
Topological Parameters for Time-Space Tradeo�

Rina Dechter

Information & Computer Science, University of California, Irvine, CA 92717
dechter@ics.uci.edu

Yousri El Fattah

Rockwell Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
yousri@rsc.rockwell.com

3 June 1999

Abstract

In this paper we propose a family of algorithms combining tree-clustering with
conditioning that trade space for time. Such algorithms are useful for reasoning
in probabilistic and deterministic networks as well as for optimization tasks. By
analyzing the problem structure the user can select from a spectrum of hybrid algo-
rithms, the one that best meets a given time-space speci�cation. To determine the
potential of this approach, we analyze the structural properties of problems com-
ing from the circuit diagnosis domain. The analysis demonstrate how the tradeo�s
associated with various hybrids can be explicated and be used for each problem
instance.

1 Introduction

Problem solving methods can be viewed as hybrids of two main principles:
inference and search. Inference algorithms are time and space exponential
in the size of the relationships they record while search algorithms are time
exponential but require only linear memory. In this paper we develop a hybrid
scheme that uses inference (tree-clustering) and search (conditioning) as its
two extremes and, using a single structure-based design parameter, permits
the user to control the storage-time tradeo� in accordance with the application
and the available resources.

In general, topology-based algorithms for constraint satisfaction and proba-
bilistic reasoning fall into two distinct classes. One class is centered on tree-
clustering, the other on cycle-cutset decomposition. Tree-clustering involves

Preprint submitted to Elsevier Science 3 June 1999

transforming the original problem into a tree-like problem that can then be
solved by a specialized e�cient tree-solving algorithm [1,2]. The transforming
algorithm identi�es subproblems that together form a tree, and the solutions
to the subproblems serve as the new values of variables in a tree metalevel
problem. The metalevel problem is called a join-tree. The tree-clustering algo-
rithm is time and space exponential in the tree-width of the problem's graph.
A related parameter is the induced-width which equals the tree-width minus
one. We will use both terms interchangeably.

The cycle-cutset method, also called loop-cutset conditioning, utilizes the prob-
lem's structure in a di�erent way. It exploit the fact that variable instantiation
changes the e�ective connectivity of the underlying graph. A cycle-cutset of
an undirected graph is a subset of its nodes which, once removed, cuts all
of the graph's cycles. A typical cycle-cutset method enumerates the possible
assignments to a set of cutset variables and, for each cutset assignment, solves
(or reasons about) a tree-like problem in polynomial time. Thus, the overall
time complexity is exponential in the size of the cycle-cutset [3]. Fortunately,
enumerating all the cutset's assignments can be accomplished in linear space,
yielding an overall linear space algorithm.

The �rst question is which method, tree-clustering or the cycle-cutset scheme
provide a better worst-case time guarantees. This question was answered by
Bertele and Briochi [4] in 1974 and later rea�rmed in [5]. They showed that,
the minimal cycle-cutset of any graph can be much larger, and is never smaller
than its minimal tree-width. In fact, for an arbitrary graph, r � c, where c
is the minimal cycle-cutset and r is the tree-width [4]. Consequently, for any
problem instance the time guarantees accompanying the cycle-cutset scheme
are never tighter than those of tree-clustering, and can be even much worse.
On the other hand, while tree-clustering requires exponential space (in the
induced-width) the cycle-cutset requires only linear space.

Since the space complexity of tree-clustering can severely limit its usefulness,
we investigate in this paper the extent to which space complexity can be
reduced, while reasonable time complexity guarantees are maintained. Is it
possible to have the time guarantees of clustering while using linear space?
On some problem instances, it is possible. Speci�cally, on those problems
whose associated graph has an induced width and a cycle-cutset of comparable
sizes (e.g., on a ring, the cutset size is 1 and the tree width is 2, leading to
identical time bounds). We conjecture, however, that any algorithm that has a
time bound guarantee exponential in the induced-width will, on some problem
instances, require exponential space in the induced width.

The space complexity of tree-clustering can be bounded more tightly using
the separator width, which is de�ned as the size of the maximum subset of
variables shared by adjacent subproblems in the join-tree. Our investigation

2

employs the separator width to control the time-space tradeo�. The idea is
to combine adjacent subproblems joined by a large separator into one bigger
cluster or subproblem so that the remaining separators are of smaller size.
Once a join-tree with smaller separators is generated, its potentially larger
clusters can be solved using the cycle-cutset method, or any other linear-space
scheme.

In this paper we will develop a time-space tradeo� scheme that is applicable
to belief network processing, constraint processing, and optimization tasks,
yielding a sequence of parametrized algorithms that can trade space for time.
With this scheme it will be possible to select from a spectrum of algorithms the
one that best meets some time-space requirement. Algorithm tree-clustering
and cycle-cutset conditioning are two extremes in this spectrum.

We investigate the potential of our scheme in the domain of combinatorial cir-
cuits. This domain is frequently used as an application area in both probabilis-
tic and deterministic reasoning [6{8]. We analyze 11 benchmark combinatorial
circuits widely used in the fault diagnosis and testing community [9] (see Ta-
ble 1 ahead.). For each circuit, the analysis is summarized in a chart displaying
the time-space complexity tradeo�s for diagnosing that circuit. The analysis
allows tailoring the hybrid of tree-clustering and cycle-cutset decomposition
to the available memory.

In order to demonstrate our claims we use a directional variant of tree-clutering
that is query-based which simplify the exposition. However, the approach is
applicable to the general version of tree-clustering.

Section 2 gives de�nitions and preliminaries and introduces the time-space
tradeo� ideas using belief networks. Sections 3 and 4 extends these ideas to
constraint networks and to optimization problems. Section 5 describes the
empirical framework and Section 6 presents the results. Section 7 discusses
related works and section 8 gives our conclusion.

The paper assumes familiarity with the basic concepts of tree-clustering and
cycle-cutset conditioning and provides only breif necessary background. For
more details the reader should consult the references.

3

2 Probabilistic Networks

2.1 Overview

2.1.1 De�nitions and notations

Belief networks provide a formalism for reasoning about partial beliefs under
conditions of uncertainty. It is de�ned by a directed acyclic graph over nodes
representing random variables of interest (e.g., the temperature of a device, the
gender of a patient, a feature of an object, the occurrance of an event). The arcs
signify the existence of direct causal in
uences between the linked variables.
The strength of these in
uences are quanti�ed by conditional probabilities
that are attached to each cluster of parents-child nodes in the network. A
belief network is a concise description of a complete probability distribution.
It uses the concept of a directed graph.

De�nition 1 (Directed graph) A directed graph G = fV;Eg, where V =
fX1; :::;Xng is a set of elements and E = f(Xi;Xj)jXi;Xj 2 V g is the set
of edges. If an arc (Xi;Xj) 2 E, we say that Xi points to Xj . For each
variable Xi, pa(Xi) is the set of variables pointing to Xi in G, while ch(Xi)
is the set of variables that Xi points to. The family of Xi includes Xi and its
parent variables. A directed graph is acyclic if it has no directed cycles. In an
undirected graph the direction of the arcs is ignored: (Xi;Xj) and (Xj;Xi) are
identical. An undirected graph is chordal if every cycle of length 4 has a chord.
A clique is a subgraph that is completely connected and a maximal clique of
graph is a clique that is not contained in any other clique of the graph.

De�nition 2 (Belief Networks) Let X = fX1; :::;Xng be a set of ran-
dom variables over multi-valued domains, D1; :::;Dn. A belief network is a
pair (G;P) where G is a directed acyclic graph over the nodes X and P =
fPig are the conditional probability matrices over the families of G, Pi =
fP (Xijpa(Xi)g. An assignment (X1 = x1; :::;Xn = xn) can be abbreviated as
x = (x1; :::; xn). The belief network represents a probability distribution over
X having the product form

P (x1; ::::; xn) = �n
i=1P (xijxpa(Xi))

where xpa(Xi) denotes the projection of a tuple x over pa(Xi). An evidence set
e is an instantiated subset of variables. A moral graph of a belief network is an
undirected graph generated by connecting the tails of any two head-to-head
pointing arcs in G and removing the arrows. A belief network is a polytree if
its underlying undirected (unmoralized) graph has no cycles (namely, it is a
tree).

4

A

B

C
D E

FG

H A

B

C
D E

FG

H

Fig. 1. (a) A belief network and (b) its moral graph

De�nition 3 (Induced width, induced graph) An ordered graph is a pair
(G; d) where G is an undirected graph and d = X1; :::;Xn is an ordering of
the nodes. The width of a node in an ordered graph is the number of its
earlier neighbors. The width w(d) of an ordering d, is the maximum width
over all nodes. The induced width of an ordered graph, w�(d), is the width of
the induced ordered graph obtained by processing the nodes recursively, from
last to �rst; when node X is processed, all its earlier neighbors are connected.
This process is also called \triangulation". The induced (triangulated) graph
is clearly chordal. The induced width of a graph, w�, is the minimal induced
width over all its orderings [10].

Example 4 Figure 1 shows a belief network's acyclic graph and its associated
moral graph. The induced-width of the graph in Figure 1b along the ordering
d = A;B;C;D;G;E;F;H is 3. Since the moral graph in Figure 1(b) is chordal
no arc is added when generating the induced ordered graph. Therefore, the
induced-width w� of the graph is also 3.

Two of the most common tasks over belief networks are, to determine poste-
rior beliefs and to �nd the most probable explanation (mpe), given a set of
observations, or evidence. It is well known that such tasks can be answered
e�ectively for singly-connected polytrees by a belief propagation algorithm
[11]. This algorithm can be extended to multiply-connected networks by ei-
ther tree-clustering or loop-cutset conditioning [11].

2.1.2 Tree-clustering

The most widely used method for processing belief networks is join-tree clus-
tering. The algorithm transforms the original network into a tree of subprob-
lems called join-tree. Tree-clustering methods have two parts. In the �rst part
the structure of the newly generated tree problem is decided, and in the second
part the conditional probabilities between the subproblems, (viewed as high-
dimensional variables) is determined. The structure of the join-tree is deter-

5

mined by graph information only, embedding the graph in a tree of cliques as
follows. First the moral graph is embedded in a chordal graph by adding some
edges. This is accomplished by picking a variable ordering d = X1; :::;Xn,
then, moving from Xn to X1, recursively, connecting all the earlier neighbors
of Xi in the moral graph yielding the induced ordered graph. Its induced width
w�(d), as de�ned earlier, is the maximal number of earlier neighbors each node
has.

Clearly, each node and its earlier neighbors in the induced graph is a clique.
The maximal cliques, indexed by their latest variable in the ordering, can be
connected into a clique-tree and serve as the subproblems (or clusters) in the
�nal join-tree. The clique-tree is created by connecting every clique Ci to an
earlier clique Cj with whom it shares a maximal number of variables. This
clique is called its parent clique. Clearly, the induced width w�(d) equals the
size of the maximal clique minus 1.

Once the join-tree structure is determined, each conditional probability ta-
ble (CPT) is placed in a clique containing all its arguments. The marginal
probability distributions for each clique can then be computed by multiplying
all the CPTs and normalizing, and subsequently the conditional probabilities
between every clique and its parent clique can be derived. Tree-clustering,
therefore, is time and space exponential in the size of the maximal clique,
namely, exponential in the moral graph's induced-width (plus 1). In Figure
1b, the maximal cliques of the chordal graph are f (A,B),(B,C,D),(B,D,G),
(G,D,E,F), (H,G,F,E)g, resulting in the join-tree structure given in Figure
3(a). For more information on structuring a join-tree, induced-width and join-
tree clustering see [11,12,3,13].

A tighter bound on the space complexity of tree-clustering may be obtained
using the separator width. The separator width of a join-tree is the maximal
size of the intersections between any two cliques, and the separator width of a
graph is the minimal separator width over all the graph's join-trees [12,14].

Tailoring the join-tree clustering scheme to answer only a given query is an-
other way to save time.AlgorithmDirectional tree clustering (DTC), presented
in Figure 2, is a query-based variant of join-tree clustering. It improves tree-
clustering by 1) recording functions on separators only and 2) by restricting
to query-based answers only. Clearly, each of this modi�cation can be incorpo-
rated independently. Once the structuring part of the join-tree is determined,
(the cliques are connected in a tree-structure and each clique has a parent
clique and a parent separator), then each CPT is placed in one clique that
contains its arguments. For example, given the join-tree structure in Figure
3a, the CPT P (BjA) is placed in clique AB, P (CjB) and P (DjC) are placed
in clique BCD, clique BDG contains P (GjB;D), Clique GDEF contains
P (EjD;F) and P (F jG), and �nally, clique GEFH contains P (HjG;F;E).

6

Algorithm directional join-tree clustering (DTC)
Input: A belief network (G;P), where G is a DAG and P = fP1; :::; Png,
Output: the belief of X1 given evidence e.
(i) Generate a join-tree clustering of G, identi�ed by its cliques C1; :::Ct.

Place each Pi and each observation in one clique that contains its argu-
ments.

(ii) Impose directionality on the join-tree, namely create a rooted directed tree
whose root is a clique containing the queried variable. Let d = C1; :::Ct

be a breadth-�rst ordering of the rooted clique-tree, let Sp(i) and Cp(i) be
the parent separator and the parent clique of Ci, respectively.

(iii) From i t downto 1 do
(iv) (Processing clique Ci):

Let �1; �2; :::; �j be the functions in clique Ci, and when Ci denotes also
its set of variables,
{ For any observation Xj = xj in Ci substitute xj in each function in the
clique.

{ Let Ui = Ci � Sp(i) and ui is an assignment to Ui. compute

�p =
P

ui
�j
i=1�i.

Put �p in parent clique Cp(i).
(v) Return (processing root-clique, C1), Bel(x1) = �

P
u1
�i�i

� is a normalizing constant.

Fig. 2. Algorithm directional join-tree clustering

Subsequently, DTC processes the cliques recursively from leaves to the root.
Processing a clique involves computing the product of all the probabilistic
functions that reside in that clique and then summing over all the variables
that do not appear in its parent separator. The computed function (over the
parent separator) is added to the parent clique. Computation terminates at
the root-clique 1 .

Algorithm directional tree-clustering (DTC), is presented in Figure 2 for the
belief updating task. It can be adapted for the task of �nding the most prob-
able explanation (mpe), by replacing the summation operation by maximiza-
tion. The algorithm tightens the bound on space complexity using its separa-
tor width. This modi�cation to its space management can be applied to any
variant of tree-clustering which is not necessarily query-based. In summary,

Theorem 5 (Time-space of join-tree clustering) Given a belief network
whose moral graph can be embedded in a clique-tree having induced width
r and separator width s, the time complexity for determining beliefs and the
mpe by a join-tree clustering (e.g., by DTC) is O(n � exp(r)) while its space

1We disregard algorithmic details that do not a�ect asymptotic worst-case analysis
here.

7

complexity is O(n � exp(s)). 2

Clearly s � r. Note that since in the example of Figure1 the separator width
is 3 and the induced width is also 3, we do not gain much space-wise, by
the modi�ed algorithm. There are, however, many cases where the separator
width is much smaller than the induced-width.

2.1.3 Cycle-cutset conditioning

Belief networks may be processed also by cutset conditioning [11]. A subset
of nodes is called a cycle-cutset of an undirected graph if removing all the
edges incident to nodes in the cutset makes the graph cycle-free. A subset of
nodes of an acyclic-directed graph is called a loop-cutset if removing all the
outgoing edges of nodes in the cutset results in a poly-tree [11,15]. A minimal
cycle-cutset (resp. minimal loop-cutset) is such that if one node is removed
from the set, the set is no longer a cycle-cutset (resp., a loop-cutset).

Algorithm cycle-cutset -conditioning (also called cycle-cutset decomposition or
loop-cutset conditioning) is based on the observation that assigning a value to
a variable changes the connectivity of the network. Graphically this amounts
to removing all outgoing arcs from the assigned variables. Consequently, an
assignment to a subset of variables that constitute a loop-cutset means that
belief updating, conditioned on this assignment, can be carried out in the
resulting poly-tree [11]. Multiply-connected belief networks can therefore be
processed by enumerating all possible instantiations of a loop-cutset and solv-
ing each conditioned network using the poly-tree algorithm. Subsequently, the
conditioned beliefs are combined using a weighted sum where the weights are
the probabilities of the joint assignments to the loop-cutset variables condi-
tioned on the evidence. Pearl [11] showed that weights computation is not
more costly than enumerating all the conditioned beliefs.

This scheme was later simpli�ed by Peot and Shachter [15]. They showed
that if the polytree algorithm is modi�ed to compute the probability of each
variable-value proposition conjoined with the evidence, rather than conditioned
on the evidence, the weighted sum can be replaced by a simple sum. In other
words:

P (xje) = �P (x; e) = �
X

c

P (x; e; c)

If fXg[C[E is a loop-cutset (note that C and E denote subsets of variables)
then P (x; e; c) can be computed very e�ciently using a propagation-like algo-
rithm on poly-trees. Consequently the complexity of the cycle-cutset scheme is
exponential in the size of C where C [fXg[E is a loop-cutset. In summary,

Theorem 6 ([11,15]) Given a probabilistic network having a loop-cutset of

8

A B

B C D

B D G

 G D E F

G E F H

B

B D

G D G E F

A B

B C D

B D G

B

B D

G D

A B

 B C D G E F H
G D E F H

B

(a) T0 (b) T1 (c) T2

Fig. 3. A tree-decomposition with separators equal to (a) 3, (b) 2, and (c) 1

size c, belief updating and mpe can be computed in time O(exp(c+ 2)) 2 and
in linear space. 2

2.2 Trading Space for Time

Assume now that we have a problem whose join-tree has induced width r and
separator width s but space restrictions do not allow the necessary O(exp(s))
memory required by tree-clustering. One way to overcome this problem is to
collapse cliques joined by large separators into one big cluster. The resulting
join-tree has larger subproblems but smaller separators. This yields a sequence
of tree-decomposition algorithms parameterized by the sizes of their separa-
tors.

De�nition 7 (Primary and secondary join-trees) Let T be a clique-tree
embedding of the moral graph of G. Let s0; s1; :::; sn be the sizes of the sepa-
rators in T listed in strictly descending order. With each separator size si, we
associate a tree decomposition Ti generated by combining adjacent clusters
whose separator sizes are strictly greater than si. T = T0 is called the primary
join-tree, while Ti, when i > 0, is a secondary join-tree. We denote by ri the
largest cluster size in Ti.

Note that as si decreases, ri increases. Clearly, from Theorem 1 it follows that

Theorem 8 Given a join-tree T , having separator sizes s0; s1; :::; st and cor-
responding secondary join-trees having maximal clusters, r0; r1; :::; rt, belief
updating and mpe can be computed using any one of the following time and
space bounds O(n � exp(ri)) time, and O(n � exp(si)) space, (i randing over all
the sequence of secondary join-trees), respectively.

2 the \2" in the exponent comes from the fact that belief updating on trees is linear
in the size of the CPTs which are at least O(c2).

9

Proof. For each i, a secondary tree Ti is a structure underlying a possible
execution of directional join-tree clustering. From Theorem 1 it follows that
the time complexity is bounded exponentially by the corresponding cliques size
(e.g., ri) and space complexity is bounded exponentially by the corresponding
separator, si.

Example 9 If in our example, we allow only separators of size 2, we get
the join tree T1 in Figure 3(b). This structure suggests that we can update
beliefs and compute mpe in time which is exponential in the largest cluster, 5,
while using space exponential in 2. If space considerations allow only singleton
separators, we can use the secondary tree T2 in �gure 3(c). We conclude that
the problem can be solved, either in O(k4) time (k being the maximumdomain
sizes) and O(k3) space using the primary tree T0, or in O(k5) time and O(k2)
space using T1, or in O(k7) time and O(k) space using T2.

We know that �nding the smallest induced width of a graph (or �nding a
join-tree having smallest cliques) is NP-complete [16,17]. Nevertheless, many
greedy ordering algorithms provide useful upper bounds. We denote by w�

s the
smallest induced width among all the tree embeddings of G whose separators
are of size s or less. However, �nding w�

s may be hard as well. We can conclude
that given a belief network BN , for any s � n, if O(exp(s)) space can be
used, then belief updating and mpe can, potentially be computed in time
O(exp(w�

s + 1)).

2.2.1 Using the cycle-cutset within cliques

Finally, instead of executing a brute-force algorithm to compute the marginal
distributions over the separators (see step 4 in DTC), we can use the loop-
cutset scheme. Given a clique Cp with a separator parent set Sp, step 4 com-
putes a function de�ned over the separator, by

�p =
X

up

jY

i=1

�i

where Up = Cp�Sp. This seems to suggest that we have to enumerate explicitly
all tuples over Cp. However, we observe that when computing �p for a partic-
ular value assignment of the separator xs, those assignments can be viewed as
cycle-breaking values in the graph. So, when the separator constitutes a loop-
cutset then the sum can be computed in linear time, either by propagation
over the resulting poly-tree or by an equivalent variable elimination procedure
[18].

If the instantiated separator set does not cut all loops we can add additional
nodes from the clique until we get a full loop-cutset. If the resulting loop-

10

cutset (containing the separator variables) has size cs, clique's processing is
time exponential in cs only and not in the full size of the clique.

In summary, given a join-tree decomposition, we can choose a loop-cutset of a
clique Ci that is a minimal subset of variables, which together with its parent
separator-set that constitute a loop-cutset of the subnetwork de�ned over Ci.
We conclude:

Theorem 10 Given a constant s � n, let Ts be a clique-tree whose separator
width has size s or less, and let c�s be the maximum size of a minimal cycle-
cutset in any subgraph de�ned by the cliques in Ts. Then belief assessment
and mpe can be computed in space O(n � exp(s)) and in time O(n � exp(c�s)),
and c�s � s, while c�s is smaller than the clique size.

Proof. Since computation in each clique is done by the cycle-cutset condi-
tioning, its time is exponentially bounded by c�s, the maximal cycle-cutset over
all the cliques of Ts, denoted c�s. The space complexity remains exponential
in the maximum separator s. Since for every clique, the loop-cutset we select
contains its parent separator, then clearly c�s > s.

Next we give two examples. The �rst demonstrates the time-space tradeo�
when using cycle-cutset in each clique. The second demonstrates in details
the mechanism of processing each clique by the cycle-cutset method.

Example 11 Considering the join-trees in Figure 3, if we apply the cycle-
cutset scheme inside each subnetwork de�ned by each clique, we get no im-
provement in the bound for T0 because the largest loop-cutset size in each
cluster is 3 since it always exceeds the largest separator. Remember also that
once a loop-cutset is instantiated processing the simpli�ed network by prop-
agation or by any e�cient method is also O(k2). However, when using the
secondary tree T1, we can reduce the time bound from O(k5) to O(k4) with
only O(exp(2)) space because the cutset size of the largest subgraph restricted
to fG;D;E;F;Hg, is 2; in this case the separator fC;Dg is already a loop-
cutset and therefore when applying conditioning to this subnetwork the overall
time complexity is now O(k4). When applying conditioning to the clusters in
T2, we get a time bound of O(k5) with just O(k) space because, the loop-cutset
of the subnetwork over fB;C;D;G;E;F;Hg has three nodes only fB;G;Eg.
In summary, the dominating tradeo�s (when considering only the exponents)
are between an algorithm based on T1 that requires O(k4) time and quadratic
space and an algorithm based on T2 that requires O(k5) time and O(k) space.

Example 12 We conclude this section by demonstrating through our exam-
ple in Figure 1, the mechanics of processing a subnetwork by (1) a brute-force
methods and (2) by loop-cutset conditioning. We will use join-tree T2 and

11

Algorithm space-based join-tree clustering (STC(s))
Input: A belief network (G;P), where G is a DAG and P = fP1; :::; Png, a
space parameter s.
Output: the belief of X1 given evidence e.
(i) Generate a join-tree clustering of G, call it T0.
(ii) Generate the secondary join-tree by combining any two adjacent cliques

whose separator is strictly larger than s. Let C1; :::Ct be the cliques in
the resulting secondary join-tree. Place each Pi and each observation in
one clique that contains its arguments.

(iii) Impose directionality on the secondary join-tree, Let d = C1; :::Ct be a
breadth-�rst ordering of the rooted clique-tree, let Sp(i) and Cp(i) be the
parent separator and the parent clique of Ci, respectively.

(iv) From i t downto 1 do
(v) (Processing clique Ci with cycle-cutset):

Find a subset of variables Ii � Ci s.t. Ii [Sp(i) is a loop-cutset of the
subgraph of G restricted to nodes Ci.
Let �1; �2; :::; �j be the functions in clique Ci,
{ For any observation Xj = xj in Ci assign xj to each function.
{ For every assignment �x of Sp(i) do,
�p(�x) 0.
For every assignment �y of Ii do, (Ui = Ci � Ii � Sp(i))
� Using the cycle-cutset scheme compute:
�(�x; �y)

P
fuijSp(i)=�x;Ii=�yg�

j
i=1�i.

� �p(�x) �p(�x) + �(�x; �y)
Put �p in parent clique Cp(i).

(vi) Return (processing root-clique, C1), Bel(x1) = �
P

u1
�i�i

� is a normalizing constant.

Fig. 4. Algorithm Space-based join-tree clustering

process cluster fB;C;D;E;F;G;Hg. Processing this cluster amounts to com-
puting the marginal distribution over the separator B, namely for every value
b0 of B (we annotate constant by primes):

P (b0) =
X

d;g;e;c;f;h

(P (gjb0; d)P (cjb0)P (djc)P (f jg)P (ejd; f)P (hjg; f; e):

Migrating the components as far to the left as possible, we get.

P (b0)=
X

d

X

g

P (gjb0; d)
X

e

X

c

P (cjb0)P (djc)

X

f

P (f jg)P (ejd; f)
X

h

P (hjg; f; e): (1)

Brute-force computation of expression 1 will accumulate the needed sums
along the search tree of all possible instantiations to the variables. In this

12

case we expand the probability tree in a forward manner assigning values one
by one to all variables, and computing the tuple's probability. The time com-
plexity is exponential in 6 (the size of the probability search tree) and requires
linear space only, since the sums can be accumulated while traversing the tree
in a depth-�rst manner.

If we use the loop-cutset method within this cluster, we can condition on G;E
(in addition to to the separator B). This makes the resulting problem a poly-
tree. Mechanically, it means that we will expand the probability tree forward
for variables G;E, and for every assignment g0; e0 (B can also be viewed as if
it is assigned because it is the queried variable) we will use the poly-tree algo-
rithm (or an equivalent variable elimination procedure which treats b; g; e as
constant.) We demonstrate the backwards computation (denoting constants
by primes) using variable elimination that is equivalent to belief propagations
on the poly-tree resulting from instantiating g; e; b. We need to compute

P (b0; g0; e0)=
X

d

X

g

P (gjb0; d)
X

e

X

c

P (cjb0)P (djc)

X

f

P (f jg0)P (e0jd; f)
X

h

P (hjg0; f; e0): (2)

We compute hH(f) =
P

h P (hjg
0; f; e0). This takes time exponential in 2 and

space exponential in 1. Subsequently, compute hF (d) =
P

f P (f jg
0)P (e0jd; f)Hh(f)

which takes time exponential in 1 and constant space. Finally, sum the result
over variable C: hC(d) =

P
c P (cjb

0)P (djc)HF (d) in time exponential in 1 and
constant space. So far we spent time exponential in 2 and space exponential in
1 at the most. Since we have to repeat this for every value of d; e; b the overall
time will be exponential in 5 while space is bounded by O(k).

3 Constraint Networks

Constraint networks have proven successful in modeling mundane cognitive
tasks such as vision, language comprehension, default reasoning, and abduc-
tion, as well as in applications such as scheduling, design, diagnosis, and tem-
poral and spatial reasoning. In general, constraint satisfaction tasks are com-
putationally intractable.

De�nition 13 (Constraint network) A constraint network consists of a
�nite set of variables X = fX1; : : : ;Xng, each associated with a domain of
discrete values, D1; : : : ;Dn and a set of constraints, fC1; : : : ; Ctg. A constraint
is a relation, de�ned on some subset of variables, whose tuples are all the
compatible value assignments. A constraint Ci has two parts: (1) the subset
of variables Si = fXi1 ; : : : ;Xij(i)g, on which the constraint is de�ned, called
its scope, and (2) a relation, reli, de�ned over Si : reli � Di1 � � � � � Dij(i) .

13

A

B

C
D E

FG

H

B C D E F F H

E HA B

D G

G D FC D

B D

G HBG

D D

B
B B

C
D D

D

D G D F
F

H

H

F

H

E

GB

B
G G

Fig. 5. Primal (a) and dual (b) constraint graphs

The scheme of a constraint network is the set of scopes on which constraints
are de�ned. An assignment of a unique domain value to each member of
some subset of variables is called an instantiation. A consistent instantiation
of all the variables that does not violate any constraint is called a solution.
Typical queries associated with constraint networks are to determine whether
a solution exists and to �nd one or all solutions.

De�nition 14 (Constraint graphs) Two graphical representations of a con-
straint network are its primal constraint graph and its dual constraint graph.
A primal constraint graph represents variables by nodes and associates an arc
with any two nodes residing in the same constraint. A dual constraint graph
represents each constraint subset by a node and associates a labeled arc with
any two nodes whose constraint subsets share variables. The arcs are labeled
by the shared variables.

Example 15 Figure 5 depicts the primal and the dual representations of a
network having variables A; B; C; D; E; F; G;H whose constraints are
de�ned on the subsets f(A;B); (B;C); (B;D), (C;D); (D;G); (G;E); (B;G),
(D;E;F); (G;D;F); (G;H); (E;H)(F;H)g.

Tree clustering for constraint networks is similar to join-tree clustering for
probabilistic networks. In fact, the structuring part is identical. Once the
join-tree structure is determined, each constraint is placed in a clique (or a
cluster) that contains its scope and then each clustered subproblem can be
solved independently. In other words, the set of constraints in a clique can be
replaced by its set of solutions; a new constraint whose scope is the clique's
variables. The time and space complexity of tree-clustering is governed by the
time and space required to generate the relations of each clique in the join-
tree which is exponential in the clique's size, and therefore in the problem's
induced width w� [12,3].

Example 16 Since the graph in Figure 5(a) is identical to the graph in Fig-
ure 1(b), it possesses the same clique-tree embeddings. Namely, the maximal
cliques of the chordal graph are f(A;B); (B;C;D); (B;D;G);
(G;D;E;F); (H;G;F;E)g and a join-tree is given in Figure 3(a). The schemes
of each clique's subproblem are:
CAB = f(A;B)g, CBCD = f(B;C); (C;D)g,

14

CBDG = f(B;D); (B;G); (G;D)g,
CGDEF = f(G;D); (D;E); (E;F); (G;F); (D;F)g
CGEFH = f(E;F); (G;F); (G;H); (F;H); (E;H)g.
As in the probabilistic case, a brute-force application of tree-clustering to this
problem is time and space exponential in 4.

The ideas underlying tree-clustering and conditioning in constraint networks
are like those for belief networks. In particular, by re�ning the clustering
method for constraint networks just as we did for probabilistic networks, it is
easy to see that tree-clustering in constraint networks obeys similar time and
space complexities. Speci�cally, deciding the consistency of a tree of binary
constraints, can be done by directional arc-consistency (also called pair-wise
consistency) along some directed rooted tree. If the empty relation is not gen-
erated, �nding one solution can be done in a backtrack-free manner from root
to leaves [10]. Applying directional arc-consistency to a join-tree whose nodes
are the cliques and whose values are the solutions of the subproblems de�ned
by the clique, is likewise valid. The operation of solving each subproblem in the
clique-tree and the operation of pair-wise consistency can be interleaved. First
a rooted clique-tree is created. Then cliques are processed from leaves to root.
The solutions of leaf-cliques are generated �rst (perhaps by a backtracking
search algorithm) and their projection are recorded on their parent's sepa-
rator. Subsequently, each parent clique processes its subproblem augmented
with the recorded constraints, projects the solutions on its own parent clique,
and so on. Therefore, constraints may be recorded only on their parent sep-
arator. The time complexity of this modi�ed algorithm is exponential in the
tree width, while its space complexity is exponentially bounded only by the
maximal separator between subproblems. The directional version of join-tree
clustering for �nding a solution to a set of constraints is given in Figure 6.

We conclude:

Theorem 17 (Time-space of tree-clustering [12]) Given a constraint prob-
lemwhose constraint graph can be embedded in a clique-tree having tree width
r and separator width s, the time complexity of tree-clustering for deciding
consistency and for �nding one solution is O(n � exp(r)) and its space com-
plexity is O(n � exp(s)). The time complexity for generating all solutions is
O(n � exp(r) + jsolutionsj), also requiring O(n � exp(s)) memory. 2

When the space required by clustering is beyond the available resources, tree-
clustering can be coerced to yield smaller separators and larger subproblems,
as we have seen earlier for processing belief networks. This leads to a conclusion
similar to Theorem 8.

Theorem 18 Given a constraint network whose constraint graph can be em-
bedded in a primary clique-tree having separator sizes s0; s1; :::; sn, whose cor-

15

Algorithm directional tree-clustering for CSPs
Input: A set of constraints R1; :::; Rl over X = fX1; :::;Xng, having scopes
S1; :::; Sl respectively, and its constraint graph G.
Output: A solution to the constraint problem.
(i) Generate a join-tree clustering of G, identi�ed by its cliques C1; :::Ct.

Place each Ri in one clique that contains its scope.
(ii) Impose directionality on the join-tree, namely create a rooted directed tree

whose root is any clique . Let d = C1; :::Cl be a breadth-�rst ordering of
the rooted clique-tree, let Sp(i) and Cp(i) be the parent separator and the
parent clique of Ci, respectively.

(iii) From i downto 1 do
(iv) (Processing clique Ci):

Let R1; R2; :::; Rj be the constraints in clique Ci, let Ui be the set of
variables in clique Ci.
{ Solve the subproblem in Ci and call the set of solutions �i. Project
this set of solutions on the parent separator. Let �Sp(i) be the projected

relation. �Sp(i)
Q
Sp(i)

1
j
k=1 Rk

Put �Sp(i) in parent clique Cp(i).
(v) Return generate a solution in a backtrack-free manner going from the

root clique towards the leaves.

Fig. 6. Algorithm directional join-tree clustering for constraints

responding maximal clique sizes in the secondary join-trees are r0; r1; :::; rn,
then deciding consistency and �nding a solution can be accomplished using any
one of the time and space complexity bounds O(n �exp(ri)) and O(n �exp(si)),
respectively.

Proof. Analogous to Theorem 3. 2

Similarly to belief networks, any linear-space method can replace backtracking
for solving each of the subproblems de�ned by the cliques. One possibility is to
use the cycle-cutset scheme. The cycle-cutset method for constraint networks
(like in belief networks) enumerates the possible solutions to a set of cycle-
cutset variables and, for each consistent cutset assignment, solves the restricted
tree-like problem in polynomial time. Thus, the overall time complexity is ex-
ponential in the size of the cycle-cutset of the graph [19]. More precisely, it can
be shown that the cycle-cutset method is bounded by O(n � kc+2), where c is
the cutset size, k is the domain size, and n is the number of variables [19]. For-
tunately, enumerating all the cycle-cutsets assignments can be accomplished

16

in linear space using a backtracking algorithm.

Theorem 19 Let G be a constraint graph and let T be a join-tree with
separator size s or less. Let cs be the largest minimal cycle-cutset 3 in any
subproblem in T . Then the problem can be solved in space O(n � exp(s)) and
in time O(n � exp(cs + 2)), where cs � s.

Proof. Since the maximum separator size is s, then, from Theorem 17, tree-
clustering requires O(n � exp(s)) space. Since the cycle-cutset's size in each
cluster is bounded by cs, the time complexity is exponentially bounded by cs.

Example 20 Applying the cycle-cutsetmethod to each subproblem in T0; T1; T2
shows (see Figure 3), as before, that the best alternatives are an algorithm hav-
ing O(k4) time and quadratic space, (using T1, since fG;Eg is a cycle-cutset
of the subgraph restricted to fG;D;E;F;Hg having size 2), and an algorithm
having O(k5) time and O(k) space only (using T2, since the cycle-cutset size
of the whole problem is 3).

A special case of Theorem 3, observed before in [10,20], is that when the graph
is decomposed into non-separable components (i.e., when the separator size
equals 1).

Corollary 21 If G has a decomposition to non-separable components such
that the size of the maximal cutsets in each component is bounded by c, then
the problem can be solved in O(n � exp(c)) time, using linear space. 2

4 Optimization Tasks

Clustering and conditioning are applicable also to optimization tasks de�ned
over probabilistic and deterministic networks. An optimization task is de-
�ned relative to a real-valued criterion or cost function associated with ev-
ery instantiation. In the context of constraint networks, the task is to �nd
a consistent instantiation having maximum cost. Applications include diag-
nosis and scheduling problems. In the context of probabilistic networks, the
criterion function denotes a utility or a value function, and the task is to �nd
an assignment to a subset of decision variables that maximize the expected
criterion function. Applications include planning and decision making under
uncertainty. If the criterion function is decomposable, its structure can be

3As before, the cycle-cutset contains the separator set

17

augmented onto the corresponding graph (constraint graph or moral graph)
to subsequently be exploited by either tree-clustering or conditioning.

De�nition 22 (Decomposable criterion function [21]) A criterion func-
tion over a set X of n variables X1; :::;Xn having domains of values D1; :::;Dn

is additively decomposable relative to a scheme Q1; :::; Qt where Qi � X i�

f(x) =
X

i2T

fi(xQi
);

where T = f1; :::; tg is a set of indices denoting the subsets of variables fQig
and x is an instantiation of all the variables. The functions fi are the compo-
nents of the criterion function and are speci�ed, in general, by stored tables.

De�nition 23 (Constraint optimization, augmented graph) Given a con-
straint network over a set of n variablesX = X1; ::::;Xn and a set of constraints
C1; :::; Ct having scopes S1; :::; St, and given a criterion function f decompos-
able into ff1; :::; flg over Q1; :::; Ql, the constraint optimization problem is to
�nd a consistent assignment x = (x1; :::; xn) such that the criterion function
f =
P

i fi, is maximized. The augmented constraint graph contains a node for
each variable and an arc connecting any two variables that appear either in
the same scope of a constraint or in the same functional component of the
criterion function.

Since constraint optimization can be performed in linear time when the aug-
mented constraint graph is a tree, both join-tree clustering and cutset-conditioning
can extend the method to non-tree structures [22] in the usual manner. We
can conclude:

Theorem 24 (Time-space of constraint optimization [22]) Given a con-
straint optimization problem whose augmented constraint graph can be em-
bedded in a clique-tree having tree width r and separator width s and a cycle-
cutset size c, the time complexity of �nding an optimal consistent solution
using tree-clustering is O(n � exp(r)) and the space complexity O(n � exp(s)).
The time complexity for �nding a consistent optimal solution using the cycle-
cutset conditioning is O(n � exp(c)) while its space complexity is linear. 2

In a similar manner, the structure of the criterion function can augment the
moral graph when computing the maximum expected utility (MEU) of some
decisions in a general in
uence diagram [23]. An in
uence diagram is a belief
network having decision variables as well as an additively decomposable utility
function.

De�nition 25 (Finding the MEU) Given a belief network BN de�ned on
a set of variables X, and a real-valued utility function u(x) that is additively
decomposable relative to Q1; :::; Qt, Qi � X, and given a subset of decision

18

variables D = fD1; :::Dkg that are root variables in the directed acyclic graph
of the BN , the MEU task is to �nd an assignment �dok = (do1; :::; dok) such that

(�dok) = argmax �dk

X

xk+1;:::;xn

�k
i=1P (xijxpa(Xi);

�dk)u(x):

The utility-augmented graph of an in
uence diagram is its moral graph with
some additional edges: any two nodes appearing in the same component of
the utility function are connected as well.

A linear-time propagation algorithm can compute the MEU whenever the
utility-augmented moral graph of the network is a tree [24]. Consequently, by
exploiting the augmented moral graph, we can extend this propagation al-
gorithm to general in
uence diagrams. The two approaches that extend this
propagation algorithm to multiply-connected networks, cycle-cutset condition-
ing and join-tree clustering, are applicable here as well [11,13,23]. It was also
shown that elimination algorithms are similar to tree-clustering methods [12].
In summary:

Theorem 26 (Time-space of �nding the MEU) Given a belief network
having a subset of decision variables, and given an additively decomposable
utility function whose augmented moral graph can be embedded in a clique-
tree having tree width r and separator width s and a cycle-cutset size c,
the time complexity of computing the MEU using tree-clustering is O(n �
exp(r)) and the space complexity is O(n � exp(s)). The time complexity for
�nding aMEU using cycle-cutset conditioning is O(n �exp(c)) while the space
complexity is linear. 2

Once we have established the graph that guides tree-clustering and condi-
tioning for either constraint optimization or for �nding the MEU, the same
principle of trading space for time becomes applicable and will yield a col-
lection of parametrized algorithms governed by the primary and secondary
clique-trees and cycle-cutsets of the augmented graphs as we have seen before.

The following theorem summarizes the time and space tradeo�s associated
with optimization tasks.

Theorem 27 Given a constraint network (resp., a belief network) and given
an additively decomposable criterion function f , if the augmented constraint
graph (resp., moral graph) relative to the criterion function can be embedded
in a clique-tree having separator sizes s0; s1; :::sn, and corresponding maxi-
mal clique sizes r0; r1; :::; rn and corresponding maximal minimal cutset sizes
c0; c1; :::; cn, then �nding an optimal solution (resp., �nding the maximum ex-
pected criterion value) can be accomplished using any one of the following
bounds on the time and space: if a brute-force approach is used for processing
each subproblem the bounds are O(n�exp(ri)) time and O(n�exp(si)) space. If

19

C

A

B

D E

G F

H

G D E F

B G D G E F H

C D BA B G

B G

G D

B D

G E F

Fig. 7. An augmented moral graph for the utility function
f(a; b; c; d; e; f; g:h) = a � g + c2 + 5d � e � f

cycle-cutset conditioning is used for each cluster, the bounds are O(n �exp(ci))
time and O(n � exp(si)) space, where ci � si. 2

In particular, if the criterion function has singleton components, then the
complexity bounds, when using tree-clustering for optimization, are identical
to the performance bounds for constraint satisfaction or to the performance
bound for �nding the posterior probabilities.

Example 28 Consider the following criterion function de�ned over the belief
network in Figure 1

u(a; b; c; d; e; f; g; h) = a � g + c2 + 5d � e � f:

Assume that we want to compute the expected utility. Here the augmented
moral graph will have one additional arc connecting nodes A and G (see Figure
7(a)), resulting in a primary clique-tree embedding in Figure 7(b) that di�ers
from the tree in Figure 3(a). As a result one has to consider the clique ABG
instead of the original clique AB. Thus, applying join-tree clustering to the
primary tree yield time complexity O(exp(4)) and space complexity O(k3). If
only binary functions can be recorded we will need to combine clique (GDEF)
with (GEFH) yielding a clique of size 5. Using cycle-cutset conditioning, this
results in time complexity of O(k4) as well, while using O(k2) space, only. If
this space requirement is too heavy we need to solve the whole problem as
one cluster using cycle-cutset conditioning which, in this case, requires O(k5)
time and linear space.

5 Empirical Framework

The motivation for the experiments is twofold. One, to analyze the structural
parameters of clustering and cutset on real-life instances. Two, to gain further
understanding of how space/time tradeo� can be exploited to alleviate space
bottlenecks. With that motivation in mind, we analyzed empirically bench-
mark combinatorial circuits, widely used in the fault diagnosis and testing
community [9]. (See table 1.) The experiments allow us to assess in advance

20

the worst-case complexity of diagnosis and abduction tasks on those circuits,
and to determine the appropriate combination of tree clustering and cycle cut-
set methods to perform those tasks for each instance. None of the circuits are
trees and they all have considerable fanout nodes as shown in the schematic
diagram of circuit c432 in Fig. 8.

Table 1
ISCAS '85 Benchmark Circuit Characteristics

Circuit Circuit Total Input Output

Name Function Gates Lines Lines

C17 6 5 2

C432 Priority Decoder 160 (18 EXOR) 36 7

C499 ECAT 202 (104 EXOR) 41 32

C880 ALU and Control 383 60 26

C1355 ECAT 546 41 32

C1908 ECAT 880 33 25

C2670 ALU and Control 1193 233 140

C3540 ALU and Control 1669 50 22

C5315 ALU and Selector 2307 178 123

C6288 16-bit Multiplier 2406 32 32

C7552 ALU and Control 3512 207 108

Table 2
Number of nodes and edges for the primal graphs of the circuits.

Circuit c17 c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552

#nodes 11 196 243 443 587 913 1426 1719 2485 2448 3719

#edges 18 660 692 1140 1660 2507 3226 4787 7320 7184 9572

A causal graph, namely a directed acyclic graph (DAG), is computed for each
circuit. The graph includes a node for each variable in the circuit. For every
gate in the circuit, the graph has an edge directed from each gate's input to
the gate's output. The nodes with no parents (children) in the DAG are the
primary inputs (outputs) of the circuit. The primal graph for each circuit is
then computed as the moral graph for the corresponding DAG. Table 2 gives
the number of nodes and edges of the primal graph for each circuit.

Tree clustering is performed on the primal graphs by �rst selecting an order-
ing for the nodes, then triangulating the graph and identifying its maximum
cliques. There are many possible heuristics for ordering the nodes with the
aim of obtaining a join tree with small cliques.

21

Fig. 8. Schematic of circuit c432: 36 inputs 7 outputs and 160 components.

As a side e�ect of our experiments we observed a dramatic e�ect of ordering
heuristics on the resulting primary join tree. (See Appendix B). We report here
the results relative to the min-degree ordering, which we found to be superior.
The min-degree ordering heuristic was proposed in the context of non-serial
dynamic programming [4, page 55]. According to this ordering, nodes are
ordered from last to �rst by repeatedly selecting a node with minimumdegree
(minimumnumber of neighbors) from the current graph, connecting the node's
neighbors then removing the node from the graph, and continuing until the
graph is empty.

22

Fig. 9. Primary join tree (157 cliques) for circuit c432 (196 variables); the maximum
separator width is 23.

Fig. 10. Part of pimary join tree (1419 cliques) for circuit c3540 (1719 variables)
showing the descendants of the root node down to the leaves; the maximum sepa-
rator width is 89.

23

6 Empirical Results

6.1 Pure Clustering; Primary Join Trees

For each primary join tree generated, three parameters are computed: (1) the
size of cliques, (2) the size of cycle-cutsets in each of the subgraphs de�ned
by the cliques, and (3) the size of the separator sets. The nodes of the join
tree are labeled by the cliques (or clusters) sizes and the edges are labeled
by the separator width. In this section we present the results on two circuits
c432 and c3540, having 196 and 1719 variables, respectively. Results on other
circuits are summarized in Appendix A and C.

Figure 9 and 10 present information on the primary join trees. Figure 9 shows
that the cliques sizes range from 2 to 28. The root node has 28 nodes and the
descendant nodes have strictly smaller sizes. The depth of the tree is 11 and
all nodes whose distance from the root is greater than 6 have sizes stricly less
than 10. The leaves have sizes ranging from 2 to 6. Similar observations can
be made for the primary join tree of the larger circuit c3540 shown in Fig. 10.

Frequencies

C
liq

ue
 s

iz
e

10 20 30 40

Clique sizes for c432
Total number= 157,Maximum= 28
Mode= 5,Median= 6,Mean= 7.43312

2
3
4
5
6
7
8
9
10
11
12
17
19
21
27
28

Frequencies

S
ep

ar
at

or
 w

id
th

10 20 30 40

Separator widths for c432
Total number= 156,Maximum= 23
Mode= 4,Median= 5,Mean= 6.22436

1

2

3

4

5

6

7

8

9

10

11

16

18

20

23

Frequencies

C
ut

se
t s

iz
e

20 40 60 80

Cutset sizes for c432
Total number= 157,Maximum= 17
Mode= 1,Median= 1,Mean= 1.92357

0

1

2

3

4

5

7

8

9

10

16

17

Fig. 11. Histograms of the cliques sizes, the separator widths and the cutsets sizes
of the primary join tree for circuit c432 (196 variables)

Figures 11 and 12 provide additional details showing the frequencies of cliques
sizes, separator widths and cutsets sizes for both circuits. Those �gures (and all
the corresponding �gures in Appendix A) show that the structural parameters
are skewed with the vast majority of the parameters having values below the
midpoint (the point dividing the range of values from smallest to largest).

We see in Figure 11 that the number of cliques is 157 and the cliques sizes
are in the range from 2 to 28. The mode is 5, the median is 6 and the mean
is 7.433. 40 cliques out of the total 157 have size 5, and only 23 out of 157
have size greater than 9. The separator widths are in the range from 1 to 23.
The mode is 4, the median is 5 and the mean is 6.224. Out of the total 156
separator widths, 40 have size 4 and only 13 have sizes greater than 10. The

24

Frequencies

C
liq

ue
 s

iz
e

100 200 300 400

Clique sizes for c3540
Total number= 1419,Maximum= 114
Mode= 4,Median= 5,Mean= 8.15645

2

3

4

5

6

7

8

9

10

11

12

13

14

Frequencies

S
ep

ar
at

or
 w

id
th

100 200 300 400 500

Separator widths for c3540
Total number= 1418,Maximum= 89
Mode= 3,Median= 4,Mean= 6.94993

1

2

3

4

5

6

7

8

9

10

11

12

13

Frequencies

C
ut

se
t s

iz
e

100 200 300 400 500 600 700

Cutset sizes for c3540
Total number= 1419,Maximum= 16
Mode= 1,Median= 1,Mean= 1.32488

0

1

2

3

4

5

6

7

9

10

11

13

16

Fig. 12. Histograms of the cliques sizes (0.9th quantile range), the separator widths
(0.9th quantile range) and the cutsets sizes of the primary join tree for circuit c3540
(1719 variables).

cutsets sizes are in the range from 0 to 17. The mode is 1, the median is 1
and the mean is 1.923. Out of 157 cliques, 23 have cutset size 0. This means
that the projection of the primal graph on each of those 23 cliques is already
acyclic.

We now analyze the data for circuit c3540. (See Fig. 12.) The �gure shows the
distribution of cliques sizes in the 0.9th quantile range. The number of cliques
is 1419 and the cliques sizes range from 2 to 114. The mode is 4, the median is
5 and the mean is 8.1564. Out of 1419 cliques, 400 have size 4. Although the
maximum clique size is 114, the majority of cliques (1284 out of 1419) have
sizes between 2 and 14 and only few (135 out of 1419) have sizes ranging from
15 to the maximum 114. Figure 12 also shows the 0.9th quantile distribution
of the separator widths. Like the cliques, 90% of the separator widths are
small (between 1 and 13) and the remaining 10% span a broad range of values
(from 14 to 89). For the cutsets sizes we note that 318 cutsets out of total
1419 have size 0, namely the projection on each of those 318 cliques is already
acyclic. We also note that 753 out of 1419 cliques have singleton cutsets. Only
47 out of 1419 cutsets have sizes greater than 5.

6.2 Hybrid Clustering + Conditioning; Secondary Join Trees

Although most cliques and separators are small, some will require memory
space exponential in 23 for circuit c432 and exponential in 89 for circuit c3540.
This is clearly not feasible. We will next evaluate the potential of the trade
o� scheme proposed in this paper.

Let s0, c0 be the maximum cutset and separator size of the primary join tree
T0 obtained by tree clustering. Let s0; s1; : : : ; sn be the size of the separators
in T0 listed from largest to smallest. As explained earlier, with each separator

25

size, si, we associate a tree decomposition Ti generated by combining adjacent
clusters whose separators' sizes are strictly larger than si. We denote by ci the
largest cutset size in any cluster of Ti.

We estimate the space/time bounds for each circuit based on the graph pa-
rameters observed using our tree decomposition scheme. Figure 13 gives a
chart providing bounds for time versus space for each circuit. Each point in
the chart corrseponds to a speci�c secondary join tree decomposition Ti and
has the space complexity measured by the separator width, si, and the time
complexity by the maximum between the separator width and the cutset size;
max(si; ci). Each chart in Figure 13 can be used to select the algorithm from
the spectrum of conditioning+clustering algorithms of our tree decomposition
scheme that best meets a given time-space speci�cation. Each chart shows
the gradual e�ect of lowering the available space on the time required by
a corresponding clustering+conditioning algorithm. For example circuit c432
(Figure 13) shows the separator width (space) which is initially 23 (for the pri-
mary join tree) gradually reduced down to 1 in a series of secondary trees. The
�gure shows that reducing the separator width to meet the space available for
a conditioning+clustering algorithm increases the worst-case time complexity
of the algorithm. The time complexity increases becasue of the larger clusters
contained in the secondary join tree and the increase in the size of the cutset
for those clusters. It is interesting to note that the charts in Figure 13 all
display a \knee" phenomenon in the time-space tradeo� where time increases
only slightly for a broad range of space reduction beyond which further re-
duction in space causes signi�cant rise in the time bound. We also note that
the time estimate shown in Figure 13 displays a small dip before it rises with
the decrease in available space. For example for circuit c432 we note a dip
when the space is decreased from 23 to 20. This can be explained as follows.
As mentioned earlier we measure the worst-case time complexity as the max-
imum between the separator width and the cutset size. This is so since time
complexity always exceeds space complexity. As the space measured by the
separator width decreases the secondary join trees will contain larger clusters
and their cutset size will also increase. However, the rate of increase of the
cutset sizes does not grow linearly with the decrease in the separator width.
The results shown in Figure 13 indicate that for small decrease in separator
width (space) the cutset size will increase by an amount smaller than the
amount of decrease in the separator width. This explains the dip in the time
complexity. However, beyond that dip further decrease in the separator width
(space) will cause an increase in the cutset size that dominates the decrease in
the separator width and the rate of time increase becomes staggering as the
algorithms approach the lowest bound of linear space.

Figures 14-16 display the structure of the join trees for c432 for separator
widths ranging from 23 down to 3. As the separator decreases the maximum
clique size increases, and both the size and the depth of the tree decrease. Like

26

10 20 30 40

Space

50
100
150
200
250
300

T
i
m
e

Circuit c1908

0 5 10 15 20 25 30

Space

100

200

300

400

T
i
m
e

Circuit c2670

0 5 10 15 20

Space

20
40
60
80

100
120
140
160

T
i
m
e

Circuit c880

2.5 5 7.5 1012.51517.5

Space

50

100

150

200

T
i
m
e

Circuit c1355

5 10 15 20

Space

20
30
40
50
60
70
80

T
i
m
e

Circuit c432

2.5 5 7.5 1012.51517.5

Space

20
30
40
50
60
70

T
i
m
e

Circuit c499

Fig. 13. Time/Space tradeo� for c432 (196 variables), c499 (243 variables), c880 (443
variables), c1355 (587 variables), c1908 (913 variables) and c2670 (1426 variables).
Time is measured by the maximum of the separator width and the cutset size and
space by the maximum separator width.

the primary join tree, each secondary join tree has also a skewed distribution
of the clique sizes. Note that the clique size for the root node is signi�cantly
larger than for all other nodes, and is increasing as the separator decreases.
For instance, the root node for the secondary join tree with separator width 20
(Figure 14) has size 32 while all other nodes have sizes in the range from 2 to

27

21. When reducing the separator width to 3 the secondary join tree (Figure 16)
has the root node with size 172 while all other nodes have sizes in the range
from 2 to 4.

Fig. 14. Secondary trees for c432 with separator widths 23 and 20

28

Fig. 15. Secondary trees for c432 with separator widths 16 and 11

7 Related work

The cycle-cutset scheme for probabilistic inference was introduced by Pearl
[11] and for constraint networks by Dechter [19]. It was further improved and
extended for probabilistic reasoning by [15,25].

In subsequent years the cycle-cutset scheme was recognized as a special case
of conditioning, namely, value assignments to a subset of variables creates
subproblems that can be solved by any means. While the cycle-cutset scheme
requires that the conditioning set will be large enough so that the resulting
subproblem is singly-connected, any size of conditioning set can be used, yield-
ing simpli�ed problems that can be solved by tree-clustering or by any other
method. This idea of extending the combination of conditioning and tree-

29

Fig. 16. Secondary trees for c432 with separator widths 7 and 3.

clustering beyond the cycle-cutset scheme appears in the work of Jegou [26]
for constraint networks and in the works of [5,27] for probabilistic networks. In
the work of Jegou various heuristic are presented, aiming at creating a hybrid
algorithm having improved time performance. In [5], the issue of reducing the
space of tree-clustering by combination with conditioning is also brie
y ad-
dressed. The latter paper includes an alternative proof to the (worst-case) time
superiority of tree-clustering over the cycle-cutset method. In [27] the idea is
applied to the path�nder system, where the conditioning set is restricted to
the set of diseases.

Finally in [28], a scheme that apply this idea for combining conditioning and
variable elimination for propositional theories is outlined and analyzed. It is
shown that although the worst-case time guarantee of an hybrid cannot be
superior to tree-clustering (nor to a variable elimination scheme), for some
problem classes a hybrid algorithm can have a better time performance than
both pure clustering and pure search.

The work presented in this paper di�ers in depth and scope. We provide a
systematic parameterized hybrid scheme that can be matched to user's ap-
plication and resources, analyze its time-space tradeo� complexity, show ap-
plicability across a wide variety of reasoning frameworks and provide some
empirical evidence to its impact. In addition, the particular hybrid idea pro-
posed here is di�erent; rather than applying conditioning globally, we apply
conditioning locally within each clique, which may lead to superior time-space
guarantees.

30

8 Summary and Conclusions

Inference algorithms are time and space exponential in the size of the rela-
tionships they record while search algorithms are time exponential but require
only linear memory. In this paper we developed a hybrid scheme that uses in-
ference (tree-clustering) and search (conditioning) as its two extremes and,
using a single structure-based design parameter, permits the user to control
the storage-time tradeo� in accordance with the application and the available
resources.

Speci�cally, we have shown that constraint network processing and belief net-
work processing obey a structure-based time-space tradeo�, that allows tailor-
ing a combination of tree-clustering and cycle-cutset conditioning to certain
time and space requirements. As well, the same tradeo� is obeyed by optimiza-
tion problems when augmenting the graph by arcs re
ecting the structure of
the criterion function. Our analysis presents a spectrum of algorithms that
allows a rich time-space performance balance, applicable across a variety of
tasks.

The structural parameters are: (1) the size of cliques in a join tree, namely, the
induced-width, (2) the size of cycle-cutsets in each of the subgraphs de�ned
by the cliques, and (3) the size of the separator sets. Each clique de�nes a
subproblem and each separator de�nes the size of the tables necessary for
storing the projected solutions to the subproblems. Each subproblem may be
solved by any algorithm. In particular, (1) by straightforward search algorithm
like backtracking, for which the time complexity is worst-case exponential in
the size of the clique, (2) by cycle-cutset conditioning, for which the time
complexity is worst-case exponential in the size of the cycle cutset for the
subgraphs de�ned by the cliques.

We address the empirical issue of applicability to real-life of tree-clustering,
conditioning, or their hybrids. To that end, we studied the structural param-
eters of 11 benchmark circuits widely used in the fault diagnosis and testing
community [9]. Through those parameters we may predict for each circuit, the
limits and potential of (1) pure tree clustering, (2) pure cycle-cutset condi-
tioning and (3) hybrids of tree-clustering and cycle-cutset conditioning. The
controlling parameters allow assessing in advance, the complexity of most rea-
soning tasks on those circuits, and determining the appropriate hybrid level
of join-tree clustering and cycle-cutset methods.

We observed that the join-trees of the circuits all shared the unexpected prop-
erty that the majority of cliques sizes are relatively small while few cliques
are distinctly large. Also, the distributions of all the structural parameters are
skewed. This observation has an important practical implication. Although

31

the primary join tree obtained by tree-clustering may require too much space,
a major portion of the tree can be solved without any space problem.

Our analysis should be quali�ed, however. All the results we show present
worst-case guarantees of the corresponding algorithm. It is still not neces-
sary that the bounds are tight nor that they correlate well with average case
performance. This analysis should be extended in the future to include actual
implemnetations and testing of the involved algorithms, a major e�ort outside
the scope of this paper.

References

[1] A. K. Mackworth and E. C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satisfaction problems. Arti�cial
Intelligence, 25, 1985.

[2] J. Pearl. Fusion propagation and structuring in belief networks. Arti�cial
Intelligence, 29(3):241{248, 1986.

[3] R. Dechter. Constraint networks. Encyclopedia of Arti�cial Intelligence, pages
276{285, 1992.

[4] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press,
1972.

[5] S.K. Anderson R. D. Shachter and P. Solovitz. Global conditioning for
probabilistic inference in belief networks. In Uncertainty in Arti�cial
Intelligence (UAI-94), pages 514{522, 1994.

[6] H. Ge�ner and J. Pearl. An improved constraint propagation algorithm for
diagnosis. In Proceedings of IJCAI-87, pages 1105{1111, Milan, Italy, 1987.

[7] S. Srinivas. A probabilistic approach to hierarchical model-based diagnosis. In
Working Notes of the Fifth International Workshop on Principles of Diagnosis,
pages 305{311, New Paltz, NY, USA, 1994.

[8] Y. El Fattah and R. Dechter. Diagnosing tree-decomposable circuits. In
International Joint Conference of Arti�cial Intelligence (IJCAI-95), pages
1742{1748, Montreal, Canada, August 1995.

[9] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational benchmark
circuits and a target translator in FORTRAN, distributed on a tape to
participants of the Special Session on ATPG and Fault Simulation, Int.
Symposium on Circuits and Systems, June 1985; partially characterized in
F. Brglez, P. Pownall, R. Hum, Accelerated ATPG and Fault Grading via
Testability Analysis. In Proc. IEEE Int. Symposium on Circuits and Systems,
pages 695{698, June 1985.

32

[10] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction
problems. Arti�cial Intelligence, 34:1{38, 1987.

[11] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
1988.

[12] R. Dechter and J. Pearl. Tree clustering for constraint networks. Arti�cial
Intelligence, pages 353{366, 1989.

[13] S.L. Lauritzen and D.J. Spiegelhalter. Local computation with probabilities on
graphical structures and their application to expert systems. Journal of the
Royal Statistical Society, Series B, 50(2):157{224, 1988.

[14] A. Darwiche. Model-based diagnosis using structured system descriptions.
Journal of Arti�cial Intelligence Research (JAIR), pages 165{222, 1998.

[15] M. A. Peot and R. D. Shachter. Fusion and proagation with multiple
observations in belief networks. Arti�cial Intelligence, pages 299{318, 1992.

[16] S. A. Arnborg. E�cient algorithms for combinatorial problems on graphs with
bounded decomposability - a survey. BIT, 25:2{23, 1985.

[17] S. A. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of �nding
embeddings in a k-tree. SIAM Journal of Discrete Mathematics., 8:277{284,
1987.

[18] R. Dechter. Bucket elimination: A unifying framework for probabilistic
inference algorithms. In Uncertainty in Arti�cial Intelligence (UAI-96), pages
211{219, 1996.

[19] R. Dechter. Enhancement schemes for constraint processing: Backjumping,
learning and cutset decomposition. Arti�cial Intelligence, 41:273{312, 1990.

[20] E. C. Freuder. A su�cient condition for backtrack-free search. Journal of the
ACM, 29(1):24{32, 1982.

[21] F. Bacchus and A Grove. Graphical models for preferences and utility. In
Uncertainty in AI (UAI-95), pages 3{10, 1995.

[22] R. Dechter, A. Dechter, and J. Pearl. Optimization in constraint networks. In
In
uence Diagrams, Belief Nets and Decision Analysis, pages 411{425. John
Wiley & Sons, 1990.

[23] R.D. Shachter. Evaluating in
uence diagrams. Operations Research, 34, 1986.

[24] F. Jennsen and F. Jennsen. Optimal junction trees. In Uncertainty in Arti�cial
Intelligence (UAI-95), pages 360{366, 1994.

[25] A Darwiche. Conditioning algorithms for exact and approximate inference in
causal networks. In Uncertainty in Arti�cial Intelligence (UAI-95), pages 99{
107, 1995.

[26] P Jegou. Cyclic clustering: a compromise between tree-clustering and the cycle-
cutset method for improving search e�ciency. In European Conference on AI
(ECAI-90), pages 369{371, Stockholm, 1990.

33

[27] H. J. Suermondt, G. F. Cooper, and D. E. Heckerman. A combination of
cutset conditioning with clique-tree propagation in the path-�nder system. In
Uncertainty in Arti�cial Intelligence (UAI-91), pages 245{253, 1991.

[28] I. Rish and R. Dechter. To guess or to think? hybrid algorithms for sat. In
Principles of Constraint Programming (CP-96), pages 555{556, 1996.

34

A Structural parameters of primary trees

Frequencies

C
liq

ue
 s

iz
e

10 20 30 40

Clique sizes for c499
Total number= 196,Maximum= 25
Mode= 6,Median= 5,Mean= 6.08163

3

4

5

6

7

9

13

20

21

25

Frequencies
S

ep
ar

at
or

 w
id

th
10 20 30 40 50

Separator widths for c499
Total number= 195,Maximum= 18
Mode= 5,Median= 4,Mean= 4.86667

2

3

4

5

6

8

12

17

18

Frequencies

C
ut

se
t s

iz
e

20 40 60 80 100 120 140

Cutset sizes for c499
Total number= 196,Maximum= 8
Mode= 1,Median= 1,Mean= 1.45918

0

1

2

3

4

5

7

8

Fig. A.1. Histograms of the cliques sizes the separator widths and the cutsets sizes
of the primary join tree for circuit c499 (243 variables).

Frequencies

C
liq

ue
 s

iz
e

20 40 60 80

Clique sizes for c880
Total number= 354,Maximum= 28
Mode= 5,Median= 5,Mean= 6.17797

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
25
28

Frequencies

S
ep

ar
at

or
 w

id
th

10 20 30 40 50 60 70

Separator widths for c880
Total number= 351,Maximum= 21
Mode= 4,Median= 4,Mean= 4.96866

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
21

Frequencies

C
ut

se
t s

iz
e

20 40 60 80 100 120 140

Cutset sizes for c880
Total number= 354,Maximum= 4
Mode= 1,Median= 1,Mean= 1.01695

0

1

2

3

4

Fig. A.2. Histograms of the cliques sizes the separator widths and the cutsets sizes
of the primary join tree for circuit c880 (443 variables).

Frequencies

C
liq

ue
 s

iz
e

25 50 75 100 125 150 175

Clique sizes for c1355
Total number= 436,Maximum= 25
Mode= 5,Median= 5,Mean= 5.13761

2

3

4

5

6

7

9

13

20

21

25

Frequencies

S
ep

ar
at

or
 w

id
th

20 40 60 80 100 120

Separator widths for c1355
Total number= 435,Maximum= 18
Mode= 3,Median= 3,Mean= 3.8

1

2

3

4

5

6

8

12

17

18

Frequencies

C
ut

se
t s

iz
e

50 100 150 200

Cutset sizes for c1355
Total number= 436,Maximum= 11
Mode= 1,Median= 1,Mean= 1.18349

0

1

2

3

4

5

7

11

Fig. A.3. Histograms of the cliques sizes the separator widths and the cutsets sizes
of the primary join tree for circuit c1355 (587 variables).

35

Frequencies

C
liq

ue
 s

iz
e

50 100 150 200 250 300

Clique sizes for c1908
Total number= 718,Maximum= 57
Mode= 4,Median= 4,Mean= 6.24791

3

4

5

6

7

8

9

10

11

Frequencies

S
ep

ar
at

or
 w

id
th

100 200 300

Separator widths for c1908
Total number= 717,Maximum= 48
Mode= 3,Median= 3,Mean= 4.98326

2

3

4

5

6

7

8

9

10

Frequencies

C
ut

se
t s

iz
e

50 100 150 200 250 300 350

Cutset sizes for c1908
Total number= 718,Maximum= 18
Mode= 1,Median= 1,Mean= 1.25209

0

1

2

3

4

5

7

8

9

10

11

12

14

15

18

Fig. A.4. Histograms of the cliques sizes (0.9th quantile range), the separator widths
(0.9th quantile range) and the cutsets sizes of the primary join tree for circuit c1908
(913 variables).

Frequencies

C
liq

ue
 s

iz
e

100 200 300 400

Clique sizes for c2670
Total number= 1178,Maximum= 39
Mode= 4,Median= 4,Mean= 5.39983

1

2

3

4

5

6

7

8

9

Frequencies

S
ep

ar
at

or
 w

id
th

100 200 300 400 500

Separator widths for c2670
Total number= 1096,Maximum= 30
Mode= 3,Median= 3,Mean= 4.50091

1

2

3

4

5

6

7

Frequencies

C
ut

se
t s

iz
e

100 200 300 400 500

Cutset sizes for c2670
Total number= 1178,Maximum= 5
Mode= 1,Median= 1,Mean= 0.957555

0

1

2

3

4

5

Fig. A.5. Histograms of the cliques sizes (0.9th quantile range), the separator widths
(0.9th quantile range) and the cutsets sizes of the primary join tree for circuit c2670
(1426 variables).

Frequencies

C
liq

ue
 s

iz
e

100 200 300 400 500

Clique sizes for c5315
Total number= 2030,Maximum= 59
Mode= 4,Median= 5,Mean= 6.72611

2

3

4

5

6

7

8

9

10

11

Frequencies

S
ep

ar
at

or
 w

id
th

100 200 300 400 500 600 700

Separator widths for c5315
Total number= 2024,Maximum= 46
Mode= 3,Median= 4,Mean= 5.51828

1

2

3

4

5

6

7

8

9

10

Frequencies

C
ut

se
t s

iz
e

200 400 600 800

Cutset sizes for c5315
Total number= 2030,Maximum= 8
Mode= 1,Median= 1,Mean= 1.45616

0

1

2

3

4

5

6

7

8

Fig. A.6. Histograms of the cliques sizes (0.9th quantile range), the separator widths
(0.9th quantile range) and the cutsets sizes of the primary join tree for circuit c5315
(2485 variables).

36

Frequencies

C
liq

ue
 s

iz
e

200 400 600 800

Clique sizes for c6288
Total number= 1965,Maximum= 65
Mode= 5,Median= 5,Mean= 6.79746

3

4

5

6

7

8

9

10

Frequencies

S
ep

ar
at

or
 w

id
th

200 400 600 800

Separator widths for c6288
Total number= 1964,Maximum= 53
Mode= 4,Median= 4,Mean= 5.55448

2

3

4

5

6

7

8

9

Frequencies

C
ut

se
t s

iz
e

200 400 600 800 1000 1200

Cutset sizes for c6288
Total number= 1965,Maximum= 8
Mode= 1,Median= 1,Mean= 1.06768

0

1

2

3

4

5

6

8

Fig. A.7. Histograms of the cliques sizes (0.9th quantile range), the separator widths
(0.9th quantile range) and the cutsets sizes of the primary join tree for circuit c6288
(2448 variables).

Table A.1
Maximum clique sizes (C) and maximum separator widths (S) for the join trees
obtained by tree clustering with various ordering heuristics

Circuit #variables Causal Maximum Minimum Minimum

Ordering Cardinality Width Degree

C S C S C S C S

c17 11 5 3 4 2 4 3 3 2

c432 196 63 62 45 44 51 45 28 23

c499 243 68 66 43 42 33 32 25 18

c880 443 66 64 51 49 66 64 28 21

c1355 587 74 73 47 46 37 36 25 18

c1908 913 139 138 65 63 141 139 57 48

c2670 1426 150 149 82 80 154 152 39 30

c3540 1719 270 269 117 115 294 293 114 89

c5315 2485 172 169 59 46

c6288 2448 277 276 65 53

c7552 3719 58 45

B Ordering Heuristics

As a side e�ect of our experiments we observed a dramatic di�erence be-
tween the e�ect of ordering on the resulting primary join tree. In particu-
lar the max-cardinality heuristic was shown to be much inferior to the min-
degree ordering. Four ordering heuristics were considered: (1) causal ordering,

37

Table A.2
Number of added edges (N) and the clustering cpu-seconds (T) for various orderings.

Circuit #var- Causal Maximum Minimum Minimum

iables Ordering Cardinality Width Degree

N T N T N T N T

c17 11 7 0.15 2 0.017 3 0.05 1 0.033

c432 196 7094 154.967 3425 51.916 1895 29.384 869 22.934

c499 243 7348 137.883 3813 65.617 2289 36.633 944 27.483

c880 443 11286 287.067 6788 153.283 9002 257.4 1678 83.634

c1355 587 15241 465.4 9951 302.683 6695 198.433 1272 104.783

c1908 913 60223 4748.73 24445 1147.2 39746 2559.95 4356 418.367

c2670 1426 115519 17457.4 22413 1350.17 60239 5933.17 4381 967.05

c3540 1719 225016 67385.6 64565 5943.72 148251 33038.9 17043 3650.98

c5315 2485 88714 20595.6 11486 5665.68

c6288 2448 291137 1.4805e+05 14311 5415.73

c7552 3719 14968 20301.3

(2) maximum-cardinality, (3) minimum-width, and (4) minimum-degree. The
max-cardinality ordering is computed from �rst to last by picking the �rst node
arbitrarily and then repeatedly selecting the unordered node that is adjacent
to the maximum number of already ordered nodes. The min-width ordering is
computed from last to �rst by repeatedly selecting the node having the least
number of neighbors in the graph, removing the node and its incident edges
from the graph, and continuing until the graph is empty. The min-degree or-
dering is exactly like min-width except that we connect neighbors of selected
nodes, and causal ordering is just a topological sort of the DAG.

Tree clustering is implemented using each of the four orderings on each of the
benchmark circuits of table 1. Table A.1 gives the maximum separator widths
and clique sizes for each method on all circuits. We note that among the
four methods, the min-degree ordering has by far the best performance as it
yields the smallest cliques sizes and separators. The table shows the maximum
separator widths to be tightly correlated with the maximumclique sizes. As an
example, for circuit c3540, which has 1719 variables, the separator width for
the minimumdegree method is 89. Causal-ordering leads to a separator width
that is 300% greater than the maximumdegree, the maxium-cardinality 130%,
and minimum-width 330%. Unlike the three other methods, the minimum
degree leads to separator width that grows only slowly with the size of the
circut. Indeed, the minimum degree was the only method that could scale-
up to the largest size circuit. For circuit c6288 (2448 variables) the separator

38

width for minimum-degree is only 53 while with maximum cardinality is 276
(520% larger than minimum degree).

Table A.2 gives the number of added edges and the cpu-seconds for clustering
with each ordering on all circuits. The number of added edges serves as an
implementation-independent basis for comparing the e�ciency of the various
clustering methods. The cpu-seconds are tightly correlated with the number
of added edges.

C Structural parameters of secondary trees (Additional data)

Table C.1
Structural parameters of primary and secondary trees for c432 (196 variables) ;
Max. separator width (Smx), #cliques (N), max clique size (Cmx), max cutset size
(CSmx), average separator width (Sav), average clique size (Cav), average cutset
size (CSav).

Smx N Cmx CSmx Sav Cav CSav

23 157 28 17 6.22436 7.43312 1.92357

20 156 32 21 6.11613 7.33333 1.85897

18 155 33 22 6.02597 7.25161 1.8129

16 151 37 26 5.70667 6.96689 1.6755

11 147 41 30 5.42466 6.72109 1.54422

10 145 43 32 5.34722 6.66207 1.45517

9 144 44 33 5.31469 6.63889 1.41667

8 126 71 35 4.784 6.30159 1.56349

7 117 80 36 4.53448 6.17094 1.62393

6 106 91 37 4.27619 6.08491 1.71698

5 86 111 57 3.87059 6.10465 1.75581

4 65 132 59 3.5 6.46154 1.93846

3 25 172 71 2.66667 10.4 3.64

2 6 191 80 1.4 33.8333 13.5

1 4 193 83 1.0 49.75 20.75

39

Table C.2
Structural parameters of primary and secondary trees for c499 (243 variables) ;
Max. separator width (Smx), #cliques (N), max clique size (Cmx), max cutset size
(CSmx), average separator width (Sav), average clique size (Cav), average cutset
size (CSav).

Smx N Cmx CSmx Sav Cav CSav

18 196 25 8 4.86667 6.08163 1.45918

17 192 29 8 4.59162 5.83333 1.47917

12 189 49 11 4.39362 5.65608 1.4127

8 179 59 18 3.96629 5.30168 1.45251

6 171 67 18 3.77647 5.17544 1.52047

5 155 83 28 3.54545 5.09032 1.38065

4 105 139 56 2.84615 5.13333 1.52381

3 81 163 74 2.5 5.46914 1.90123

2 41 203 78 2.0 7.87805 2.87805

40

Table C.3
Structural parameters of primary and secondary trees for c880 (443 variables) ;
Max. separator width (Smx), #cliques (N), max clique size (Cmx), max cutset size
(CSmx), average separator width (Sav), average clique size (Cav), average cutset
size (CSav).

Smx N Cmx CSmx Sav Cav CSav

21 354 28 4 4.94051 6.17797 1.01695

19 352 32 4 4.849 6.09375 1.01136

18 350 34 4 4.76791 6.02 1.0

17 348 43 5 4.69164 5.95115 1.00575

16 346 45 6 4.62029 5.88728 1.0

15 342 58 9 4.4868 5.76901 0.991228

14 339 62 10 4.39349 5.68732 0.99115

13 336 66 11 4.30746 5.6131 0.994048

12 329 71 11 4.12195 5.45593 0.993921

11 326 75 12 4.04923 5.39571 0.993865

10 319 82 13 3.89623 5.27273 1.0

9 312 88 13 3.75884 5.16667 1.00321

8 308 103 20 3.69055 5.11688 1.01623

7 293 118 24 3.46918 4.96928 1.03072

6 280 131 31 3.30466 4.875 1.06786

5 260 151 36 3.09653 4.78846 1.08846

4 215 196 59 2.69626 4.74419 1.16279

3 143 268 104 2.03521 5.11888 1.4965

2 79 349 147 1.24359 6.83544 2.20253

1 58 380 158 0.964912 8.58621 2.7931

0 3 429 159 0.0 147.667 53.6667

41

Table C.4
Structural parameters of primary and secondary trees for c1355 (587 variables) ;
Max. separator width (Smx), #cliques (N), max clique size (Cmx), max cutset size
(CSmx), average separator width (Sav), average clique size (Cav), average cutset
size (CSav).

Smx N Cmx CSmx Sav Cav CSav

18 436 25 11 3.8 5.13761 1.18349

17 432 29 11 3.66821 5.01852 1.18981

12 429 49 11 3.57477 4.93473 1.14452

8 419 59 18 3.37321 4.76611 1.15513

6 411 67 18 3.28293 4.70316 1.17762

5 395 83 28 3.17259 4.65063 1.10886

4 345 139 44 2.90698 4.6 1.14783

3 241 163 44 2.43333 4.85892 1.64315

2 105 419 203 1.69231 7.26667 2.92381

1 33 555 235 1.0 18.7576 7.12121

42

Table C.5
Structural parameters of primary and secondary trees for c1908 (913 variables) ;
Max. separator width (Smx), #cliques (N), max clique size (Cmx), max cutset size
(CSmx), average separator width (Sav), average clique size (Cav), average cutset
size (CSav).

Smx N Cmx CSmx Sav Cav CSav

48 718 57 18 4.98326 6.24791 1.25209

42 717 65 18 4.92318 6.18968 1.2371

40 716 68 18 4.87133 6.13966 1.22765

38 715 69 18 4.82213 6.09231 1.21958

35 712 74 18 4.68214 5.95787 1.18399

33 711 76 19 4.63944 5.91702 1.16596

31 710 77 20 4.59944 5.87887 1.1493

29 708 82 20 4.52475 5.80791 1.13418

25 707 83 20 4.49008 5.77511 1.12447

24 706 84 20 4.46099 5.74788 1.12323

23 704 88 22 4.40541 5.69602 1.11222

22 703 90 22 4.37892 5.67141 1.10953

19 701 92 22 4.32857 5.62482 1.10271

18 700 94 22 4.30758 5.60571 1.09857

16 696 100 24 4.22878 5.53448 1.08333

15 692 104 25 4.16064 5.47399 1.05925

14 678 118 39 3.93648 5.27729 0.914454

13 666 130 46 3.75489 5.12012 0.795796

12 660 138 46 3.67071 5.04848 0.777273

11 656 143 48 3.61985 5.0061 0.778963

10 654 145 50 3.59724 4.98777 0.776758

9 642 158 52 3.47738 4.89408 0.758567

8 635 166 54 3.4164 4.84882 0.76378

7 627 174 54 3.35783 4.80861 0.767145

6 618 185 55 3.3047 4.7767 0.775081

5 587 217 60 3.16212 4.7121 0.749574

4 548 258 62 3.03108 4.69161 0.775547

3 460 350 76 2.84532 4.82391 0.897826

2 72 788 296 2.0 14.6528 4.95833

43

Table C.6
Structural parameters of primary and secondary trees for c2670 (1426 variables) ;
Max. separator width (Smx), #cliques (N), max clique size (Cmx), max cutset size
(CSmx), average separator width (Sav), average clique size (Cav), average cutset
size (CSav).

Smx N Cmx CSmx Sav Cav CSav

30 1178 39 5 4.19116 5.39983 0.957555

27 1177 43 5 4.16922 5.37893 0.958369

26 1176 48 5 4.14979 5.36054 0.958333

23 1175 49 5 4.13118 5.34298 0.959149

22 1171 49 5 4.06667 5.28266 0.962425

21 1168 49 5 4.02057 5.23973 0.961473

20 1161 74 5 3.9181 5.1447 0.966408

19 1156 86 6 3.84848 5.08045 0.966263

18 1155 87 7 3.83536 5.0684 0.966234

16 1151 106 14 3.78609 5.02346 0.97046

15 1142 121 20 3.68975 4.93695 0.971979

14 1138 126 21 3.64996 4.90158 0.971002

13 1130 134 26 3.57662 4.83717 0.976106

12 1128 136 27 3.55989 4.8227 0.97695

11 1118 147 32 3.48433 4.7585 0.973166

10 1110 156 37 3.43012 4.71351 0.976577

9 1101 168 39 3.37636 4.6703 0.97911

8 1089 180 46 3.31434 4.62259 0.972452

7 1069 201 55 3.22659 4.5594 0.981291

6 1037 241 73 3.11004 4.48409 1.0

5 967 264 78 2.90062 4.37435 0.951396

4 858 445 185 2.63361 4.29487 0.952214

3 717 569 241 2.36453 4.35286 1.05439

2 224 1129 446 0.959641 7.33036 2.36607

1 152 1207 470 0.463576 9.85526 3.34211

0 82 1251 472 0.0 17.4146 6.15854

44

Table C.7
Structural parameters of primary and secondary trees for c6288 (2448 variables) ;
Max. separator width (Smx), #cliques (N), max clique size (Cmx), max cutset size
(CSmx), average separator width (Sav), average clique size (Cav), average cutset
size (CSav).

Smx N Cmx CSmx Sav Cav CSav

53 1965 65 8 5.55448 6.79746 1.06768

30 1952 162 19 5.33265 6.58402 1.04816

16 1909 285 19 4.96226 6.24201 1.02252

45

