Bounding Search Space Size via (Hyper)tree Decompositions

LarsOtten and Rina Dechter
Bren School of Information and Computer Sciences
University of California, Irvine, CA 92697-3435, U.S.A.
{lotten,dechtef@ics.uci.edu

Abstract is addressed by the more recent concept of hypertree de-
compositions [Gottlob et al., 2000]. It was shown that the

This paper deveiops a measure for bounding the maximum number of functions in the clusters of a hy'

performance of AND/OR search algorithms for pertree decomposition (the hypertree width) exponesptiall
solving a variety of queries over graphical mod- bounds the problem complexity for constraint inference, a
els. We show how drawing a connection to the result that was extended to general graphical model infer-
recent notion of hypertree decompositions allows ence in [Kask etal., 2005] The base of the exponent in
to exploit determinism in the problem specifi- this case is the relation tightness, thus allowing the motio
cation and produce tighter bounds. We demon- of determinism to play a role. However, in practice this
strate on a Variety of practicai probiem instances bound often turns out to be far worse than the tree width
that we are often able to improve upon existing bOUnd, unless the prOblem exhibits substantial determinis
bounds by several orders of magnitude. [Dechter et al., 2008].

The contribution of this paper is in combining both ideas to

tighten the existing bounds, using the relationship betwee

1 INTRODUCTION 9 J J P

AND/OR graph search and tree decompositions. Starting

. . with the tree width bound, we show that one can also incor-
This paper develops a measure for bounding the perfor-

p h algorithms f Vi oty of . éjorate the concept of hypertree decompositions by greedily
mance of search aigorithms or solving a variety ol querie covering variables with tight functions. This yields bette

hounds on the number of nodes in the search graph, which

the complexity of inference algorithms (e.g., join-treescl translates directly to search complexity.

tering, variable elimination) is exponentially bounded by
the tree width of the graphical model's underlying graph.Tighter bounds are desirable for a number of reasons:
The base of the exponent is often taken to be the maximum 1 \we can better predict parameters of the algorithm

domain size. ahead of time (primarily the variable ordering for

More accurate bounds were derived by looking at the Search), fitting the algorithm to the problem.
respective domain sizes and their product in each clus- 2. It enables us to dynamically update parameters during
ter in of tree decomposition of the underlying graph search, e.g., for dynamic variable orderings.

[Kjeerulff, 1990]. These tighter bounds were used in select- 3
ing good variable orderings, for example. It was recently
shown that these bounds are also applicable to search algo-
rithms that explore the context-minimal AND/OR search
graph [Dechter and Mateescu, 2007].

. In a distributed setup, search can often be imple-
mented as centralized conditioning followed by inde-
pendent solving of the conditioned subproblems on
different machines. Better bounds can help in balanc-
ing these two phases by varying the size of the central

The shortcoming of these bounds is that they are com- conditioning set [Silberstein et al., 2006].

pletely blind to context-sensitivity hidden in the fungt We provide extensive empirical results on 112 probabilis-

ic problem instances and 30 weighted constraint satisfac-

a.problem possesses high Ie\./els' of determinism, its treﬁon problems. We show that exploiting determinism has a
width bound can be large while its search space can be.

. . : . _significant effect for a number of problem classes. We fur-
extremely pruned, due to propagation of |ncon5|sten0|e§h :
across functions. ermore compare our bound to the exact size of the search

space on a subset of feasible instances, and show that it can
Part of this shortcoming in worst-case complexity boundsbe very tight in some cases.

An approach that is related but orthogonal to the work here

is described in [Zabiyaka and Darwiche, 2006], where the (F)

standard complexity measure of tree width is refined by @ ®)
©

{A,B}
P(B|A)

taking into account functional dependencies — i.e., know-

ing one set of variables determines the values of another G

set. [Fishelson et al., 2005] develops a bound specifically @ t
for an interleaved variable elimination and conditionifg a

©
)
gorithm on linkage analysis problems. Q G ®

Section 2 provides the background and definitions. Section (@) (b) (c)

3 discusses hypertree decompositions and related complegigure 1: Example belief network, its triangulated primal graph
ity bounds. In Section 4 we introduce our new boundingalong orderingd = A, B,C, D, E, F, and the corresponding
scheme, for which Section 5 provides empirical evaluationbPucket tree decomposition.

Section 6 concludes.

{AB.C}
P(CIA)

{AB,E}
P(E|A)

{B.C,D
P(D|B,C)

{B,E,F}
F(F|B,E)

for any two vertices:;, v € V that appear in the same hy-
2 PRELIMINARIESAND DEEINITIONS peredge (namely, there exists, s.t.,u,v € S;). Thedual
graph of a hypergraphd = (V, S) is an undirected graph
G = (S, E) that has a vertex for each hyperedge, and there
is an edge(S;, S;) € E when the corresponding hyper-
edges share a verte$(N S; # 0).

In the following we will assume graphical modebiven as
a set of variablesX' = {x1,...,2,}, their finite domains
D ={D,...,D,}, asetof functiond = {f1,..., fm}.

each of which is defined over a subsetf and a com- perniTION 2.2 A hypergraph is diypertree, also called
bination operator (typically sum, product or join) over all geyclic hypergraph, if and only if its dual graph has an
functions. Together with an marginal!zation operator Suchedge subgraph that is a tree, such that all the nodes in the
asminx andmaxx we obtain aeasoning problem dual graph that contain a common variable form a con-

The special cases of reasoning tasks which we have iRected subgraph.
mind are belief networks, (weighted) constraint networks,, . .

. . . It is well-known that problems whose underlying
or mixed networks that combine both. The primary tasks raph have tree structure can be solved efficientl
over belief networks are belief updating and finding theg b o . y

. o . “[Pearl,1988]. If this is not the case, we aim to
most probable explanation. They are often specified usin ansform the problem into an equivalent one that ex-
conditional probability functions defined on each variable, .. . P . d i
and its parents in a given directed acyclic graph (see Fi hibits tree structure [Lauritzen and Spiegelhalter, 1988,
ure 1(a)F; and use n?ulti lication and)gumr?’lati%n or rna)?_Dechter and Pearl, 1989, Kask et al., 2005]. Intuitively, we
S Pl S do this by grouping variables and the functions over them
imization as the combination and marginalization opera-

tors [Kask et al., 2005]. For constraint networks we areInto clusters that can be arranged as a tree:

mainly concerned with problems of finding or enumer- peginiTion 2.3 Let X, D, F be the variables, domains
ating solutions; they are defined using relations as funcang functions of a reasoning problef A tree decom-
tions, and relational join and projection as the combimatio position of P is a triple (T, x, 1), whereT = (V, E) is a
and marginalization operators, respectively. For weighte yree andy and« are labeling functions that associate with

constraint networks one typically has real-valued func-gach vertex € V two setsy(v) C X and«(v) C F, that
tions and summation and minimization as combination andatisfy the following conditions: B

marginalization operators, respectively. 1. For eachf; € F, there is at least one vertexc V

such thatf; € ¥(v) .
21 EXPRESSING STRUCTURE 2. If f; € W(v), thenscope(f;) € x(v) -

If one wants to analyze the complexity of a given prob- 3- FOr €ach variableX; € X, the set{v € V|.X; € x(v)}
lem instance, it has proven useful to look at the underlying ~ Induces a connected subtree’of This is also called
structure of interactions between variables: the running intersection property.

) ~ Thetree width of a tree decompositiofl’, x, 1) is w =
DEFINITION 2.1 Thehypergraph of a graphical model is max,|x(v)| — 1 . The tree widthv* of P is the minimum
a pair H = (V,5), where the vertices are the problem {ree width over all its tree decompositions.
variables ¢ = X) and whereS = {54, ..., S} is a set of
subsets o¥, called hyperedges, which represent the scoped he problem of finding the tree decomposition of minimal
of the functions in the problen$(= scope(f;)). Thepri- tree width is known to be NP-complete. To obtain tree de-
mal graph of a hypergraphHd = (V,S) is an undirected compositions in practice, one can apply a triangulation al-
graph G = (V, E) such that there is an edge:,v) € E gorithm to the problem’s primal graph along an ordering

and then construct thieucket treeby extracting and con-
necting the cliques for each variable, as described for in-
stance in [Pearl, 1988]. The ordering to use as the basis for
the triangulation algorithm is often computed heuristical

Example2.1 Assume the belief network in Figure 1(a)
over variablesX = {4, B,C, D, E, F'} is given. We pick
the orderingd = A, B, C, D, E, F and triangulate the pri-
mal graph as shown in Figure 1(b). If we extract each Figure 2: The AND/OR search tree for the example problem, as-
variable’s bucket— the variable and its earlier neighbors suming binary variables.

— we obtain the tree decomposition shown in Figure 1(c),
thebucket tree decomposition

2.2 SOLVING REASONING PROBLEMS

Two principal methods exist to solve reasoning prob-
lems, search (e.g., depth-first branch-and-bound, best-fir
search) and inference (e.g., variable elimination, joaet
CIUSte”.ng).' Both can be ;hown t? be tlmg and Spage e)ﬁ_:igure 3: The AND/OR search graph explored by AND/OR
ponential in the problem instance’s tree width [Lauritzengz .h with caching.

and Spiegelhalter, 1988, Dechter and Pearl, 1989, Kask et

al., 2005, Dechter and Mateescu, 2007], with a dominant

factor of k*, wherek denotes the maximum domain of the rithm will effectively explore theAND/OR search graph

problem variables. With caching, identical subproblems are recognized based
on their context, which is a graphical model parameter that
221 Search denotes the part of the search tree above that is relevant to

) the subproblem below.
Search-based algorithms traverse the problsearch

space Given a variable ordering, the simplest way to per- Caching will avoid redundant computations, thus reducing
form search is to instantiate variables one at a time. Thigime complexity, at the cost of increased memory require-
will define a search tree, where each node represents a stdfi€nts. By varying the maximum size of contexts to cache
in the space of partia| assignments_ Leaf nodes S|gn|fy eion, this tradeoff can be fine-tuned. ASSUming full CaChing,
ther full solutions or dead ends. Standard depth-first algosearch has been shown to exhibit both time and space com-
rithms typically have time complexity exponential in the Plexity exponential in the problem’s tree width.

number of variables and require linear space. If memory . .

is available, one can apply caching to traversed nodes arfgx@mple 2.3 If we extend AND/OR search with caching,

retrieve their values when “similar” nodes are encountereddiven the problem in Example 2.1 it will explore the
AND/OR search graph shown in Figure 3. Note how the

These elementary search spaces, .however,_ don't fullghjlg nodes of variable€’ and E are merged. This ex-
capture the structure of the underlying graphical modelyresses the fact that in the example the subproblems rooted

Introducing AND nodes into the search space can eX-at D and F, as children o’ and E, respectively, are inde-
ploit independence of subproblems by effectively con-pendent of the value of further up.

ditioning on values, thus avoiding redundant computa-
tion [Dechter and Mateescu, 2007]. Since the size of th
AND/OR search treenay be exponentially smaller than 23 EXPLOITING DETERMINISM

the traditional OR ;earch one, any algorit.hm exploring thg, practice, however, problem instances across many do-
AND/OR space enjoys a better computational bound. mains will exhibit a significant degree of determinism (g.g.

1622 Fi 2 depicts th / h ¢ disallowed tuples in constraint problems, zero probapbilit
Example 2.2 Figure 2 depicts the AND/OR search tree for o\jas in pelief networks). Search algorithms detect the

the_pg?blgm mt_roduc(ejdrl]n Exgm_ple E'Z'fge;s’;uge;mar%sulting inconsistencies early in the search process and
\'I/'i“aAI\TD orr:jamsf an t_ ebl%’r er'?]gh_ g CSR ’ h'i q) prune the respective portion of the search space. This can
N nodes for variablg each have two children, 1054 to significant savings in running time, but is not re-

expressing that at this point the problem decomposes int‘ﬂected in the standard worst-case bounds described above.
independent subproblems, rooted’aand F, respectively.

To exploit determinism in the context of variable elim-
We can equally apply caching techniques to an algorithmination, the concept of (generalized) hypertree decom-
exploring the AND/OR search tree. As a result this algo-positions has been introduced for constraint networks in

[Gottlob et al., 2000]. As a subclass of tree decompositwo worst-case complexity bounds, i.8%, andt"*, where
tions, it was shown that it provides a stronger indicator ofk denotes the maximum domain size anthe maximum
tractability than the tree width. function tightness in the problem instance. In order for
the hypertree decomposition to provide a better bound than
DEFINITION 24 LetT = (T, x,¢), whereT' = (V,E) the tree decomposition should be significantly smaller
be a tree decomposition of a reasoning probtenover a thank®.
graphical model with variables, their domainsD and
functionsF'. 7 is a hypertree decomposition of P if the
following additional condition is satisfied:

Intuitively, it is clear thatt € O(k"), wherer is the max-
imum function arity of the problem. Hence we should ex-
pect that only when the function table contains many irrele-
4. Foreachw € V, x(v) € Uy, ey scope(f;) - vant values (e.g., zeros in probability tables), the hypert

width bound can be superior.
The hypertree width of a hypertree decomposition is P

hw = max, [¢(v)|. The hypertree widthw* of P is the And indeed, out of all the instances we evaluated, only for
minimum hypertree width over all its hypertree decomposifive of them was"* less thark™, whereas it was orders of
tions. magnitude worse on almost all of the remaining problems.

Looking at the instances in more detail, it becomes evident
To analyze the complexity of algorithms operating on hy-that in most of them the functions are not sufficiently tight
pertree decompositions, we introduce the notionigiit- and often have highly intersecting scopes, which renders
nessof a function or relation: the hypertree width bound ineffective.

DEFINITION 2.5 The tightness ¢ of a function f is the
number of relevant tuples (e.g., allowed tuples in con—4 SEARCH SPACE ESTIMATION

straints, nonzero entries in conditional probability tab).
Even though the results in [Dechter et al., 2008] suggest

The motivation behind this is to store and process the functhat complexity bounds based on hypertree width are of-
tion in a “compressed” form, with only theelevant tuples. ten not competitive in practice, the idea of exploiting dete
Given a hypertree decomposition, one can then modify aminism remains promising. Furthermore, while all con-
inference algorithm to make use of these compact represiderations in section 3 were targeted at inference algo-
sentations when computing the messages to be passed. rithms, we are in particular interested in estimating how
determinism in a problem will impact the size of the search
space discussed in Section 2.2.1, since search is a wide-
spread method in practice. To that end, we will aim to up-
per bound the size of the AND/OR context minimal search
b graph, which is explored by AND/OR search augmented
‘with caching, as described in Section 2.

In [Gottlob et al., 2000] the complexity of processing a
hypertree decomposition for solving a constraint satisfac
tion problem is shown to be exponential inv*, with
a dominant factor of"*". This result was extended in
[Kask et al., 2005] to any graphical model that is absor
ing relative to 0. (A graphical model is absorbing relative
to a 0 element if its combination operator has the property

thatz @0 = 0 Va; for example, multiplication has this 41 TREE DECOMPOSITION

property while summation does not.) CORRESPONDENCE
Assume that a variable ordering= z1,...,x, is fixed
3 HYPERTREE WIDTH BOUNDS FOR and that search instantiates variables first to last (while i
INFERENCE ference would proceed last to first). We note that the way

the search space is decomposed by AND/OR search with
In this section we briefly explore whether the bounds basedaching can be represented by the bucket tree decompo-
on hypertree width can provide a practical improvementsition along the same ordering. For details we refer to
over the established tree width bounds described above. TtMateescu and Dechter, 2005], to illustrate we revisit our
that end we recently looked at a selection of over 140 probprevious example:
lem instances from various domains [Dechter et al., 2008].
Example 4.1 Consider the bucket tree decomposition in
Figure 1(c) and the AND/OR search graph in Figure 3. Itis
easy to see that the decomposition clusters can be related
to the “layers” of the search graph, i.e., the nodes associ-
ated with a variable and its values, as shown in Figure 4.
We used the lowest tree width and hypertree widthw For instance, the clustefB, C, D} represents the search
out of 20 runs as a basis for our investigation: For everylayer for variable D and the fact that the subproblem only
problem instance, we compute the dominant factors of thelepends orB andC — and notA.

We used the code developed for [Dermaku et al., 2005]
which is available online. It generates a tree decompasitio
along a minfill ordering and extends it to a (generalized)
hypertree decomposition by applying a greedy heuristic.

Algorithm GreedyCovering

Input: Cluster C), containing variablesX; and functionsFy,

with z; € X}, having domain sizel; and f; € F, having tight-

nesst;

Output: A subset ofF;, (forming a partial covering oK)

Init: Uncov= X}, Covering= ()

(1) Find* that minimizesr; = ¢,/ [
I; = Uncovn scope(f;).

Figure 4: The AND/OR search graph with clusters corresponding?) If r;= > 1, terminate with current covering.

to the bucket tree decomposition in Figure 1(c). (3) Add f;~ to Coveringand setUncov:= Uncow scope(f;).

(4) If Uncov= 0, terminate with current covering.

Based on this observation, we can also partition thd®) G0t (1).

search space into “clusters”, according to the correspond- Figure 5: Greedy covering algorithm for a single cluster.
ing bucket tree decomposition. Our approach of upper

bounding the size of the entire search space will then be

to bound the portion of the search space in each cluste}PON it, therefore combining the concept of tree and hyper-

subsequently summing over the clusters (for simplicity well®€ decompositions.

consider only the AND nodes of the search space, sincgh essence this can be seen as a weighted variant of the
OR nodes are actually not implemented as such in pragyell-known SET COVER problem, where one aims to
tice). We note that a cluster in a bucket tree decompositiogover a set or vertices by as few as possible subsets from a
willalways correspond to exactly one variable’s layer i@ th set of given subsets of the variables. The problem is gener-
AND/OR search graph (due to the way it is constructed). ally NP-complete, but simple greedy approximations exist

[Johnson, 1973], which give rise to our method:

di, where

TR €l

4.2 BOUNDING CLUSTER SIZE . L
Start with an empty covering (if we assume dummy unary

A straightforward upper bound is obtained by multi- functions over uncovered variables, this is equivalent to
plying the domain sizes of all variables in the clusterth® boundiwb). Then, for each functior; in the cluster,

[Kjeerulff, 1990]. If the set of clusters is given by = compute theoverage ratia-; as follows: Divide the func-
{Ch,...,Cy}, C, C X, summing over clusters gives tion’s tightnesg; by the product over the domain sizes of
" the variables that have not yet been covered and are in the
twh = Z H |D;] . scope off;. Pick the function for which the coverage ratio
P is the lowest and add it to the covering. Repeat this for as

. long as we can still find a function with a coverage ratio
Note that this is very closely related to the worst case com-

. . R . less than 1. The algorithm is given in Figure 5.
plexity, since the tree width is just the maximum number of
variables in any cluster of the decomposition. This, how-It will produce a set of functions as the covering, but might
ever, does not take determinism into account. leave some variables uncovered. As before, we can mul-
tiply the tightness of the functions in the covering and the

If the bucket tree decompo.s.mon we are Worklng W'th_'s domain sizes of the uncovered variables to obtain an upper
also a hypertree decomposition (meaning all variables in Bound on the number of nodes in the cluster

cluster are covered by the functions in that cluster), we can

take the producf], ¢; as an upper bound to the number of It is worth noting that we are not limited to functions from
nodes in that cluster, whetg is the tightness of théth the decomposition cluster in question, but we can include
function in it. (This is closely related to the complexity any function from the clusters higher up in the rooted tree
bound on hypertree decompositions as outlined above.) decomposition (since their scope will have been fully in-

Taking this one step further, if the bucket tree decomposi:S tantiated at this point of the search).

tion at hand does not satisfy the additional hypertree deProposition 1 Executing algorithmGreedyCoveringfor

composition condition, we can compute the product OVelach clyster of the bucket tree decomposition and summing
the tightness of each function in the cluster and multlplyup we obtain an upper bound on the number of nodes in
this by the domain sizes of the uncovered variables, to acfhé AND/OR search graph, which we denote:

count for the lack of information about these variables.

n

However, since the scopes of the different functlor_15 ina pyh:= Z H tj - H |D;|
cluster can overlap, this tightness based bound will typi- k=1 \ f;€C00(Ch) m:€ Ci\Cov(Ch)
cally be worse than the simple “product of domain sizes”

(as we already observed). Consequentially, we use the latvhereCov(CY,) is the set of functions returned by the al-
ter as a starting point and exploit tight functions to imgov gorithmGreedyCoverindor clusterCj,.

)

THEOREM4.2 Given a reasoning problem with vari- that these three bounds can produce very large integers,
ables andm relations with maximal tightness If the therefore we report them as th&ig,, in Table 1.) Even for
bucket tree decomposition along a given variable orderingthe larger problem instances this bound computation takes
d has tree widthw, the complexity of computing the bound only a few hundred milliseconds on a 2.66 GHz CPU.
hwbis O(n - w - m) time-wise and)(m) space-wise.

5.1 BOUND IMPROVEMENTS
Proof. The time complexity of algorithnGreedyCovering
is linear both on the number of variables in the cluster adf we compare the values for- k! andtwb, we can see
well as in the number of functions considered, i.e., worst-that the bound improves for every problem instance by at
caseO(w - m). Keeping track of the coverage ratio of each least one order of magnitude, but often more than that (re-
function require®)(m) space. lterating and summing over call that the table showlkg,, of the bounds). For most
all n clusters results in the stated asymptotic boundsa pedigree genetic linkage instances, for example, the reduc

tion is ten orders of magnitude or more. Similar results
Example 4.3 Assume we have a cluster containing 3 vari- hold for the dynamic Bayesian networks we tested on, with
ables X, Y, Z with domain sizesly = 4, dy = 4, and many orders of magnitude improvement.
dz = 3, as well as 2 functiong(X,Y) and f»(Y, 2)
with tightnesg; =9 and¢, = 11. Thetwb bound on the
number of nodes in this cluster i&y - dy - dz = 48. In
the first iteration of the greedy covering algorithm fowb
the gain ratios off; and f, will be computed as% and
%, respectively. Thereforg, will be added to the cover-
ing, leaving onlyZ uncovered. The next gain ratio ¢f
will be computed a%, which is greater than 1. There- If we try to exploit determinism by going from thevb to
fore the algorithm terminates angh will not be part of hwb bound, there is, just looking at the problem param-
the covering. Théiwd bound for this cluster will then be eters, no obvious indicator for when the bound will im-

It seems that problems with a higher number of variables
benefit the most from the fine-grained analysis. This makes
sense if one considers the fact that the worst-case bound
will greatly overestimate the size of almost all clusters,
since in practice the tree decomposition contains only very
few clusters of full tree width.

t1-dz =9-3=2T. prove: On pedigree instances, for example, the decrease is
not very significant, although these problems exihibit some
5 EXPERIMENTAL RESULTS determinism. On digital circuits, on the other hand, with an

average of 50% determinism, the bound improves another

. . _ 3 to 4 orders of magnitude ovemb.
For empirical evaluation we return to the problem instances

that were described in [Dechter et al., 2008] (see also Sedn almost all weighted CSP instances we were able to
tion 3). These comprise 112 belief networks from areadower the bound by exploiting determinism, often by or-
such as Coding networks, dynamic Bayesian networks, géjerS of magnitude. For example, on the satellite scheduling
netic linkage instances and CPCS medical diagnosis nefroblem 408b théwb bound of83, 206, 198, 094 decreases
works. We also evaluated 30 weighted constraint network0 @ hwb value 0f248,197. A significantly tighter bound

instances. All problem instances are available ofline is also achieved on randomly generatettees where the

) , probability tables were forced to exihibit determinismttwi
For every instance, we report the number pf variables ¢, exampletwb — 29,983,742 decreasing tchwh —
the maximum variable domain size the maximum func- 1,528 on problem BN107.

tion arity r, and the average tightness ratio(defined as

the average percentage of relevant tuples in a full functiorf he crucial point here seems to be at which point during
table). the search functions with high determinism will have their

) . scope fully instantiated, i.e., at which point they become
On each problem instance we run our bounding method,5ijaple to our covering heuristic. This is not prediogabl
along 100 different minfill orderings (with random tie p, oy jooking at the instance parameters but will require

breaking) and record the lowest bound, withas the 5'more detailled look at the guiding bucket tree decompo-
tree width of the bucket tree decomposition. For ev-gition instead.

ery instance we then compute the asymptotic worst-case
bound for the search space size, whichis k! (cf.
[Dechter and Mateescu, 2007], adapted for AND nodes). 52 BOUNDEVALUATION

Consulting the bucket tree decomposition for a more fineMost problem instances are too big to compute the exact
grained analysis (still without considering determinism)Size of the context minimal AND/OR search space, which
gives the boundwb. We then apply our covering heuristic Would be equivalent to solving the problem (for solution

to exploit determinism and obtain the bouhd:b. (Note ~ counting or computing®(e)). But for some of the smaller
instances this is actually feasible, which gives us theoopti

Yhttp://graphmod.ics.uci.edu/ of testing how tight our bound is.

[Tog, I Togo |
instance n k r tr [w [nk?tt twb hwb “ instance n k r tr [w [nktt twb hwb]
Grid networks Coding networks
90-10-1 100 2 3 058] 9 5.01 4.06 3.92[] BN_126 512 2 5 0.87] 53 18.96 16.81 16.81]
90-14-1 196 2 3 0.55| 15 7.11 5.63 5.58|| BN.127 512 2 5 0.88| 57 20.17 17.86 17.86
90-16-1 256 2 3 056 17 7.83 6.25 6.15|| BN.128 512 2 5 0.88| 48 17.46 1548 15.48
90-24-1 576 2 3 055]| 15 7.58 5.91 5.76|| BN_-129 512 2 5 0.88| 52 18.66 16.66 16.66
90-24-1e20 576 2 3 055 31 12.39 10.12 10.12|| BN-130 512 2 5 0.88| 54 19.27 16.98 16.98
90-26-1e40 676 2 3 055]| 29 11.86 9.88 9.83|| BN_131 512 2 5 0.87] 48 17.46 1542 15.42
90-30-1e60 900 2 3 055 37 1439 11.96 11.95/ BN.132 512 2 5 0.88| 49 17.76 16.00 16.00
90-34-1e80 | 1156 2 3 0.56| 39 15.10 12.66 12.53|| BN.133 512 2 5 0.87| 54 19.27 17.26 17.26|
90-38-1e120| 1444 2 3 0.55| 43 16.40 13.97 13.69|| BN.134 512 2 5 0.87| 52 18.66 16.41 16.41
Dynamic Bayesian Networks CPCS medical diagnosis
BN_21 2843 91 4 049 6 17.17 8.50 7.82[| cpcsb4 54 2 10 1.00] 12 5.65 4.68 4.68
BN_23 2425 91 4 047 4 13.18 7.37 6.59|| cpcsl79 179 4 9 100| 7 7.07 5.04 5.04
BN_25 1819 91 4 053] 4 13.06 7.17 6.77|| cpcs360b 360 2 12 1.00| 16 7.67 5.50 5.50
BN_27 3025 5 7 1.00| 9 10.47 7.33 7.33|| cpcs422b 422 2 18 0.99| 22 9.55 7.51 7.51
BN_29 24 10 6 1.00| 5 7.38 6.16 6.16 Genetic linkage
Grid networks pedigreel 334 4 5 0.79| 15 12.06 6.88 6.85
BN:3T 1156 2 3 0.56] 35 1390 1153 11.47|| pedigreel8 | 1184 5 5 081 20 17.75 7.58 7.58
BN_33 1444 2 3 0.56| 37 14.60 12.42 12.26|| pedigree20 | 437 5 4 079 22 18.72 9.42 9.20
BN_35 1444 2 3 0.55| 38 1490 12,51 12.25|| pedigree23 | 402 5 4 080 27 2218 11.73 10.85
BN_37 1444 2 3 0.55| 40 15,50 13.01 12.99|| pedigree25 | 1289 5 5 0.83| 24 20.58 9.18 9.18
BN_39 1444 2 3 0.56| 38 1490 12.63 12.57|| pedigree30 | 1289 5 5 082| 21 18.49 7.95 7.95
BN_41 1444 2 3 0.56| 40 15,50 13.09 12.99|| pedigree33 | 798 4 5 0.81| 30 21.57 11.37 10.20
Digital circuits pedigree37 | 1032 5 4 082| 21 18.39 10.84 10.74
BN_48 661 2 5 0517 43 16.07 1379 10.44]| pedigree38 | 724 5 4 0.78]| 16 1474 10.72 10.52
BN_50 661 2 5 051 43 16.07 13.79 10.69|| pedigree39 | 1272 5 4 085 20 17.78 8.21 8.12
BN_52 661 2 5 051 41 15.46 13.39 9.86|| pedigree42 | 448 5 4 0.79]| 23 19.43 10.66 10.14
BN_54 561 2 5 0.53| 48 17.50 15.43 13.05|| pedigree50 | 514 6 4 0.77| 18 17.50 11.57 11.53
BN_56 561 2 5 053] 51 18.40 16.19 14.04|| pedigree7 1068 4 4 0.83| 32 2290 1194 11.71
BN_58 561 2 5 0.53| 50 18.10 15.72 13.09|| pedigree9 1118 7 4 079 26 25.87 9.88 9.86
BN_60 540 2 5 0.53| 55 19.59 17.35 14.43|| pedigreel3 | 1077 3 4 0.83| 34 19.73 12.04 11.99
BN_62 667 2 5 051 42 15.77 13.93 10.73|| pedigreel9 | 793 5 5 0.78| 23 19.67 10.00 9.99
BN_64 540 2 5 0.53| 50 18.08 15.86 14.07|| pedigree31 | 1183 5 5 0.81| 30 2474 1177 11.77|
BN_66 440 2 5 0.55| 59 20.71 18.82 16.15|| pedigree34 | 1160 5 4 0.83| 32 26.13 1216 12.16
BN_68 440 2 5 0.55| 57 20.10 18.08 15.48|| pedigree40 | 1030 7 5 0.80| 29 28.37 12.38 12.38
CPCS medical diagnosis pedigree4l | 1062 5 5 0.80| 32 26.09 12.26 12.05
BN_79 54 2 10 1.00] 10 5.04 4723 4.23]| pedigree44 | 811 4 5 0.80| 26 19.16 10.13 9.98]
BN_81 360 2 12 093] 16 7.67 5.75 5.74|| pedigree51 | 1152 5 4 0.82| 38 30.32 1289 12.84
BN_83 360 2 12 097| 18 8.28 6.31 6.31 Digital circuits
BN_85 360 2 12 0.99| 19 8.58 6.61 6.61|[c432.isc 432 2 10 054] 20 8.96 6.96 543
BN_87 422 2 18 098] 21 9.25 7.36 7.36|| c499.isc 499 2 6 0.54| 19 8.72 6.98 5.19
BN_89 422 2 18 0.97| 17 8.04 6.33 6.33|| s386.scan 172 2 5 0.54| 16 7.35 5.71 4.61
BN_91 422 2 18 098] 21 9.25 7.31 7.31|| s953.scan 440 2 5 0.54| 26 10.77 8.85 6.50
BN_93 422 2 18 0.97] 20 8.95 6.99 6.99 Various networks
Randomly generated belief networks Barley 48 67 5 098] 7 16.29 7.26 7.26
BN_95 3 4100 15 9.36 7.01 7.01]| Diabetes 413 21 3 045 4 9.23 7.10 6.83
BN_97 54 3 4 1.00| 15 9.37 7.13 7.13|| hailfinder 56 11 5 084 4 6.96 4.01 3.78
BN_99 57 3 4 1.00| 16 9.87 7.70 7.70|| insurance 27 5 4 084 6 6.32 4.50 4.45
BN_101 58 3 4 1.00| 15 9.40 7.00 7.00(| Mildew 35 100 4 062 4 11.54 6.57 6.03
BN_103 76 3 4 1.00| 17 10.47 7.43 7.43|| Muninl 189 21 4 049 11 18.14 8.31 8.15
Randomly generate partiattrees with forced determinism Munin2 1003 21 4 048] 8 14.90 6.86 6.70
BN_1I05 50 2 21 060] 18 7.42 6.39 254 Munin3 1044 21 4 047) 9 16.24 6.95 6.72
BN_107 50 2 21 059 21 8.32 7.48 3.18|| Munin4 1041 21 4 047) 9 16.24 7.54 7.27
BN_109 50 2 20 0.62| 20 8.02 7.12 3.49(| Pigs 441 3 3 0.70| 10 7.89 5.90 5.89
BN_111 50 2 20 0.63] 19 7.72 6.92 3.31|| Water 32 4 6 0.58]| 10 8.13 6.66 6.20
BN_113 50 2 21 062] 21 8.32 7.28 3.38 Genetic linkage
Randomly generate partigHrees without forced determinism fileEAO 381 4 4 081 7.40 3.92 3.68
BNI15 50 2 19 1.00] 20 8.02 7.07 7.07]| fileEAL 836 5 4 082 11 11.31 4.68 4.16
BN_117 50 2 20 1.00| 18 7.42 6.43 6.43|| fileEA2 979 5 4 082 11 11.38 4.86 4.48
BN_119 50 2 19 1.00| 19 7.72 6.60 6.60|| fileEA3 1122 5 4 082 13 12.84 5.19 4.70
BN_121 50 2 19 100] 19 7.72 6.75 6.75|| fileEA4 1231 5 4 0.82| 13 12.88 5.15 4.71
BN_123 50 2 20 1.00| 18 7.42 6.46 6.46|| fileEAS 1515 5 4 082 12 12.27 5.27 4.94
BN_125 50 2 18 1.00| 19 7.72 6.70 6.70|| fileEA6 1816 5 4 0.82| 14 13.74 5.85 5.36
Digital circuits (WCSP) Satellite scheduling (WCSP)
c432 432 2 10 o0.61] 27 11.06 8.90 8.90[| 29 82 4 2 074] 14 10.94 8.41 6.01
c499 499 2 6 0.63| 23 9.92 8.03 7.25|| 42b 190 4 2 0.78| 18 13.72 10.46 7.19
c880 880 2 5 064 24 10.47 7.93 6.90|| 54 67 4 3 075| 11 9.05 6.33 4.49
s1196 561 2 5 0.82| 51 18.40 16.37 13.91f| 404 100 4 3 0.74| 19 14.04 7.65 3.83
s1238 540 2 5 0.87]| 54 19.29 17.04 14.82|| 408b 200 4 2 0.75| 24 17.35 10.58 5.40
s1423 748 2 5 078 22 9.80 7.54 7.54|| 503 143 4 3 076 9 8.18 5.77 4.22
1488 667 2 5 090 44 16.37 14.34 10.99|| 505b 240 4 2 0.75| 16 12.62 8.87 6.67
51494 661 2 5 0091| 44 16.37 14.34 10.76 Radio frequency assignment (WCSP)
s386 172 2 5 082 18 7.96 6.46 4.99|[C6-sub0 16 44 2 03I 7 1435 1299 10.20
s953 440 2 5 0.80| 62 21.61 19.69 16.30|| C6-subl-24 14 24 2 026 9 14.95 14.12 9.67|
Mastermind puzzle game (WCSP) C6-subl 14 44 2 024 9 1758 16.75 11.76
03.08.03 1220 2 3 0.85] 20 941 7.28 5.29|| C6-sub2 16 44 2 024| 10 19.28 18.01 12.05
03.08.04 2288 2 3 0.87| 30 12.69 10.37 7.96|| C6-sub3 18 44 2 0.26| 10 19.33 18.02 12.48
03.08.05 3692 2 3 0.88| 38 1531 12.73 8.77|| C6-sub4-20 22 20 2 03| 11 16.95 1594 11.50
04.08.03 1418 2 3 085| 24 10.68 8.57 6.68|| C6-sub4 22 44 2 030| 11 21.06 19.78 15.30
04.08.04 2616 2 3 0.88| 36 1456 11.99 9.15
10.08.03 2606 2 3 0.88| 48 18.17 15.80 13.60

Table 1: Results for experiments on 112 Bayesian networks and 30te@iGiSP instances.

l instance [kT twb hwb #cm]

sometimes accurately, the size of the search space in lin-

90-10-1 204,800 14,154 11,908 11,519

90-14-1 25,690 112 804822 689786 es3gps €artimeisveryimportant, especially for problem instance
90-16-1 134,217,728 2,637,878 2,335,466 188,625 which are Comp|ete|y unsolvable exacﬂy.

90-24-1 150,994,944 1,286,726 1115509 52,02

cpcsb4 447,368 48842 48842 48842 ; ; ;

epesi79 11.730.944 110560 110512 110512 Ve believe thatthe current version of our bounding scheme
Ccpcs360b 47,185,920 319,724 319,623 319,6p3 can be further improved by incorporating some form of
432.1 1,811,939,328 10,793,946 685,001 683,823 . . .

199 e Uotsarseas 1oossils 15637 1ssdos propagation of information down the bucket tree. Another
$386.scar] 45,088,768 802,526 94,830 52,802 path we plan to pursue is using approximate counting meth-
s953.scar] 472,446,402,560 2,685,782,044 4,547,508 236,430) S

fIeEAD 24.969.216 9454 5316 4774 ods, such as sampling, to compute approximations to the
filelEAL 1,020,507,812,500 63,520 18,444 14,057 i i i i -
HeERs £'075 /241 796,075 107050 3aoe: 2ad0s numper of solutions in each clustgr, which WI||.a|'SO ap
fileEA3 34,240,722,656,250 253170 58,147 45052 proximate the number of nodes. Finally, for optimization
filekEA4 939,178,466,796,875 675,230 53,214 30,868 H H _ _ _
FIGEAS 0.246 826 171 875 282454 101825 36146 tf'iSkS and for ap_proxmatmg branch-and l?ound and _best
fileEA6 | 6,927,490,234,375,000 2,460,002 333,198 62,041 first search algorithms we hope to accomplish further tight-

)) ening of the search space using the cost function itself.
Table 2: Comparison of bounds to exact search spacefgize

On a higher level, we plan to use the bounds we obtain to
w1 . guide the selection of static and dynamic variable order-
Table 2 shows the upper bounds®™*, twb, andhwb (this ings. We also intend to deploy our scheme for parallelizing

tlmde nqt '?ﬁhe'ﬂfglf’)’ ast Wf" a}s.thelexact nhumbeLofrAhND Isearch algorithms over a networks of many machines (e.g.,
nodes in the actual context-minimal search graph. The valy o -4 clusters).

ues in each row were obtained on the same minfill orderin

(not neccessarily the one used for Table 1). Acknowledgments

For smaller instances the bound we compute turns out t(1>_ . .

be rather tight (note that CPCS instances exhibit no de- his work was partially supported by NSF grant IIS-
terminism at all and thugwb and hwb match the size of 0713118 and NIH grant RO1-HG004175-02.

the search space exactly). As the problems become bigger

and their structure more complicated, however, the boundRefer ences

qua“ty deteriorates. It should be intereSting to perfdnm t [Dechter and Pearl, 1989] R. Dechter and J. Pearl: Tree Clustering for Constraint
comparison on bigger problem instances, but as of now this ~ Networks.Artificial Intelligence38 (1989): 353-366.

is limited by the resources available in current Computers_ [Dechter and Mateescu, 2007] R. Dechter and R. Mateescu: AND/OR search
spaces for graphical models. Atificial Intelligence171 (2007): 73-106.

[Dechter et al., 2008] R. Dechter, L. Otten, and R. Marinescu: On the Practical
6 CONCL USl ONS & FUT U RE WORK Significance of Hypertree vs. Tree Width.Rroceedings of ECAI'08

[Dermaku et al., 2005] A. Dermaku, T. Ganzow, G. Gottlob, B. McMahan, N. Mus-
liu, M. Samer: Heuristic Methods for Hypertree Decompositidrezhnical

. . . . R rt DBAI-TR-2005-53/i Uni ity of Technology, 2005
While asymptotic bounds for search algorithms can give epo S¥tenna University of Technology

. L . Fishelson et al., 2005] M. Fishelson, N. Dovgolevsky N, and D. Geidéaxi-
rough idea about problem hardness, it is often desirable t mum Likelihood Haplotyping for General Pedigre¢tuman Heredity59

obtain a tighter, more fine-grained bound. As has previ- (2005): 41-60.

H i H ottlob et al., 2000] G. Gottlob, N. Leone, and F. Scarcello: A comparison of
OUS|Y been shown, this Can be accompllshed,by lOOkm_g Ei[lG structural CSP decomposition methodstificial Intelligence 124 (2000):
a suitable tree decomposition of the problem’s underlying 243-282,

graph structure and the domains of variables in the deconidohnson, 1973] D. S. Johnson: Approximation algorithms for coatbial prob-
position clusters. This, however, is blind to determinism, lems. InProceedings of STOC'738-49.

hich | h h . . [Kask et al., 2005] K. Kask, R. Dechter, J. Larrosa, and A. Dechter: Unifying tree
which can great y prune the searc space in practlce. decompositions for reasoning in graphical modatfsificial Intelligencel66

. (2005): 165-193.
The contribution of this paperis to introduce ideas from the[Kjaerulf'f, 1990] U. Kjeerulff: Triangulation of Graphs — Algorithms Gig Small

framework of hypertree decompositions into the bounding Total State Spac®esearch Report R-90-09, Dept. of Mathematics and Com-
of the search space. This allows us to exploit determinism Puter ScienceAalborg University 1990.

in the f . ifi . v ifiti ficial [Lauritzen and Spiegelhalter, 1988] S. L. Lauritzen and D. J. Spiegelhalter: Local

In the function speci Ication, but on y i it is beneficial to Computations with Probabilities on Graphical Structures and Their Appli-

the overall complexity bound. cation to Expert Systemdournal of the Royal Statistical Society. Series B
50(2) (1988): 157-224.

We demonstrated on a set of 112 belief networks and 3@Mateescu and Dechter, 2005] R. Mateescu and R. Dechter: The Relationship Be-

weighted constraint networks that the proposed scheme is ~ [icen ANDIOR Search Spaces and Variable Eliminatiokibreeedings of

indeed able to further Improve the bound on search Com[PearI, 1988] J. Pearl: Probabilistic Reasoning in Intelligent Systemsgavhor

plexity, in some cases by several orders of magnitude. On Kaufmann, 1988.
a Subset Of the Instances we aISO showed that the bouﬁﬂlberstein etal., 2006] M. Silberstein, A. Tzemach, N. DovgolevskiyFdhel-

. . . . son, A. Schuster, D. Geiger: Online system for faster linkage analysis via
can indeed be very tight, although it seems to deteriorate parallel execution on thousands of personal compugererican Journal of

for bigger instances. In this respect we hope to be able to ~ Human Genetic2006.

conduct more in—depth comparisons on even bigger probLZabiyaka apd lDarwiche, 2006] . Zabiygka and A. Darwiche: Boun_ding Com-
| X . plexity in the Presence of Functional DependenciesPtaceedings of
lem instances in the future. Note that the ability to bound, SAT'08 116-129.

