HappyJIT: A Tracing JIT Compiler for PHP

Andrei Homescu

Department of Computer Science
University of California, Irvine

ahomescu@uci.edu

Abstract

Current websites are a combination of server-generated dynamic
content with client-side interactive programs. Dynamically - typed
languages have gained a lot of ground in both of these domains.
The growth of Web 2.0 has introduced a myriad of websites which
contain personalized content, which is specific to the user. PHP or
Python programs generate the actual HTML page after querying a
database and processing the results, which are then presented by
the browser. It is becoming more and more vital to accelerate the
execution of these programs, as this is a significant part of the total
time needed to present the page to the user.

This paper presents a novel interpreter for the PHP language
written in RPython, which the PyPy translator then translates into
C. The translator integrates into the interpreter a tracing just-in-
time compiler which optimizes the hottest loops in the interpreted
programs. We also describe a data model that supports all the data
types in the PHP language, such as references and iterators. We
evaluate the performance of this interpreter, showing that speedups
up to a factor of 8 are observed using this approach.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers, interpreters, optimization, run-
time environments

General Terms Design, Languages, Performance

Keywords PHP, PyPy, RPython, just-in-time compilation, tracing,
interpreter, dynamically typed languages

1. Introduction

In recent years we have seen a rapid explosion of Internet websites.
While the earliest ones were completely static, written in HTML
once and always presenting the same content to the user, later ones
became more dynamic, showing personalized information specific
to each user or visit, running various computations on data stored in
some database. These computations have been split between server-
side computations, where the server prepares a web page for each
request specifically for that request, or client-side computations
which are done on the user’s machine. Various languages have
grown very popular specifically for these purposes, such as Python
and PHP on the server and JavaScript and ActionScript in the
browser. Dynamic pages are today used in a variety of web pages,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DLS’11, October 24, 2011, Portland, Oregon, USA.

Copyright © 2011 ACM 978-1-4503-0939-4/11/10. .. $10.00

25

Alex Suhan

Faculty of Mathematics and Computer Science
University of Bucharest

alex.suhan@gmail.com

from search engines and social networking sites to online banking
and shopping pages. Since the faster a page is generated on the
server, the more requests from users can be served each second
by that server, it is becoming vital to accelerate the execution of
programs written in these languages.

One element that these languages have in common is their ex-
ecution environment. A program written in one of these languages
is then executed in a virtual machine, after being converted from its
textual representation to some bytecode which is either written to
disk and executed later (programs written in Java) or directly exe-
cuted from memory (programs written in JavaScript and Python).
Much research [15, 19, 20] has been done recently on improving
the performance of the virtual machines running these programs.
Prior research has shown that there are some techniques that have
a great positive effect on performance, such as just-in-time compi-
lation.

In this paper, we present the design and implementation of an
optimized interpreter for one such language, PHP. We will show
that on a significant portion of the tests in the PHPbench [4] and
Computer Language Benchmarks Game [8] test suites, our imple-
mentation performs at least as well as the standard PHP interpreter
and, in some cases, significantly better. This paper makes the fol-
lowing contributions:

e We present the use of PyPy to build a front-end for a language
different from Python.

e We describe the design of a prototype PHP interpreter written
in RPython.

e We present several optimizations to the data structures used by
the interpreter.

e We compare the performance of our JIT-compiled interpreter
with the Zend PHP engine.

2. Background

PHP is currently one of the most popular dynamically-typed lan-
guages, mostly due to its widespread use for generating of dynamic
webpages. Whenever a user requests a page from a webserver, a
PHP program generates the corresponding HTML response. In ad-
dition to its scripting features and support for many text-oriented
algorithms, it also features many object-oriented and, in recent ver-
sions (the latest version as of writing this paper is PHP 5.3.6), func-
tional language features, such as classes and lambdas. The official
interpreter for this language is the Zend PHP engine [10].

Another widely used language is Python. Its official implemen-
tation uses an interpreter, although there has been much recent work
into improving the performance of Python using just-in-time com-
pilation, e.g., in the Unladen Swallow [9] using the LLVM frame-
work [22], run-time type specialization in Psyco [25] or PyPy us-
ing a tracing JIT [15]. The latter is an implementation of Python
written in Python itself. Figure 1 illustrates its high-level design. It

Python parser (el Interpreter
Python frontend
v
[m————————— ———— — — —
Lo Annotator !
Y ___
L __ Rhyper !
I T T T T Cade ¢ Y - I
S Code generator _ _ _ _ _ ~
I~ T T T T e y I
R CCompiler _ _ _ _ _ _
Pypy translation chain
Y
Python interpreter binary

Figure 1. High-level structure of PyPy.

consists of a Python bytecode compiler and interpreter written in
a restricted subset of Python called RPython [12]; these front end
components are then passed through a source-to-source translator
that generates the correspoding C code, then passed to a C com-
piler. The binary that results from this process is a full Python in-
terpreter. Unlike Python, RPython is a statically-typed language. In
C, the program developer manually specifies the types of all vari-
ables. However, in a RPython program, the types are inferred by
an algorithm executed by the Annotator component of PyPy. Next,
the RTyper converts these annotations from abstract types into con-
crete ones supported by the code generation back end, which are
the types from the C language in our case. All auxiliary operations
that operate on high-level RPython data structures, such as lists and
dictionaries, are also converted to inline code or function calls at
this step. Then, the source-to-source translator has been extended
with its own JIT compiler, that traces the execution of the inter-
preter at run-time and converts the so-called “hot loops” (loops that
have a large number of iterations) to optimized assembly code, us-
ing information gathered at run-time. Bolz et al. describe this JIT
compiler in more detail in their paper [15].

Since PyPy has such a modular design, it is easy to write a new
front end for a new language. Several such front ends exist for lan-
guages such as Javascript, Scheme and Prolog [6, 16]. Given all
these prior successes, we have implemented a new interpreter front
end in PyPy for the PHP language. Our project reuses all the ex-
isting compilation code from PyPy; the only new code components
we had to implement are the PHP parser (which we did not imple-
ment from scratch, but reused the parser from Zend in a way which
we will present later) and the interpreter loop, along with all data
structures necessary for representing the data of a PHP program in
memory.

26

3. Design and Implementation

Our prototype is a PHP interpreter written in RPython that is com-
piled into a binary by the same PyPy backend described before.
Since any program written in RPython must be compilable to C,
the types of its variables must be computable by the type inference
algorithm in PyPy and supported by the low-level type system. The
type of a variable is not computable if it is too general, i.e., a spe-
cific RPython type cannot be determined for that variable. For ex-
ample, a single variable cannot be assigned an integer and later a
string; the variable must either be always assigned an integer or al-
ways assigned a string. Since PyPy is currently under development,
a complete specification of the RPython language is unavailable;
however, most of its restrictions are available in the official PyPy
documentation [5].

3.1 The PHP Bytecode Compiler

We use a design similar to the Python interpreter in PyPy. We con-
vert PHP programs into bytecode. In order to reduce implemen-
tation effort, we reuse the PHP parser from the Zend engine. Zend
also converts scripts internally to a linear bytecode before executing
them. The engine does not provide direct access to this bytecode.
Fortunately, several external extensions do export this bytecode to
a format that can be accesses from an external application [1, 24].

The PHP bytecode consists of data structures called oparrays,
which are arrays of all operations in one function along with other
auxiliary information, such as lists of the named, temporary and
static variables defined in the function. There is one outer oparray
for the top level of a script, one array for each function and class
method. The main element of the oparray is a pointer to a vec-
tor of zend_op structures, one for each operation in the function.
Each structure contains the opcode and one zend_znode struc-
ture to hold the result and up to two operands. Most bytecode op-
erations use only one or two operands; a few also use the extra
extended _value field in the structure or two more operands en-
coded using the ZEND_OP_DATA opcode. The interpreter skips any
operation with this opcode during interpretation.

The Advanced PHP Cache, or APC [1], is an accelerator for the
Zend engine that stores values into persistent storage between ex-
ecutions. These values can be either key/value pairs that the user
stores and reads manually or internal PHP data that the engine
stores itself. The most significant example of the latter are the pro-
grams themselves in bytecode format. APC dumps the in-memory
representation of the bytecode to a buffer or to disk. Our implemen-
tation reads this representation back into memory and interprets it.

The buffer generated by APC is a heavy-weight representation
of all data structures used by Zend in memory. Some of the infor-
mation stored therein is not used by our interpreter; other parts are
represented in a non-linear way. Direct interpretation of this for-
mat is not the most efficient approach; to increase the efficiency
of the interpreter, we convert from the Zend bytecode to our own
bytecode, using the BcParser component shown in Figure 2. The
oparray from Zend is not cache-friendly and requires many indirect
memory accesses to get all the information for one operation. Thus,
we convert each operation to a fixed-length (currently, 9 words each
32-bits long) representation that is contiguous in memory, as shown
in Figure 3. The first word is the opcode, followed by 2-word en-
codings of the result and the operands, consisting of a type and inte-
ger value for each one. Each operand is either an immediate integer
or an index into an array, in the case of non-integer constants or
variables. The last two values are the field extended_value from
the Zend structure and a jump hint value that we use to jump out
of loops. We reuse the opcode numbers from Zend, including the
ZEND_OP_DATA extension.

|m———————
[}
s : BcParser
1 -
[}
PI-?Pt Zend ! \
Sscri engine
P & : Interpreter
[}
r===- |
[} I |
ApPc HappyJIT

Figure 2. Passes that a PHP script goes through before being
executed.

result
value

result operand 1 operand 2
type type type

operand 1
value

operand 2
value

extended

opcode
P value

jump hint

ool ToTo o =]

Figure 3. Memory layout of HappyJIT bytecode.

W_int W_float

W_numeric W_boolean

W_array

W_iter
W_reference

Figure 4. Hierarchy of types in HappyJIT.

3.2 The Basic Data Types

Variables in PHP have one of several types: null, boolean, integer,
float, string, array, object and resource. We represent each constant
or variable from a PHP script in RPython as an object that encapsu-
lates the PHP value. There is one wrapper object type for each PHP
type, except for resource, which we did not need to implement.
These types are organized as a hierarchy, which can be seen in Fig-
ure 4. All the basic types in PHP other than resource have a corre-
sponding HappyJIT wrapper object: W_null, W_boolean, W_integer,
W_float, W_str, W_array, W_instance. The implementation stores
two kinds of information for PHP objects: instance objects, one for
each PHP instance, stored using W_instance structures, and class

27

<7php
$a =
$al1]

>

’abc’;

= ’x7;

Figure 5. PHP script that replaces one character in a string.

objects, one global object per class named W_class. All types are
derived from a base class called W_object. We never construct ob-
jects with this type, so no instance of this type should appear. How-
ever, its presence makes it very easy to check whether a HappyJIT
value is wrapped or not, simply by checking if that value is an in-
stance of the base type.

We introduced the W_nothing wrapper as a placeholder for
the None Python value, since RPython did not allow us to mix
None with values of other types as the type of the same variable.
This type of object is also used wherever there is an invalid or
impossible value, such as uninitialized variables or the empty index
used to append to arrays, like in the instruction $a[] = 10. It
must be distinguished from the W_object root, since all types in
our hierarchy descend from this root, so any isinstance(obj,
W_object) check on a wrapped object will be true.

Most binary operators in PHP are either arithmetic or logical
operators, which means the operands and result are numeric values.
In some cases where the operands are not numeric, the values are
coerced to a numeric type. In order to simplify the operations,
we have put all three numeric types under one generic super-type,
called W_numeric. Each object has a function to_numeric which
either converts that object to one of the numeric types or returns the
object itself if it already has the proper type.

The interpreter stores strings as instances of W_str. In order to
be competitive with the Zend implementation, which uses NULL-
terminated strings and offers random-access reads and writes to
string elements in constant time and linear-time concatenation, we
store strings not as RPython strings, but as lists of characters. Using
RPython strings posed a major performance problem, since they are
implemented as immutable objects. PHP allows the programmer
to replace or take a reference to any character in a string. Imple-
menting this using immutable strings would have made these stores
take a time proportional to the length of the string. Using lists, the
time per operation is constant: only one element in the list needs
to be replaced. In Figure 5, the character b changes to x. Using im-
mutable strings, the equivalent RPython operation would have been
a = al0:1] + ’x’ + a[2:]. In our implementation, a is repre-
sented as [’a’, ’b’, ’c’], which is a mutable data structure.

The interpreter creates objects of type W_class that contain
the descriptions of PHP classes when the bytecode contains the
ZEND_FETCH_CLASS operation. This operation triggers the lookup
of a given class in the class table stored in the bytecode file. That
class is then inserted in the global table of classes and a wrapper is
created for it.

3.3 Arrays and Iterators

The implementation of arrays has been even more challenging, due
to the flexibility that PHP arrays offer. In PHP, arrays are dictio-
naries indexed by either integer or string keys. They support not
only random-access get and set operations, but the append after
last element operation, where the last element of an array in PHP
is defined as the one with maximum integer key. All these oper-
ations must also have constant time performance, in order to be
competitive with the official PHP implementation. Since the data
structure must support string keys, it must be implemented as a
dictionary. However, we have noticed that significant performance

can be gained when optimizing for dense arrays that have only in-
teger keys; sparse arrays with integer keys would have far too great
memory requirements, so they are also implemented as dictionar-
ies. The Lua language also offers the same interface for arrays as
PHP. In Lua 5.0[21], the virtual machine stores the values of the
array that have integer keys from a small range in a separate linear
array.

In our implementation, arrays are wrapped in the W_array struc-
ture, which stores a pointer to a back end object which represents
the actual storage of the data. There are two kinds of back ends:
linear back end, which stores the data as a linear array, and the
dictionary back end, which stores everything in a dictionary. Each
W_array object is initialized with a pointer to an empty linear back
end. Whenever this back end must perform an operation that it does
not support, it must degenerate to the other back end, which sup-
ports all operations. The degeneration operation constructs a new
empty dictionary back end, copies all the data from the old one to
the newly constructed one and then discards the old data structure.
All following operations are executed on the new structure.

Although iterators are a PHP feature that is not directly visible
to the programmer in PHP, Zend uses them internally to imple-
ment the foreach loop statement. This statement has one of two
forms: foreach ($array as $value) { ... } or foreach
($array as $key => $value) { ... }andexecutes the state-
ments in the brackets once for each element in the array. The sec-
ond form also computes the key of each element. The value vari-
able can also be specified as a reference, in which case it receives
a reference to the original element instead of its value. The PHP
bytecode compiler compiles this statement to a pair of bytecodes,
ZEND_FE _RESET and ZEND_FE_FETCH. The former initializes an it-
erator at the beginning of the loop, while the latter advances the
iterator by one position at the end of each iteration. There is one
detail in the execution of these statements that makes their imple-
mentation more complicated: the iterator accesses a snapshot of the
array taken at the beginning of the loop. Any changes to the array
made inside the loop must not affect the iterator, especially when
the items are not accessed by reference. The W_iter object stores
an iterator over an array. It is initialized with a deep copy of the
elements of the array, so that the array itself can be modified inside
the loop.

Another relevant detail of the PHP language implementation is
that assigning an array by the = operator will create a fresh copy,
which can be subsequently modified without interfering with the
left hand side. Passing arrays by value is also possible with the
same copying semantics—if a function updates its array parameter,
the update must be invisible for the array passed as actual parameter
by the caller.

However, the naive implementation of this copying semantics
is a huge and unnecessary burden when the copy is used read-
only. For example, this is the case for the builtin count function,
which returns the element count for an array. Building recursive
data structures such as trees or graphs also requires an efficient
way of passing read-only arrays, as a higher order tree is usually
a brand-new array keeping lower-order trees as elements, passed in
as read-only parameters.

We have implemented a copy-on-write mechanism in order to
eliminate these problems. Every assignment increases a shared
copy’s counter. Any later update to an array with a counter greater
than one triggers a deep copy. Releasing these copies at scope exit is
cheap, because the counter updates are only necessary for the array
directly accessible through scope variables. Nested arrays counters
do not need updating as the Zend bytecode generator takes care of
fetching any nested array into a scope variable before an update.

One minor optimization we have implemented in HappyJIT is
the reuse of existing containers. Instead of allocating a new wrap-

28

a=42; b =& a; a=84;
W_int W_int W_int
a2 a2 84
W_int

W_reference W_reference

" f

Figure 6. Change in storage locations after taking a reference to
variable a.

per for the new value of a variable, HappyJIT puts an intermediate
value in a temporary wrapper object, then stores that value directly
into the target variable if the type matches. For example, when com-
puting $a = 2 + 3; and $a is already an W_int, the interpreter
does not store a newly allocated wrapper in the variable table. In-
stead, the new value, 5, is stored directly into the existing object for
$a. This prevents an unnecessary release of an expired object and
allocation of a new one.

3.4 PHP References

Another major feature of the PHP type system are references. Using
the =& reference-assignment operator, one variable $a can become
a reference (alias) of another variable or storage location. These
include array elements and object members (known as properties
in PHP). Any stores to $a will be reflected on the original location
as well. These references are effectively pointers to other variables;
however, there is no PHP equivalent to the NULL pointer from C.
All references always point to some live wrapped object.

Python does not provide any direct equivalent to these values, so
we have integrated them into our wrapped object hierarchy. When-
ever an operation from the script takes a reference to a location,
the contents of that location are replaced with a W_reference object
containing a pointer to its old data. The old wrapped data that was
stored in the location still exists, but another level of indirection
appears between it and its users. Whenever the interpreter accesses
the referred data, it must go through the W_reference object. Fig-
ure 6 shows an example of this change. The variable $a is initially
assigned the integer 42, so the variable table contains a pointer to
a W_int that stores 42. Later variable $b gets a reference to $a, so
both variable table cells are replaced with pointers to the same new
reference object. Later, when the first variable is assigned the new
value 84, the object is changed to point to the new wrapped value.

The W_reference objects keep track of aliases in the active scope
in the alias_count member. Reference assignment when the right
hand side is already a W_reference is implemented by shallow copy-
ing it and incrementing the alias_count. Naturally, if the left hand
side is a W_reference, its alias_count is decremented before. As
PyPy provides sophisticated garbage collection, reference count-
ing for everything isn’t needed—the scope of alias_count is lim-
ited to reference tracking. Zend uses the pair of refcount counter
and is_ref flag for every entity as general purpose information for
freeing unreachable objects, reference handling and copy-on-write
mechanism. While possible in our implementation, this approach
brings an unnecessary memory burden and a slight overhead for
assignments. Instead, the more specific approach of counting only
aliases (references) and the shared read-only copies described ear-
lier, using independent counters, was chosen for both simplicity
and efficiency.

An alternative approach would be to store everything as a ref-
erence right away. The downside of this seemingly orthogonal and
elegant approach is that the additional indirection for every read
and write incurs a performance penalty. Given the fact that refer-

$a = array(1,2,3,4,5);
foreach ($a as &$afl1]) { ... }
foreach ($a as $al2] => $al1]) { ... }

Figure 7. Example of foreach with and without references.

ences are a rather exotic feature of the PHP language, we had to
take this path in order to optimize the more frequent use case.

There is a catch however, as we have not mentioned anything
about what happens when all aliases but one fall out of any scope.
The current implementation settles for keeping the “degenerate”,
single alias reference as it is. There is no incentive for going back
to a plain value whenever the alias count reaches 1.

It is still necessary to transform a degenerate (single alias) ref-
erence to a plain value whenever such a reference is assigned to an-
other location. We needed this approach because of the way we im-
plemented references and the way the foreach language construct
works. Let us take a look at the code snippet in Figure 7. In each
iteration of the first loop, a reference to the current element is as-
signed to $a[1]. Because we are promoting both the left hand side
and the right hand side, all elements of the array will contain refer-
ences. However, at the end of the first loop, only $a[1] and $a[4]
will have an alias count of 2. The other elements will subsequently
lose the $a[1] alias during the next iteration. Therefore, the next
time we are iterating through the array, the proper references (hav-
ing an alias count more than 1) will be copied as references, as
every update to them must be seen by the iterator as well. On the
other hand, blindly copying degenerate references would be wrong,
since the language semantics requires those being treated as values
instead of references.

The second loop has a slightly more complicated behavior.
Three observations must be made here: first, the bytecode compiler
generates code that assigns the values of the key and array value
using a regular PHP assignment, but in reverse order, i.e., the
value is assigned first, then the key. Second, assigning a value or
a reference to itself has no effect, whether the assignment is by
reference or not. The last observation is that each loop operates on a
copy of the array taken at the beginning of the loop; each key/value
pair receives a value from this snapshot, not from the current array
data.

We initially considered representing references as the indices of
the referred locations in the variable table. This approach seems
correct, at first glance. The problem is that a function variable
(or an element of an array) can escape a function to its caller. If
that function is later called again, a new value might overwrite the
location that just escaped from the old call. Therefore, the value
would need to be moved from the vanishing call frame to a different
storage. This would add an additional level of indirection to the
reference access, just like our current solution, so we abandoned
this approach.

3.5 The Interpreter Loop

Our main implementation contribution is the interpreter loop. A
short excerpt of this loop appears in Figure 9. The first few opera-
tions load the opcode and operands of the next operation from the
linear bytecode array into loop variables. The rest of the loop is a
series of if statements, one for each implemented operation. Each
statement checks if the opcode matches. If so, the interpreter exe-
cutes the implementation, then advances the program counter and
continues execution at the beginning of the interpreter loop. This
is effectively a RPython implementation of a switch-based inter-
preter instruction dispatch mechanism. There are various other dis-
patch mechanisms for interpreters that increase performance, but
they provide no advantage when used in a traced interpreter [27].

29

foreach ($a as &$a[1]){ ... } foreach ($a as $a[2] => $a[1]){ ... }

W_int w_int | | w_int | | W_int
1 3 4 5

w_int | | w_int | | w_int [| w_int | | w_int

W_ref W_ref W_ref W_ref W_ref

First iteration: $a'[1] =& $a[0]; First iteration: $a'[1] = $a[0]; $a'[2] = 0;

W_int W_int w_int | | w_int | | W_int
1 1) a 1

w_int | | w_int | | w_int

W_ref W_ref W_ref W_ref W_ref W_ref W_ref

Second iteration: $a'[1] =& $a[1]; Second iteration:: $a'[1] = $a[1]; $a'[2] = 1;

W_int W_int W_int W_int W_int
1 1 1 4 1

w_int | | w_int | | w_int

W_ref W_ref W_ref W_ref W_ref W_ref W_ref

Third iteration: $a'[1] =& $a[2]; Third iteration: $a'[1] = $a[2]; $a'[2] = 2;

W_int W_int W_int W_int W_int W_int
1 3 1 2 4 3

w_int | | w_int

W_ref W_ref W_ref W_ref W_ref W_ref W_ref W_ref

Fourth iteration: $a'[1] =& $a[3]; Fourth iteration: $a'[1] = $a[3]; $a'[2] = 3;

W_int W_int W_int W_int W_int W_int W_int

1 3 a 1 3 4 4
W_int

W_ref W_ref W_ref W_ref s W_ref W_ref W_ref W_ref W_ref
0 1 2 3 4 0 1 2 3 4

Fifth iteration: $a'[1] =& $a[4]; Fifth iteration: $a'[1] = $a[4]; $a'[2] = 4;

W_int W_int | | W_int | | W_int W_int W_int | | W_int | | W_int
1 3 4 5 1 4 4 4

W_ref | | W_ref [[W_ref [|W_ref | | w_ref W_ref | | w_ref | [w_ref [|w_ref | | w_ref
0 1 2 3 4 0 1 2 3 4

Figure 8. An array $a after two foreach loops. The $a array is
the original array from the start of each loop, while $a’ are the
values visible inside the iteration.

while pc >= 0:

opcode = bytecode[pc * 9]
res_type = bytecode[pc * 9 + 1]

res_val = bytecode[pc * 9 + 2]
if opcode == bcp.ZEND_ASSIGN or
opcode == bcp.ZEND_QM_ASSIGN:

if op2_type != bcp.IS_UNUSED:
runtime_ctx.assign_value(opl_val,
op2_type, op2_val)
if res_type !'= bcp.IS_UNUSED:
runtime_ctx.assign_value(res_val,
opl_type, opl_val)
pc = pc +1
elif opcode == bcp.ZEND_ECHO or
opcode == bcp.ZEND_PRINT:
to_echo = runtime_ctx.get_wrapped_value(
opl_type, opl_val,
global_ctx.nullObject)
print_str(to_echo.deref().to_str())
pc =pc +1

Figure 9. Excerpt of code from the intepreter loop.

Let us take a look at how the PyPy JIT compiler optimizes this
code. We will use the term application loop to identify a hot loop
in the PHP script, while the interpreter loop is the main loop de-
scribed earlier. An iteration of an application loop corresponds to
one or more iterations of the interpreter loop, since more than one
bytecode operation might be executed by the script in that itera-
tion. Because all application loops correspond to the same single
interpreter loop, PyPy uses a system of “interpreter hints” that the
interpreter gives to the JIT compiler so that the latter may differ-
entiate between separate loops in the script. Each application loop
is uniquely identified by a (script, pc) pair which identify the
script that contains the loop and the position of the first instruc-
tion of the loop (the loop header). The PyPy JIT uses these tuples
as keys in a hash table that contains all the currently known ap-
plication loops, augmented with counters which keep track how
many times each loop has been executed. The interpreter notifies
the JIT whenever the PHP bytecode contains a backwards jump in-
struction, that is, to a previous position in the bytecode. The JIT
then adds the destination of that jump to the list of loop headers
and increments the execution counter for that loop. Whenever that
counter reaches a threshold, the loop is considered hot and com-
piled to native code. Yermolovich et al. have used a similar design
to implement a Lua interpreter written in ActionScript [29]. In their
implementation, the ActionScript tracing JIT compiler would opti-
mize Lua-level loops based on hints given by the Lua interpreter to
the ActionScript VM.

The compiler then eliminates all the loads and opcode checks
whenever a hot application loop gets compiled into native code.
All opcodes that occur in the loop are fixed at the time of JIT-
compilation, so the sequence of opcodes becomes an application
loop constant. The compiler then performs constant folding, so
all checks of the form opcode ZEND_XXX are either evaluated
to a true or false constant. For each interpreter loop iteration, the
compiler eliminates all code but the one for that iteration’s opcode,
along with if check for that iteration. For this reason, we have not
seen any justification to implement any other kind of interpreter,
e.g., a threaded interpreter. In hot loops, the overhead of loading

30

the operation and transferring control to the handler completely
disappears.

The execution context of the interpreter is split into three parts:
the global context, the script context and the runtime context. Our
loop is designed so that more than one program can be executed be-
fore termination; it executes programs serially in the order specified
at startup time. Since each program has its own bytecode and vari-
ous other structures, we have grouped these into the script context.
The global context stores a list of the scripts, along with a few other
immutable global data, such as the table of builtin functions. These
two context data structures are initialized when the interpreter is
started and remain unchanged for the entire run. We have grouped
the rest of the execution state, like the values of global and static
variables for the current script, the function argument, local vari-
able stacks, current function index and the program counter, into
the runtime context. Since each execution of a program must start
with clean copies of these structures, the runtime context is reset at
the start of the script.

In any oparray, there are several different kinds of variables:
global, static, local and internal. Using processor architecture ter-
minology, the internal variables can be compared to an infinite set
of virtual registers, while the other types of variables are compa-
rable to the memory. All bytecode operations accept only internal
variables as operands. The internal variables are further split into
a few types: temporaries, vars and compiled vars. Earlier versions
of the Zend engine loaded the values of all other kinds of variables
into internals, did all the computation on these and then stored back
the results in the global/static/local variables. Temporaries were
used to compute the values of expressions, while vars are used to
store values across operations. Recent versions of PHP have added
the third kind as an optimization. Instead of being placed separately
and loaded for each use, local variables are assigned one compiled
var so they can be used directly as operands.

In our implementation, we do not distinguish between internal
and other types of variables. We store all variables in one linear
stack of wrapped objects. The runtime context contains this array.
Each oparray contains the number of total internal variables, so we
preallocate the space for those whenever a function is called. All the
named local variables are simply pushed on the stack whenever the
program first references each one. We also use the linear variable
stack to store the call frame for each function. When a function
calls another function, the interpreter stores some of the caller
state, that is popped back later on return: the caller’s index in the
function table, the program counter of the call operation, the bottom
and top of the caller’s stack frame and the old function’s count of
parameters.

Before a function calls another function, the caller pushes the
callee’s parameters on the stack. The bytecode provides a few op-
codes just for this purpose, all starting with ZEND_SEND. However,
since these parameter operations can be intertwined with other op-
erations that might push values on the stack, we could not use the
same stack for variables and parameters. Otherwise, some sequence
of operations might push a parameter, then a variable, then another
parameter. The callee would be unable to access the parameters as
a contiguous region on the stack and pop them on return. There is
a global stack for parameters stored in the runtime context, which
callers push arguments on, while the callees pop off the appropriate
number of values on return.

A similar mechanism exists for function names. Whenever the
script contains a function call, the interpreter must do the follow-
ing operations: identify the function by its name, compute and
push the arguments on the argument stack, then perform the ac-
tual function call. Each of these operations corresponds to some
bytecode operations that the bytecode compiler generates. These
steps must be done in this exact order, as the interpreter must know

<7php

$s = 0;

for ($i = 0; $i < 10000; $i++) {
$s += $1i;

}

>

Figure 10. Example of PHP script with loop.

which function is called before executing any ZEND_SEND opera-
tion. This is crucial for error checking, as errors such as parameters
sent by the caller as values and expected by the callee as refer-
ences must be reported. The Zend engine uses a fast path for this
case where the function is known at parse-time. This occurs when
it is a regular function call (as opposed to an object method) and
its name is a string constant, known at parse-time. In this case,
the bytecode compiler simply does not emit anything for the first
case, but encodes all information about expected arguments in the
ZEND_SEND operations. In any other case, the bytecode compiler
generates a ZEND_INIT_FCALL_BY_NAME operation before any of
the other parameter-related operations. This operation must lookup
the function’s name in the global function table and compute its in-
dex in that table. All the following ZEND_SEND operations and the
function call itself use this index to identify the function and its for-
mat parameters. Therefore, this index must be stored in memory in
a location accessible by these operations. For this purpose, we use
a third stack, the function name stack. ZEND_INIT FCALL BY NAME
pushes the index on the stack, then ZEND_DO_FCALL_BY_NAME pops
it back when performing the call.

There were two data structures we considered for the stack of
variables: a linked list of frame objects, one per function, which
would include the storage for all the local variables in that function,
or a single linear array of stack locations that all functions push and
pop values from. The Python interpreter in PyPy is an example
of the former approach, as it allocates on PyFrame object per
function, while programs writted in C and compiled to X86 code
are a good example of the latter. In programs with recursive or
frequently called functions, allocating one frame object per call
leads to a lot of redundant memory allocations, where frames are
repeatedly allocated and released after a short time. To prevent
this, we have implemented the frames using the latter approach,
stored on a global linear stack. This stack is preallocated as an
array of W_ints that is “large enough” for most scripts and extended
whenever needed. This also has an impact on the performance
of the code generated by the JIT compiler, as it is able to fold
some constant pointers to locations on the stack and avoid other
unnecessary object constructions and destructions. For example,
if the same function is called many times, the five values in its
frame need not be allocated as wrapped objects, but simply stored
as integers in the existing slots.

3.6 Loop Example

Let us take a look at the intermediate and final representations
that a PHP program goes through. Figure 10 shows a small PHP
program with a loop. Figure 11 contains the bytecode generated by
the compiler for this program. Operands prefixed with ! correspond
to compiled variables. In this case, !0 is the variable $s while
1 is the loop variable $i. The operands starting with the ~ are
temporaries which do not correspond to any variable in the source
code. Statements 7 and 8 compose the main body of the loop, where
the addition in the loop takes place.

The bytecode generated by this loop is interpreted by HappyJIT
using the C implementation of the interpreter. When a sufficient
number of iterations have been executed, the RPython implementa-

31

line # op ext return operands
2 1 ASSIGN 0, 0
3 2 ASSIGN '1, 0
3 IS_SMALLER "2 '1, 10000
4 JMPZNZ 8 "2, ->10
5 POST_INC "3 "1
6 FREE ~3
7 JMP ->3
4 8 ASSIGN_ADD 0 0, 1
5 9 JMP ->5
7 10 ECHO %04’
11 RETURN 1

Figure 11. Corresponding Zend bytecode for script from Fig-
ure 10.

Loop O : loop with 45 ops

[i0, p1, p2, ., 122, 123]

debug_merge_point (’Pc:5’, 0)

p24 = getarrayitem_gc(p4, i5, descr=...)
guard_class(p24, 9074280, descr=<Guard2>)

p26 = getarrayitem_gc(p4, i8, descr=...)
guard_nonnull_class(p26, 9074280, descr=<Guard3>)
i28 = getfield_gc(p24, descr=...)
setfield_gc(p26, 128, descr=...)

i29 = getfield_gc(p24, descr=...)

i31 = int_add(i29, 1)

debug_merge_point(’Pc:6’, 0)

debug_merge_point (’Pc:7°, 0)
debug_merge_point(’Pc:3’, 0)

p32 = getarrayitem_gc(p4, i9, descr=...)
setfield_gc(p24, i31, descr=...)
guard_nonnull_class(p32, 9074280, descr=<Guard4>)

i34 = getfield_gc(p32, descr=...)
i35 = int_sub(i34, i11)
i37 = int_1t(i35, 0)

guard_true(iS?, descr=<Guard5>)

p39 = getarrayitem_gc(p4, i12, descr=...)
guard_nonnull_class(p39, 9075208, descr=<Guard6>)
debug_merge_point(’Pc:4’, 0)

p4l = getarrayitem_gc(p4, i13, descr=...)
setfield_gc(p39, 1, descr=...)
guard_class(p4l, 9075208, descr=<Guard7>)
i44 = getfield_gc(p4l, descr=...)

i45 = int_is_zero(i44)

guard_false(i45, descr=<Guard8>)
debug_merge_point (’Pc:8’, 0)

p46 = getarrayitem_gc(p4, 117, descr=...)
guard_class(p46, 9074280, descr=<Guard9>)
p48 = getarrayitem_gc(p4, 122, descr=...)
guard_class(p48, 9074280, descr=<Guardi0>)

i50 = getfield_gc(p46, descr=...)

i51 = getfield_gc(p48, descr=...)

i62 = int_add(i50, i51)

p53 = getarrayitem_gc(p4, il7, descr=...)

guard_nonnull_class(pSS, 9074280, descr=<Guardilil>)
p55 = getarrayitem_gc(p4, i23, descr=...)
setfield_gc(p53, 152, descr=...)
guard_nonnull_class(p55, 9074280, descr=<Guardl2>)
debug_merge_point (’Pc:9’, 0)
debug_merge_point(’Pc:5’, 0)

setfield_gc(p55, 152, descr=...)

jump(iO, pi1, ., 122, 123, descr=<Loop0>)

Figure 12. JIT loop generated from code in Figure 10.

tion of the interpreter switches into tracing mode and generates an
efficient representation of the loop that is then compiled to binary
code. Figure 12 shows this internal representation. The loop is sim-
ply a sequence of small operations that end in a jump to the start
of the loop, with various guards inserted in different places inside
the loop. The JIT compiler transforms each loop operation into a
small number of assembly instructions, taking a very small amount
of time to execute.

Before entering the loop, many values and addresses are pre-
computed and passed to the loop as constants specified in the list
on the first line, e.g., the address of the local variable table as value
p4 and the number of iterations as i11. Each debug merge_point
pseudo-operation marks the start of an iteration of the interpreter
loop. In some cases, bytecode operations are reduced to no-ops af-
ter loop generation. An example of this are control flow operations,
since the loop is a linear piece of code given that all the guards
succeed.

This loop also provides a good example of container reuse. A
straightforward implementation of the ASSIGN_ADD opcode would
add the values of $s and $i together and allocate a new W_int
object for the result, then store this object into the variable table
at the location corresponding to $s. Instead, the interpreter stores
the primitive integer value directly into the wrapper that already
contains $s. The sum of the two values is computed in the loop and
saved in p52 temporary, then stored at the memory location from
p53. This location stores $s.

4. Evaluation
4.1 Performance Results

We tested our interpreter on a 64-bit 2.4GHz Intel Core 13-370M
running Debian Linux, kernel version 3.0.0. We evaluated the per-
formance of our interpreter when compared with the official PHP
implementation, stable version 5.33.6. Two versions of our inter-
preter appear if the evaluation: one translated into C using PyPy
(Happy) and the other one translated into a JIT compiler (Hap-
pyJIT). The results are the average of 10 runs. Our implementa-
tion was compiled with PyPy built from the repository, revision
29823:ce505f035396.

This evaluation uses two test suites. The first one we have used
is PHPbench [4], a well-known suite of benchmarks written specif-
ically for the PHP language. The second test suite is a subset of the
PHP tests from the Computer Language Benchmarks Game [8].

Figure 13 shows the relative performance of the tests in PHPbench.

We have measured the execution times relative to the official
PHP interpreter and the Roadsend PHP compiler [7]. Most tests
prove to be faster on the JIT-compiler interpreter than on Zend
or Roadsend, while the non-JIT version is slower than Zend. The
slowdown of the latter is as high as 10x for one particular test,
variable_variables, and 5x for some of the others. We couldn’t
get performance data on all tests for Roadsend, as it failed the
arithmetic test from PHPbench and didn’t finish the nsieve-2
test from the Shootout suite.

There are a few tests that have significantly worse performance
on our interpreter than on the standard one. The first poorly-
performing test is local_hash_assign, which tests the perfor-
mance of assignments to hash tables that use string keys. Our im-
plementation uses the default implementation of dictionaries in
RPython for this case. These data structures are implemented as C
or low-level RPython code which does not get analyzed by the JIT
compiler. All helper functions that these structures use are called
by the JIT without being traced, so they cannot be optimized at
run-time. The dictionaries are implemented as hash tables with
open addressing, so each dictionary operation contains a loop with
a number of iterations that depends on the key being inserted. This

32

File Slowdown Slowdown (no JIT)
binarytrees-3 4.18x 4.19x
local_array_assign 8.25x 5.73x

Figure 14. Slowdown from disabling copy-on-write.

number of iterations not only varies with the hash value of the key,
but it is also not large enough to trigger the tracing of the loop. The
JIT compiler could not optimize these operations anyway. The next
test that shows a slowdown, variable_variables, uses variables
whose names are only known at run-time. Therefore, any access
to such a variable requires a dictionary lookup. This test shows a
significant slowdown for this reason.

Our implementation of strings also poses some performance
problems. The remaining three tests that have worse performance
on our JIT all use the string concatenation operation provided by
the PHP language. In our implementation, this operation is a simple
concatenation of the lists of characters in the two strings, using
the Python function extend. The Zend engine uses the C function
strcat, which has been highly optimized by the writers of the C
library and some compilers optimizing compilers also replace it
with a very efficient built-in version.

Figure 15 presents the performance results for the Computer
Language Benchmarks Game tests. The only tests where our imple-
mentation falls behind are fibo, ackermann and binarytrees.
These tests are very similar in one respect: the piece of code most
executed is a recursive function. Although our pre-allocated stacks
and wrapper-reuse optimizations are designed to make function
calls as fast as possible, recursive functions still prove to be slower
under the JIT compiler than in Zend. Tests that contain one or more
long-running loops, such as nested loop, primes and nsieve,
show a significant performance improvement when JIT-compiled.

We have also analyzed the impact of the copy-on-write mecha-
nism for arrays. Most of the tests we have run do not have any array
copies that would benefit from this, so we observed no change in
performance. Figure 14 shows the slowdown, relative to the default
setting (copy-on-write enabled). Two tests, binarytrees-3 from
the Shootout suite and local_array_assign from PHPbench are
heavily penalized when disabling this mechanism. This is to be ex-
pected, as both make heavy use of array assignment without chang-
ing the copies.

5. Related Work

Tracing JITs have gained enormous popularity in recent years.
The origin of this concept is a binary rewriting system called Dy-
namo [13], where tracing was used to optimize pre-compiled binary
code. This system would detect hot loops, convert them into traces,
optimize the traces and generate new, more efficient binary code.
The original version only supported linear traces; later, more com-
plex data structures for traces appeared, such as trace trees [18].
Advanced tracing JITs using the more advanced data structures
have been written for a variety of statically and dynamically-typed
languages, such as the YETI [30] and HotPath[19] for Java, Trace-
Monkey [20] for JavaScript and TamarinTracing [17] for Action-
Script. The latter was also used successfully as the lower layer of a
layered virtual machine for the Lua language [29].

Several JITs have been built for the PHP language. One such
implementation [23] used the JIT compiler in LLVM [22] to gener-
ate optimized code at run-time. It compiled the oparray operation
handlers into LLVM bitcode offline, then convert the PHP bytecode
into a linear sequence of LLVM calls to these handlers when the
program was run. Using a combination of inlining and other LLVM
optimizations, it would convert the bytecode into optimized native
code, then directly execute that code. Another project, P9 [28], re-

Zend o
Happy ==

Roadsend ——

HappyJ|T —

ubisse”Buiis [eqo|f

ubisse”Aelie [eao|

235

S3|qeLEA djqRUEA

JuswIBIOUl

ubisse Jeeos [eqo|b

0.99

ubisse ysey [eo0]

asImIg

ubisse1abajul [eo0)|

0.15]

panul aedwod

oo

0.36}

eaiqajiym op

jouIsun”asedwod

Saouaisjel

ubisse BuLs [ea0]

J011s~asedwod

a/edwoo

aliym~op

0.24]

ubisseJeeas” [eo0]

puadde Buus

(ennyejal) BWI} UOKNIBXT

Figure 13. PHPbench tests performance, relative to Zend.

HappyJIT =

Zend oo

Happy ===
Roadsend ———

uueuuyoe

Josdeay

Joigjopuew

oaqy

sowud

doo|paisau

XNpaJ-yonjuuey

Z-onaisu

g-saalhreulq

g-sewud

2-SHgaAdISU

swnsjeiped

anals

Kie

- 2.08
1.58 [] [
0.94 0o
0.69 0.7
0.59
0.53
0.49 0.48
0.42 0.42 0.43
0.26

10

1

0.1

(aAI1e[8)) B UOIINJEXT

Figure 15. Shootout tests performance, relative to Zend.

33

targeted an existing JIT called TR JIT to a PHP front end. This JIT
is also used in the IBM J9 Java VM. The authors adapted this JIT
to the dynamic features of PHP and showed that there is a perfor-
mance gain in just-in-time compilation for PHP.

Another approach for dynamically-typed language optimization
is source-to-source translation. Instead of being compiled to some
bytecode and then interpreted, the code written in the dynamically-
typed language is converted to another language then compiled
with an existing compiler. The target language is often a static
language, such as C or C++. This idea is also used to as the first
version of a compiler for a new language; for example, the first
C++ compiler, cfront [2], converted the input C++ code to C. Sev-
eral source-to-source translators for PHP have been written, such
as Hiphop [3], phc [14] and Roadsend PHP [7]. The first one con-
verts a given PHP program into C++ code, attempting to keep the
object-oriented structure of the program intact after translation.
PHP classes are converted to C++ classes and PHP functions are
converted to C++ functions, wherever possible. The second com-
piler, phc, only targets the C language, simulating object-oriented
programming using the features offered by C. The third compiler
converts a program into a mix of C and Bigloo Scheme [26]. As
PHP is a dynamically-typed language, there are some parts of the
program code that are not completely known until run-time, e.g.,
dynamic variable names or calls to the eval function. Such code
cannot be precompiled, so these source-to-source translators ei-
ther must also implement a complete PHP interpreter or not sup-
port some dynamic features of the language. Moreover, some static
analysis for type inferrence [11] must be done in order to avoid
at least some of the wrapping and late binding overhead. More
often than not this leads to very poor results because of a com-
binatorial explosion of possible types inherent to a dynamically-
typed language. JIT compilation of PHP bytecode does not have
this drawbacks and can optimize statically and dynamically-typed
code equally, as all the optimizations are done at run-time.

6. Conclusions and Future Work

We presented the design of an interpreter for the PHP language
written in RPython, along with many details of the data model used
by this interpreter. The design of this system was heavily motivated
by the need to support all the features of the PHP language that are
not directly visible to the programmer, such as iterators, in an ef-
ficient way. We have also shown that running our interpreter using
a tracing JIT compiler provides significant performance improve-
ments for some common use cases. JIT compilation has proven to
be a very effective optimization technique for the PHP language.

We have identified a few weak spots in the performance of our
compiler. There is a performance penalty for function calls which
could matter for highly recursive code. We plan to investigate
whether this can be solved with more careful pre-allocation of
frames and higher level, language aware optimizations.

In addition, a frequent scenario that appears in the execution of
PHP programs is the repeated interpretation of the same program,
many times. If the program itself does not contain a loop, a trac-
ing JIT will not compile the program to native code. We are look-
ing to adapt the interpreter loop so that “hot programs” are identi-
fied, traced and JIT-compiled. We have already experimented with
tricking PyPy into handling entire programs the same way as loop
bodies. The results are good, trivial programs without loops show-
ing the same speedup as if their code was inside a loop. However,
some work on PyPy itself is needed in order to properly handle
alternating between different programs. As PyPy is a meta-JIT, us-
ing very few assumptions about what loops are, we are confident
that this can be done without any disruptive changes in the PyPy
codebase. Most of the work for recording and retrieving traces
for non-consecutive loop iterations is already done. Moreover, the

34

loop_longevity JIT parameter controls the lifespan of inactive
(currently not used) traces before being discarded—controlling the
trade-off between speed and memory usage should be therefore
possible out of the box.

We have already mentioned in the introduction one major use of
PHP programs. In this paper, we have evaluated the performance of
our prototype interpreter on synthetic benchmarks. It would also be
interesting to evaluate the performance of HappyJIT in more realis-
tic scenarios, such as the server-side page generators presented ear-
lier. To this end, we must either integrate our interpreter into an ex-
isting webserver such as Apache or build a new server from scratch
around our program. This will enable us to evaluate statistics like
page generation time and memory usage and compare them against
the statistics of other implementations. At the time of writing this
paper, neither our PHP language support nor our PHP runtime were
complete or stable enough to allow for such tests.

Acknowledgments

We would like to thank Stefan Brunthaler for the great feedback
and advice on this paper and Michael Franz for his guidance and
feedback. We are deeply grateful to the anonymous reviewers for
the valuable comments and suggestions that helped us improve this

paper.

References
[1] The Alternative PHP Cache. http://pecl.php.net/package/APC.

[2] cfront. http://www.softwarepreservation.org/projects/c_
plus_plus/cfront.

[3] HipHop for PHP. https://github.com/facebook/hiphop-php.
[4] The PHP Benchmark. http://www.phpbench.com/.

[5] PyPy official documentation, .
dist/pypy/doc.

http://codespeak.net/pypy/

[6] PyPy language front ends, . http://codespeak.net/svn/pypy/
lang/.

[7] Roadsend PHP. http://www.roadsend.com/home/index.php.

[8] The Computer Language Benchmarks Game. http://shootout.
alioth.debian.org/.

[9] Unladen Swallow.
unladen-swallow/.

http://code.google.com/p/

[10] The Zend PHP engine. http://www.zend.com/en/community/
php/.

[11] O. Agesen. The cartesian product algorithm: Simple and precise type
inference of parametric polymorphism. In Proceedings of the 1995
European Conference on Object-Oriented Programming, ECOOP 95,
pages 2-26, London, UK, UK, 1995. Springer-Verlag. ISBN 3-540-
60160-0.

[12] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. RPython: a
step towards reconciling dynamically and statically typed OO languages.
In Proceedings of the 2007 Dynamic Languages Symposium, DLS *07,
pages 53—-64, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
868-8.

[13] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. In Proceedings of the 2000 Conference
on Programming Language Design and Implementation, PLDI ’00,
pages 1-12, New York, NY, USA, 2000. ACM. ISBN 1-58113-199-2.

[14] P. Biggar, E. de Vries, and D. Gregg. A practical solution for scripting
language compilers. In Proceedings of the 2009 Symposium on Applied
Computing, SAC *09, pages 1916-1923, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-166-8.

[15] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the meta-
level: PyPy’s tracing JIT compiler. In Proceedings of the 2009 Workshop
on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems, ICOOOLPS ’09, pages 18-25,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-541-3.

[16] C.F. Bolz, M. Leuschel, and D. Schneider. Towards a jitting VM for
Prolog execution. In Proceedings of the 2010 International Symposium
on Principles and Practice of Declarative Programming, PPDP 10,
pages 99-108, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-
0132-9.

[17] M. Chang, E. Smith, R. Reitmaier, M. Bebenita, A. Gal, C. Wimmer,
B. Eich, and M. Franz. Tracing for web 3.0: trace compilation for the next
generation web applications. In Proceedings of the 2009 International
Conference on Virtual Execution Environments, VEE ’09, pages 71-80,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-375-4.

[18] A. Gal and M. Franz. Incremental dynamic code generation with trace
trees. Technical Report ICS-TR-06-16, University of California, Irvine,
2006.

[19] A. Gal, C. W. Probst, and M. Franz. HotpathVM: an effective JIT
compiler for resource-constrained devices. In Proceedings of the 2006
International Conference on Virtual Execution Environments, VEE *06,
pages 144-153, New York, NY, USA, 2006. ACM. ISBN 1-59593-332-
8.

[20] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendortf, J. Ruderman,
E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and M. Franz.
Trace-based just-in-time type specialization for dynamic languages. In
Proceedings of the 2009 Conference on Programming Language Design
and Implementation, PLDI ’09, pages 465—478, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-392-1.

[21] R. Ierusalimschy, L. H. D. Figueiredo, and W. Celes. The Imple-
mentation of Lua 5.0. Journal of Universal Computer Science, 11:
2005.

[22] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. Proceedings of the 2004
International Symposium on Code Generation and Optimization, 0:75,
2004.

35

[23] N. Lopes. Building a JIT compiler for PHP in 2 days, 2008.

[24] D. Rethans. The Vulcan Logic Dumper. http://derickrethans.
nl/projects.html.

[25] A. Rigo. Representation-based just-in-time specialization and the
psyco prototype for Python. In Proceedings of the 2004 Symposium
on Partial Evaluation and Semantics-based Program Manipulation,
PEPM 04, pages 15-26, New York, NY, USA, 2004. ACM. ISBN
1-58113-835-0.

[26] M. Serrano and P. Weis. Bigloo: A portable and optimizing compiler
for strict functional languages. In Proceedings of the 1995 International
Symposium on Static Analysis, SAS ’95, pages 366-381, London, UK,
1995. Springer-Verlag. ISBN 3-540-60360-3.

[27] Y. Shi, K. Casey, M. A. Ertl, and D. Gregg. Virtual machine
showdown: Stack versus registers. ACM Transactions on Architecture
and Code Optimization, 4:2:1-2:36, January 2008. ISSN 1544-3566.

[28] M. Tatsubori, A. Tozawa, T. Suzumura, S. Trent, and T. Onodera.
Evaluation of a just-in-time compiler retrofitted for PHP. In Proceedings
of the 2010 International Conference on Virtual Execution Environments,
VEE 10, pages 121-132, New York, NY, USA, 2010. ACM. ISBN 978-
1-60558-910-7.

[29] A. Yermolovich, C. Wimmer, and M. Franz. Optimization of
dynamic languages using hierarchical layering of virtual machines.
In Proceedings of the 2009 Symposium on Dynamic languages, DLS
’09, pages 79-88, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-769-1.

[30] M. Zaleski, A. D. Brown, and K. Stoodley. YETI: a gradually
extensible trace interpreter. In Proceedings of the 2007 International

Conference on Virtual Execution Environments, VEE ’07, pages 83-93,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-630-1.

