uses a sagrphsed SAT solution
counting algorithm. Thirdly, we show that these schemesapmdicable to constraint
networks by presenting experiments on various sets of ins{problem instances.
Finally, picking up on the issue of predicting algorithm gaeters, we then investigate
our bounds’ ability to discriminate between different edlie orderings and demon-
strate that they are indeed informative in this respectelmegal we obtain good results
and in some cases our bounds can be shown to be very tight.

Section 2 gives definitions and some background. Sectionti¥abes and describes
our more refined bounding schemes. We present general ealpiesults in Section
4, while Section 5 focuses on the impact of different ordggion the computations.
Section 6 concludes.

2 Preliminaries

We will assume graphical modelgiven as a set of variableé$ = {z1,...,z,}, their
finite domainsD = {Ds,...,D,}, a set of functions or relation® = {r1,...,7r.},
each of which is defined over a subsetof and a combination operator (join, sum or
product) over all functions. If we also have a marginali@atoperator such asin x
andmax y and obtain aptimization problem

The special cases of reasoning tasks that we have in mindastraint satisfaction
problems (CSPs), using join as their combination oper&@iwen a CSP, we aim to find
an assignment to all variables such that all constrainpéc#jly expressed as relations,

are satisfied; alternatively we want to determine the theadMeumber of distinct solu-
tions. An extension of CSPs are MAX-CSPs, where one wantgtisfg as many of the
given constraints as possible, or weighted CSPs that haightseattached to violating
constraints and call for minimizing the sum of these vidatcosts.

In the same way we can reason about Bayesian networks, wiepgimary tasks
are belief updating and finding the most probable explanafibey are often specified
using conditional probability functions defined on eachialsle and its parents in a
given directed acyclic graph and use multiplication andmation or maximization as
the combination and marginalization operators.

2.1 Problem Solving with Search

Two principal methods exist to solve CSPs and other reagqrioblems: search (e.g.,
depth-first branch-and-bound, best-first search) andenter (e.g., variable elimina-
tion, join-tree clustering). Both can be shown to be time space exponential in the
problem instance’s tree width* [1, 2, 7, 9], with a dominant factor df*", wherek
denotes the maximum domain size of the problem variables.

Search-based algorithms traverse the probdesrch spaceGiven a variable or-
deringd, the simplest way to perform search is to instantiate véegabne at a time.
This will define a search tree, where each node represerdseasthe space of partial
assignments. Leaf nodes signify either full solutions adlends. Standard depth-first
algorithms typically have time complexity exponential iretnumber of variables and
linear space complexity. If memory is available, one canlappching to traversed
nodes and retrieve their values when “similar” nodes ar@emered, thereby trading
space for time.

These traditional search spaces, however, don't fullywapthe structure of the
underlying graphical model. Introducinf§ND nodes into the search space can exploit
independence of subproblems by effectively conditioningalues, thus avoiding some
redundant computation. Since the size of MND/OR search tremay be exponentially
smaller than the traditional OR search one, any algorithphoeig the AND/OR space
enjoys a better computational bound.

We can equally apply caching techniques to an algorithmaeiy the AND/OR
search tree. As aresult this algorithm will effectively e theAND/OR search graph
With caching, identical subproblems are recognized basdtieir context, which is a
graphical model parameter that denotes the part of thels&@eabove that is relevant
to the subproblem below [2].

Example 1.Assume a binary CSP with the primal graph in Figure 1(a) oegiables
X = {A,B,C,D,E,F}. We pick the orderingl = A,B,C,D,E,F. AND/OR
search with caching will explore the search space depictdeigure 1(b). We point
out two things:

1. The AND nodes at the level of variablg have two children each. This denotes
the fact that the problem decomposes at this point: Aftdaintg@atingA and B, the
subproblems ovefC, D} and{E, F'} are independent.

{A.B}
R(A,B)

{AB,E}
R(AE)
}

{B.E,F
R(B,F).R(E.F)

{B,C,D}
R(B,D),R(B,D)

(@ (b) (©)
Fig. 1: Example primal graph, the AND/OR search graph along orderingA, B,C, D, E, F,
and the corresponding bucket tree decomposition.

2. The OR nodes foD and F' each have two ancestors. This “merge” is the effect
of caching and symbolizes the fact that the subproblem ig dethendent on some
part of the search tree above — in this case the valukisfnot relevant.

Obviously, the use of caching will avoid some redundant aataions, thus re-
ducing time complexity, at the cost of increased memory irequents. Assuming full
caching, AND/OR search has been shown to exhibit both tintespace complexity
exponential in the problem’s tree width [2].

2.2 Expressing Structure

If one wants to analyze the complexity of a given problemansg, it has proven useful
to look at the underlying structure of interactions betweafiables. Given a constraint
problem or graphical model in general, we will assume theaudefinitions of the
problem’sprimal, dual, andhypergraph

It is well-known that a problem whose underlying graph exbitree structure can
be solved efficiently [10, 13]. If this is not the case, we cent transform the problem
into an equivalent one that exhibits tree structure [1, 7I®litively, we do this by
clustering variables and the relations over them into gspapch that the set resulting
clusters can be arranged into a tree:

Definition 1. LetX, D, R be the variables, domains and relations of a constraint prob
lemP. Atree decompositionof P is a triple (T, x, v), whereT = (V, E) is a tree
and x and > are labeling functions that associate with each vertex V two sets,
x(v) € X andy(v) C R, that satisfy the following conditions:

1. For eachr; € R, there is at least one vertexe V' such thatr; € ¢ (v).

2. Ifr; € ¢¥(v), thenscope(r;) C x(v).

3. For each variabler; € X, the sef{v € V|z; € x(v)} induces a connected subtree
of T'. This is also called the running intersection or ttennectedness property.

Thetree width of a tree decompositioIT’, x,) is w = max,|x(v)| — 1. The tree
width w* of P is the minimum tree width over all its tree decompositions.

The problem of finding a tree decomposition of minimal tredttviis known to be
NP-complete. To obtain tree decompositions in practice,ean apply a triangulation
algorithm to the problem’s primal graph along an orderingd tinien construct thibucket
treeby extracting and connecting the cliques for each variaselescribed for instance
in [13]. The ordering to use as the basis for the triangutesigorithm is often computed
heuristically.

Example 2.Going back to Example 1, if we triangulate the problem’s @digraph and
extract each variablelucketwe obtain the tree decomposition shown in Figure 1(c),
thebucket tree decomposition

As it becomes evident already from Example 1, tree decortipnsiand AND/OR
search (with caching) are very closely related; in partigubach cluster of the bucket
tree decomposition corresponds to the layer of one variatitee search graph. In fact,
it has been shown that in the absence of determinism bothotietberform the same
amount of work [11].

2.3 Problem Determinism

Many interesting practical problems, however, exhibitgm#icant degree of determin-
ism. Search algorithms detect the resulting inconsisésnearly in the search process
and prune the respective portion of the search space. Thisften lead to significant
speedups, but it is not reflected in the standard, asymptotist-case bound - £ for
the size of the AND/OR search graph. In order to take detesmirinto account for
bounding, we define the following:

Definition 2. Thetightnesst; of a constraint or relation-; of a CSP is the number
of allowed tuples in the relation. (Similarly, for a conditial probability table of a
Bayesian network, the tightness is the number of tupleswaitizero probability.) We
denote witht = max; ¢; the maximum tightness of the relations in a problem instance

The motivation behind this notion is that we can store andgss the relation;
in a “compressed” form, with only thg revelavant tuples. Based on this we are able
to exploit determinism through the concept of (generalizsgbertree decompositions,
which was introduced for constraint networks in [5] and extied to general graphical
models in [7]. As a subclass of tree decompositions, it wasvahthat it provides a
stronger indicator of tractability than the tree width, iehdccounting for determinism
to some extent.

Definition 3. Let7 = (T, x, ¢), whereT = (V, E) be a tree decomposition of a con-
straint problentP with variablesX, their domainsD and relationsR. 7 is ahypertree
decompositionof P if the following additional condition is satisfied:

4. Foreachv € V, x(v) C U, cy () scope(r;) -

Thehypertree width of a hypertree decomposition i8v = max,, |¢(v)|. The hyper-
tree widthhw™* of P is the minimum hypertree width over all its hypertree decosip
tions.

Similar to tree decompositions discussed above, findingpattiree decomposition
of minimal hypertree width is NP-complete in general, so @s®rts to heuristic meth-
ods [3]. For a given decomposition it has been shown thatdhgptexity of processing
it to solve a constraint satisfaction problem is exponétiaw, with a dominant factor
of t"*, which accounts for determinism via the base

However, on practical problem instances the asymptotiantswbtained from hy-
pertree decompositions have been shown to be often faianterasymptotic bounds
obtained from plain tree decompositions. Yet, the idea mfgudeterminism when com-
puting bounds remains promising. In the following we wiktefore use this underlying
principle — i.e., looking at the tightness of relations @@t of the domain sizes of the
problem variables — to derive better instance-based coditypleounds for search.

3 Search Space Estimation

Specifically, we will aim to estimate or bound the size of thd¥OR search graph
explored by AND/OR search with caching, as depicted in a@il.

Assume that a variable orderidg= x4, .. ., z,, is fixed and that search instantiates
variables first to last (while inference would proceed ladirst). We note that the way
the search space is decomposed by AND/OR search with cachinge represented
by the bucket tree decomposition along the same orderingguse of the way it is
constructed. For details we refer to [11], to illustrate @eisit our previous example:

Example 3.Consider the AND/OR search graph in Figure 1(b) and the huirke
decomposition in Figure 1(c). It is easy to see that the dgomition clusters can be
related to the “layers” of the search graph, i.e., the nodssaated with a variable
and its values, as indicated within the search graph. Ftarics, the clustefB, C, D}
represents the search layer for variabland the fact that the subproblem only depends
on B andC' — and notA.

Based on this observation, we can equally partition theckegpace into “clusters”
or “buckets”, according to the corresponding bucket tredgposition. Our approach
of estimating the size of the entire search space will thetolestimate the portion of
the search space in each cluster, subsequently summinglockrsters.

In the following we focus on a single cluster/layer of thersbagraph. To reiter-
ate, this cluster will contain the search layer’s variablépf the already instantiated
variables that are relevant to it, and zero or more relatimes these variables.

We will discuss two methods, one that upper-bounds the nuwiteearch nodes,
and one that computes a lower bound. Note that for simplisgyconsider only the
AND nodes of the search space, since OR nodes are actualimplmented as such
in practice.

3.1 Upper-Bounding Cluster Size in Search

A straightforward upper bound is obtained by multiplying tiomain sizes of all vari-
ables in the cluster [8]. If the set of clusters is given®y= {C1, ..., C,} with cluster
C}, containing variable(;, C X, we can formally define:

Algorithm GreedyCovering

Input: Set of variablesY = {z1,...,z,} and set of relation® = {r1, ..., rs}, with z; having
domain sizd D;| andr; having tightness;

Output: A subset ofR (that forms a partial covering of)

Init: Uncov:= X, Covering:= ()

(1) Findj* that minimizesy; = tj/Hwkelj |Dy|, wherel; = UncovN scope(r;).

(2) If g;= > 1, terminate and retur@overing

(3) Add ;= to Coveringand setUncov:= Uncov\ scope(r;=).

(4) If Uncov= 0 , terminate and retur@overing

(5) Goto (1).

Fig. 2: Greedy covering algorithm

twb := i H |D;],

k=1 z;,€Xyg

where|D;| is the domain size of variable,.

Note that this is closely related to the worst case complegitice the tree width
is just the maximum number of variables in any cluster of teeoiposition minus 1.
This, however, does not take determinism into account.

If all variables in a cluster are covered by the scopes ofelaions in that cluster,
we can take the product of the relations’ tightnesses as parupund on the number
of nodes, accounting for the maximum number of valid noddgs-i$ equivalent to the
complexity analysis of processing hypertree decompastfoom Section 2.3. If some
variables are not covered, we multiply the tightness prody¢he domain sizes of the
uncovered variables (thereby accounting for all possibfelined instantiations).

However, since the scopes of the different relations in atetucan overlap, this
bound will typically be worse than the simple “product of daimsizes” boundwb.
Consequentially, we use the latter as a starting point aptbigtight relations to im-
prove upon it (this can be seen as combining the conceptefind hypertree decom-
positions). In particular we want to find a (partial) coveriof the variables by a subset
of the relations which minimizes the bound we obtain, i.e. phoduct of the chosen
relations’ tightnesses multiplied by the domain sizes efuiihcovered variables.

In essence this can be seen as a weighted, multiplicativentaf the well-known
SET COVER problem, where one aims to cover a set or verticeaslfgw as possi-
ble subsets from a set of given subsets of the variables. fididgm is generally NP-
complete, but simple greedy approximations exist [6], Wihgjive rise to our method:

Initially we start with an empty covering (if we stop at thigipt, we get exactly the
boundtwb, i.e. the product of the variables’ domain sizes). Thengéwh relation; in
the cluster, we compute tloeverage ratiay; as follows: Divide the relation’s tightness
t; by the product over the domain sizes of the variables that havyet been covered
and are in the scope of. We pick the relation for which the coverage ratio is the Istve
and add it to the covering. We repeat this for as long as wetdafirgl a relation with
a coverage ratio less than 1. A formal description of therdlgm is given in Figure 2.

This will produce a set of relations as the covering, whiclglmhieave some vari-
ables uncovered. We can then multiply the tightness of tlatioes in the covering and

8

Algorithm Compute-hwb

Input: A bucket tree decomposition with clustefs, . .., C,, where clusteC}, contains vari-
ablesX; C X and relations?y C R

Output: The boundhwb on the size of the search space

Init: hwb:=0
(1) fori =1ton:
(2) R := Rg.

(3) For every relevant relationfrom the ancestral buckets, project it ost@pe(r) N X and
add it to R with updated tightness..

(4) Cov := GreedyCoveringXy, R).

(5) hwb:= hwb+[]

(6) end for.

(7) Returnhwb.

r;€Cov tJ ’ HziEXk\Cov |Dz‘

Fig. 3: Procedure to compute the overall upper bohnd.

the domain sizes of the uncovered variables to obtain anrdjmeend on the number of
nodes in the cluster [12].

Propagating Cluster Size DownwardsComputing this covering in each cluster inde-
pendently does not take into account the propagation ofmi@iesm down the search
tree, since the number of valid nodes in a cluster impactsitimber of valid nodes
in its child clusters. Fully incorporating this propagatis computationally expensive,
but we can account for it mildly, as we describe next.

When assembling the covering in a cluster, we can consideradatjon from the
ancestral clusters higher up in the rooted tree decompoggince their scope will have
been fully instantiated at this point of the search). Howewa can further improve
upon this scheme: As we noted, during search only nodessemiag valid assign-
ments will be expanded and have their child nodes in the chiister considered.

Therefore, when collecting the relations from all ancé&tuakets as candidates for
the covering of the current cluster, we project them dowhéocurrent clusters’s scope.
This will typically result in a relation with a smaller numbef valid tuples (note that in
practice we don't need to store the full relation but only pnejected tightness). Since
this projection will consider exactly those variables thaarent and child cluster share,
it can be interpreted as propagation of information dowrstteerch tree. In practice, we
found that for some problem instances this will decreasétumd by up to 30%.

Example 4.Assume we have a cluster containing 3 variabtesy’, Z, each with do-
main size 4, and 2 relations (X, Y") andr, (Y, Z) with tightness; = 9 and¢, = 13.
Furthermore, assume we find that relatig(lV, X') with t3 = 10 from the parent clus-
ter is relevant. We projeat; down to X and find the new tightness i§ = 3. The
worst case bound on the number of nodes is cleétly= 64. In the first iteration of
the GreedyCoveringlgorithm the coverage ratios of, o, andrs will be computed as
a1 = %, ¢2 = 13, andgs = 2, respectively. Therefore will be added to the covering,
leaving onlyZ uncovered. The next coverage ratiorgfandrs will be computed as
% and% (since the scope of; is fully covered already). This is both greater than 1,
therefore the algorithm terminates andandrs will not be part of the covering. The
bound for this cluster will thenbg - |Dz| =9 -4 = 36.

Proposition 1 (Overall Upper Bound). Computing the bound for each cluster of the
tree decomposition and summing up over the clusters yieldgper bound on the total
number of nodes in the AND/OR search graph, which we denobe

The corresponding algorithm is given in Figure 3, its corripes easily analyzed:

Theorem 1 (Complexity). Given a constraint problem with variables andm rela-
tions with maximal tightness If the bucket tree decomposition along a given variable
orderingd has tree widtho, the time complexity a&ompute-hwhs O(n - m - (t + w))

and the space complexity @&(m + t).

Proof. Collecting and projecting (at the same time computing thlettiess) of all rele-
vant relations for a cluster takes tifdi¥m - t), the space needed for projecting relations
and storing the resulting tightness value<J§& + m). The time complexity of the
GreedyCoveringrocedure is linear both in the number of variables and timebau of
relations considered, i.e. it is worst-case boundedtyy - m); the procedure keeps
track of the covering ratio for each relation, thereforecgpaO(m). lterating over all

of then clusters produces the stated overall complexity bounds. O

3.2 Lower-Bounding Cluster Size

To obtain lower bounds on the the number of nodes in a clusteemploy a different
scheme: In each cluster, we generate a SAT formula from lgVaat relations (i.e.,
from within the current cluster and ancestral ones) and fetthe sampling-based
SAT solution counting algorithm SampleSearch-LB [4].

Internally, SampleSearch-LB first generates a set of biasedion samples from
the backtrack-free distribution using the recently introeld sampling scheme Sam-
pleSearch and then corrects the bias using importance sgnplyield an unbiased
estimate of the number of solutions. The Markov inequasitthen used to convert the
unbiased estimate to a lower bound on the solution counts aviequired degree of
confidencen. (Note that the bounds achieved are probabilistic in theesdnat with
probability1 — « they are not valid.) Empirical study in [4] shows that on mangb-
lems SampleSearch-LB yields tight lower bounds in pragtiite high probability.

Since we encode the invalid tuples of each relevant relatfothe nogoods of the
SAT formula, the number of solutions of the SAT problem wadlespond to the num-
ber of valid nodes in the cluster.

Proposition 2 (Overall Lower Bound). It is then easy to see that the sum of lower
bounds on the solution counts in each cluster will be a lowmrmad on the size of the
search graph explored by AND/OR search with caching; weitalltb.

4 Experimental results

We ran a variety of empirical tests on a large set of diffepoblem instances from
various domains. For the most part, we experimented on @molstances from the
repository of the CP’06 competitién

! http:/Avww.cril.univ-artois.frlecoutre/research/benchmarks/benchmarks. html

10

For every instance, we report the number of variablghe number of relations:,
the maximum variable domain size and the maximum relation arity. To quantify
the degree of determinism in a problem, we report the medjatmiess ratiar over all
its relations, defined as the ratio of valid tuples in a (frélation table (i.e., in a relation
with a tightness ratio of 66%, two thirds of the tuples arédjal

We build a bucket tree decomposition of the problem alongritihordering and
report the tree widthv. We then compute and report our bourtds, hwb, andsatb.
We also try to compute the exact size of the AND/OR searchigrdg@noted#cm, by
exploring it fully using a brute-force depth-first searcheame with no look-ahead or
propagation. This can be seen as equivalent to the spaazed by a brute-force count-
ing algorithm. Note that computing this number is not alwégasible due to limited
computational resources (this case is denoted by “n/a”"drtables). To make compar-

ing the values easier, we report the ratips= ﬁle, Qn = ;Z’; andQ, = ;‘gg.

Time. The time to computeéwb and hwb is only a few milliseconds for all of the
reported instances. To compwetb, the SAT sampler is ran with 1000 samples for
each cluster: the runtime for the full problem instance on6&@Hz CPU ranges from
several milliseconds for small instances to three secamdfié instance ssa-7552-038.
We note again that thé¢-cm value is directly proportional to the runtime of the exact
algorithm; for example, on instance ssa-0432-003, runom@ 2.66 GHz CPU, the
brute-force algorithm generates around 43,000 nodes pende

Results.Table 1 presents results on smallboisinstances (from the DIMACS problem
set), twoPretinstances that encode graph coloring problems, and ses8égiroblem
instances derived from circuit fault analysis problem$l&& shows statistics on DI-
MACS AIM instances (3-SAT problems with 50 or 100 variables).

In Table 1 we also include a set of results that we obtainedandamly generated
partial k-trees, which we adapted from Bayesian networks from the'QfAévalua-
tion repository. These instances had a certain degree of determinism edfoigon
generating their tables and should therefore lend themseiicely to our approach.

We also ran the bounding scheme on other instances that haasry ow level of
determinism (not reported here), and as one would expécandhwb as well as#cm
are all very close to each other in these cases, if not the.same

4.1 Analysis of Results

Bound Improvements under Determinism.If we just want to analyze the effect of
incorporating determinism into the bound, we can compaiteto hwb. Looking at Ta-

bles 1 and 2 we can see that the improvement is significanthE@mall, less complex
Duboisinstances the decrease is around 40%, foPtfet instances it is roughly 28%.

On theSSAproblems the improvement ranges from close to 20%, for mestan in-
stance ssa-7552-158, to over 60% on instance ssa-7552038eAIM instances the
bound decreases between 18% (instance aim-50-1-6-sabt¢t 70% on aim-50-3-4-
sat-4. The partiat-trees BN instances) that have been created with enforced determin-

2 http://ssli.ee.washington.edubilmes/uaiO6InferenceEvaluation/

11

[instance | n mk r w ir] twb hwb satb] #cm[Q¢ Qn Qs
dubois-20 60 402 3 3050 774 466 9 458 1.69 1.02 0.2
dubois-21 63 422 3 3050 814 490 9 482 1.69 1.02 0.21
dubois-22 66 44 2 3 30.50 854 518 10 510, 1.67 1.02 0.21
dubois-23 69 46 2 3 30.50 894 542 111 534/ 1.67 1.01 0.21
dubois-24 72 482 3 3050 934 566 11% 558 1.67 1.01 0.2
dubois-25 75 502 3 30.50 974 586 11% 578 1.69 1.01 0.20
dubois-26 78 522 3 3050 1,014 610 119 301 1.68 1.01 0.20
dubois-27 81 542 3 3050 1,054 634 128 626 1.68 1.01 0.20
dubois-28 84 562 3 3050 1,094 658 128 650 1.68 1.01 0.2
dubois-29 87 582 3 30.50 1,134 686 136 678 1.67 1.01 0.2
dubois-30 90 602 3 30.50 1,174 710 140 702 1.67 1.01 0.2
dubois-50 150 100 2 3 30.50 1,974 1,190 220 1,182 1.67 1.01 0.19
dubois-100 | 300 200 2 3 3 0.50 3,974 2,390 42D 2,382 1.67 1.00 0.18
pret-60 60 402 3 4050 1,534 1,102 830D 998 1.51 1.10 0.89
pret-150 150 100 2 3 4 0.50 3,934 2,862 2,303 2,598 1.54 1.10 0.84
ssa-0432-008435 738 2 5 31 0.75 4,244,330 2,059,616 1,116,6691,868,283 2.27 1.10 0.6D
$sa-2670-13359 2366 2 5 31 0.1460,631,566 123,388,312 104,689,50@6,638,20f 1.51 1.16 0.98
ssa-7552-038501 2444 2 6 63 0.1808,861,278 115,499,146 6,815,1486,718,327 8.41 3.15 0.19
ssa-7552-158363 1985 2 5 31 0.50 90,702 74,406 56,863 69,365 1.31 1.07 0.82
ssa-7552-15A363 1983 2 5 31 0.50 92,238 73,586 48,929 68,694 1.34 1.07 0.71
BN_105 40 44 2 21 18 0.6R 2,477,054 363 69 131 18909 2.77 0.58
BN_107 40 46 2 21 21 0.6R 29,983,742 1,643 191 272/110234 6.04 0.70
BN_109 40 46 2 20 20 0.62 13,054,974 4,052 1,309 2,531 5158 1.60 0.52
BN_111 40 45 220 19 0.6 8,406,270 2,299 465 979 8587 2.35 0.4

B

BN.113 40 47 2 21 21 0.6 18,916,350 2,752 336 630| 30026 4.37 0.5
Table 1: Results fobubois Pret, SSA andBN instances.

ism, are as expected very amenable to our approach and seem@mvément of three to
four orders of magnitude when going framab to hwb by exploiting determinism.

Quality of hwb Bound. We now compare the upper bouhdb to the true size of the

search spacé-cm. On the smalDuboisandPret instances, the bound is pretty tight,
getting within 1-2% and 10% of the true size, respectivety. the SSAinstances the

bound is around 10-15% off, with the exception of the ssa27B33 instance, where
hwb is about three times the size of the true search space size.

Looking at theAIM instances, the picture is equally mixed: For the first, nebit
simple instances with lowewp, the boundhwb is within 10-20% of#cm, but as the
instances grow more complex andncreases, the bounds move farther away, to within
60-70% of the true value for the aim-50-2-0-sat class. Femtiost complex problem
class aim-50-3-4-sat, thevb bound is even two orders of magnitude off.

On the partiak-trees BN105-113, where our bound produced significant improve-
ments overtwd, hwb is not really close te#cm but, with six times the true size for
BN_107 as the worst case, also not orders of magnitude off.

Quality of satb Bound. The results fosatb, however, are less impressive at this point.
While we indeed obtain lower bounds in practice, their quaditmostly not quite satis-
factory; for many instancesitb is 50% or more smaller thaftcm, in a few cases one
order of magnitude. But even though these lower bounds &ee ofaccurate, they are
still somewhat informative and can set the stage for futomgrovements. For example,
on instance aim-100-1-6-sat-3 the inter{sdtb, hwb] is definitely more informative
thenhwb alone.

12

[instance [n mEr w twb hwb satb] #cm] Qr Qn Q|
aim-50-1-6-sat-1 [50 77 18 2,517,118 2,053,046 931,4p2,813,906 1.39 1.13 0.51
aim-50-1-6-sat-2 | 50 76 1 767,678 626,955 73,180 551,659 1.39 1.14 0.18
aim-50-1-6-sat-3 | 50 78 2 4,742,590 3,859,278 2,023,4683,848,83% 1.23 1.00 0.58
aim-50-1-6-sat-4 | 50 77 19 3,615,166 2,616,824 2,079,752,532,968 1.43 1.03 0.82
aim-50-1-6-unsat1 50 69 15 377,502 256,482 26,806 211,168 1.79 1.21 0.18
aim-50-1-6-unsat-2 50 77 19 3,484,734 2,551,090 16,9p5,908,441 1.83 1.34 0.01
aim-50-1-6-unsat-350 70 17 1,190,910 971,254 43,382 685,060 1.74 1.42 0.06
aim-50-1-6-unsat-4 50 76 7,236,702 5,195,870 2,386,893,873,236 1.87 1.34 0.62

aim-50-2-0-sat-1 | 50 94
aim-50-2-0-sat-2 | 50 96
aim-50-2-0-sat-3 | 50 96

2

2

2

2

2

2

2

2

2 3 90,365,054 69,403,118 1,414,457 n/al

2

2
aim-50-2-0-sat-4 | 50 94 2

2

2

2

2

2

2

2

2

2

2

2

22 65,452,670 48,755,950 1,391,182,342,9852.09 1.56 0.0
23 54,422,654 32,724,286 12,682,129,291,6822.82 1.70 0.6
2 8,241,790 6,630,594 160,2648,861,7502.13 1.72 0.0
2 606,571,518 433,412,038 6,546,400 na - - -
2:
24

o+

aim-50-2-0-unsat-1 50 97
aim-50-2-0-unsat-2 50 94
aim-50-2-0-unsat-B50 92
aim-50-2-0-unsat-4 50 95

303,318,014 168,365,286 20,545,846 nlag - - -
} 170,571,646 116,379,982 7,669,688 nfag - -
22 74,731,070 47,225,310 372,308,832,4846.90 4.36 0.08

WWWWWWWWWWwWwWwWwWwWwwWwwwwwwww

aim-50-3-4-sat-1 | 50 156 3] 19,768,541,182 5,932,509,032 38,056,597 nfafg - -
aim-50-3-4-sat-2 | 50 161 31 14,305,816,574 4,451,610,286 76,885,056,2821580 492 0.01
aim-50-3-4-sat-3 | 50 161 29 7,761,709,054 3,734,762,630 1,906, nlag - - -
aim-50-3-4-sat-4 | 50 159 31 19,749,318,654 5,467,090,270 348,P65478,0541465 406 0.08
aim-100-1-6-sat-1/100 154 35210,325,162,494 163,853,989,863 47,152,799,695 nlaf - -
aim-100-1-6-sat-2/100 156 38 85,955,535,454 67,679,948,226 24,266,372,351 nlaj - -
aim-100-1-6-sat-3/100 156 3%350,209,736,830 241,765,634,544 97,931,906,010 n/aj - — -

Table 2: Results foAIM benchmark instances. All problems have a median tightness ratio of
tr = 0.875.

5 Impact of Orderings

In a separate experimental setup we wanted to investigaeaiver of our new bounds
in predicting good orderings. We therefore looked at a halnaff problem instances
and evaluated the impact that the variable ordering forcbeeain have on the bounds
we compute, as well as on the true search space size.

To that end we processed the instances 50 times along a raetbminfill ordering
(where ties are broken at random). Each time we computetddihandhwb bound and
solved the problem exactly, as described before.

In particular we examined four instances from &id/ class and fouSSAcircuit
analysis instances. The results are plotted in Figure 4h Eatical bar represents a
single randomized run: the white top indicates the valueudf and the grey middle
part denotesiwb, while the black bottom gives the true search space gizer (if
the grey part is not visiblehwb is very close to or the same gsm). In addition we
record, against a different scale on the right hand sideefigures, the tree width of
each ordering.

It is immediately obvious that both bounds provide a muchebeéndicator of the
quality of orderings than the plain tree width. For example,the aim-50-1-6-sat-1
instance the tree width is 18 for most of the orderings, yetuwalues of#tcm vary
condiderably in these cases — but this variation is indeptload by both thewb and
hwbd bound. Furthermore, some orderings have: 19 and slightly increasetivb value
(columns 9 and 14, for instance), yet the search space#sizeis actually smaller than
it is for many of the orderings with tree width 18 — a fact thetaptured by a lower
hwd bound.

Similar observations hold for other instances, for exanapte-50-1-6-sat-3, where
most orderings have the same tree width, but wheteandhwb are more informative

3000000 5 g 2500000 2
\, 2500000 - Il g g
9 | ”I I | r20 2 g 2000000 2
8 it ° 8 °
22000000 § g 2]
o i F 15 E 2 1500000 - €
o o
< 1500000 i g Z g
. i L 10 & 1000000 g
£ 1000000 4 5 & 5
£ £ E s
=3 k=]
ER— ts 2 2 500000 2
8 8
o Lo © 0 =
0 10 20 30 40 50
(a) aim-50-1-6-sat-1 (b) aim-50-1-6-sat-2

9000000 % 6000000 %
8000000 1 £ S
" DL UU bl i | 20 84 S000000 | L] L2 2
§ 7000000 B3N B0 i 5 8 (T (N P Sop—— . 5
B dah | i i 5 i s 3 | -
2 6000000 {Jif iAi ¢ i g £ 4000000 3
£ 5000000 1 i { ris e ¢ b 15 F
z ALl bttt lalilltl 5 = oo | ||| ||| R
5 4000000 1 | | , o & B I L 10 8
é 3000000 5 é 2000000 1 5
=] k=l =) k=)
2 2000000 5 % 2 1000000 { rs =
1000000 -]]
= =

ol Lo o Lo

0 10 20 30 40 50 0 10 20 30 40 50
(c) aim-50-1-6-sat-3 (d) aim-50-1-6-sat-4

120000 14 120000 14
j= j=2}
E k]
,, 100000 -7) r12 g 100000 - riz g
8 | x w | e wn | © g 8 | E
2 80000 i I | | Il 2 2 80000 2
E: | -8 £ 2 re §
< 60000 - i 2 < 60000 <]
> re g8 ° re g
£ 40000 - 5 & 40000 5
£ KR Feog
2 5 2 3
20000 L o § 20000 { L o §
2 £

o b o o Fo

0 10 20 30 40 50 0 10 20 30 40 50
(e) ssa-7552-158 (f) ssa-7552-159

14000000 o 1000000000 2
,, 12000000 5 3
8 S 2 800000000 5
8 10000000 T g 3
N N
S 8000000 E 2 600000000 5
< g < 38
— c . c
S 6000000 £ 2 400000000 g
£ 4000000 - 2
2 S 2 200000000 3
2000000 H H
£ 8
0 = 0 g

(g) ssa-0432-003

(h) ssa-7552-038

13

Fig. 4: Plots of thetwb and hwb bounds versus the true search space gize: on various
problem instances, each over 50 randomized minfill variable orderikige shown is the tree
width w for the each ordering, which is plotted against a separate scale on the righ

14

in determining “good” variable orderings. On aim-50-14-4 twb is nearly the same
for all orderings with tree width 19, yéiwb characterizes the distribution of different
#cm values very well. For instance ssa-0432-003, iterationdB8neither the tree
width nor thetwb bound correctly identify the lowestcm, whereaswbd does.

Moreover, the diagrams once again exemplify the generalawgment of thévwb
bound over thewb one, as observed already in Section 4. It is also worth ndtiag
hwb is a very tight bound in many of the cases in Figure 4.

6 Summary & Future Work

In this paper we describe schemes for upper and lower bogrtta instance-based
complexity of AND/OR search algorithms for solution coungtiand related: P prob-
lems. The typical asymptotic bound is exponential in thebfmm’s tree width. While
this can give a rough idea about problem hardness, it is afésirable to obtain a
tighter, more fine-grained bound. As it has previously béews, this can be accom-
plished by looking at a suitable tree decomposition of thabj@m’s underlying graph
structure and the domains of variables in the decomposifigsters. But this is blind
to determinism in the problem, which can greatly prune tlecespace in practice.

The notion of determinism is, however, very prominent in tfEanework of hy-
pertree decompositions which allows for exploiting tightation representations; in
practice, though, the bounds one obtains with this appraaqtonential in hypertree
width, are mostly not competitive and worse than those pievby the tree width.

To overcome this we initiate an effort in this paper and in arlier one (under re-
view) to develop more refined bounding methods that selegtaxploit determinism in
the relation specification. We demonstrated the potenttialiofirst version of an upper
bounding scheme on probabilistic networks for queries siscfinding the probability
of evidence. The contribution of the current paper is in:

1. Extending the upper bounding scheme to account not omlg fdeterminism in

each cluster independently, but also consider propagafidieterminism that oc-

curs when moving down the search tree, which has improvetaumnds by 30%

in some cases,

Developing a new approach for lower bounding the searabespize,

3. Anew set of empirical demonstrations of the power of bathrizling schemes over
a significant number of constraint network benchmarks, and

4. Demonstrating the ability of the bounds to discriminaeeen variable orderings
for search, which can affect the performance substantially

N

We believe that the current version of our upper boundingisehcan be further
improved by incorporating a stronger form of propagatiowd®he bucket tree, across
clusters. Well-known consistency methods of varying caxity should be applicable
for this. For optimization tasks and for approximating lmtaand-bound and best-first
search algorithms we hope to accomplish further tighteoinifpe search space using
the cost function itself. Finally, recent advances in sangpbased counting should
allow us to improve the quality of the lower bounds we compute

15

On a higher level, we also plan to extend our scheme to alloviiégible bound

adaptation to reflect conditioning during search, whicheiommple allows for dynam-

ically updating the variable ordering; eventually we irdein deploy our scheme for
parallelizing search algorithms over a network of many nraeh(e.g., grids and clus-
ters), where the load balancing in partitioning the taskstee advantage of a good
estimate of each partition’s workload.

References

1.

2.

3.

10.

11.

12.

13.
14.

R. Dechter and J. Pearl: Tree Clustering for Constraint Netwavitsicial Intelligence38
(1989): 353-366.

R. Dechter and R. Mateescu: AND/OR search spaces for graphmagls. InArtificial
Intelligencel71(2007): 73-106.

A. Dermaku, T. Ganzow, G. Gottlob, B. McMahan, N. Musliu, M. Sarikeuristic Methods
for Hypertree Decomposition3echnical Report DBAI-TR-2005-58ienna University of
Technology, 2005

. V. Gogate and R. Dechter: Approximate Counting by Sampling the Beatkfree Search

Space. IrProceedings of AAAI'Q7

. G. Gottlob, N. Leone, and F. Scarcello: A comparison of structus# @ecomposition meth-

ods.Artificial Intelligence124(2000): 243-282.

. D. S. Johnson: Approximation algorithms for combinatorial problemd$’roceedings of

STOC'73 38-49.

. K. Kask, R. Dechter, J. Larrosa, and A. Dechter: Unifying tredgositions for reasoning

in graphical modelsAtrtificial Intelligencel66(2005): 165-193.

. U. Kjeerulff: Triangulation of Graphs — Algorithms Giving Small Total t8t8paceResearch

Report R-90-09, Dept. of Mathematics and Computer Scjekedborg University 1990.

. S. L. Lauritzen and D. J. Spiegelhalter: Local Computations with Bibtxes on Graphical

Structures and Their Application to Expert Systedmirnal of the Royal Statistical Society.
Series B50(2)(1988): 157-224.

A. K. Mackworth and E. C. Freuder: The Complexity of Some PatyiabNetwork Consis-
tency Algorithms for Constraint Satisfaction ProblerAstificial Intelligence25(1) (1985):
65—74.

R. Mateescu and R. Dechter: The Relationship Between AND/ORIE8aaxces and Vari-
able Elimination. InProceedings of UAI'05380-387.

L. Otten and R. Dechter: Bounding Search Space Size via (HygeEecompositions. Un-
der review.

J. Pearl: Probabilistic Reasoning in Intelligent Systems. Morgannfauf, 1988.

M. Silberstein, A. Tzemach, N. Dovgolevskiy, M. Fishelson, A..&tér, D. Geiger: Online
system for faster linkage analysis via parallel execution on thousanessdnal computers.
American Journal of Human Genetj006.

